Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 96 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,463,357 unique visits
469,816 downloads
Since November 1, 2009



Robots online now
Googlebot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  1/2013 - 1
View TOC | « Previous Article | Next Article »

Automatic and Parallel Optimized Learning for Neural Networks performing MIMO Applications

FULGINEI, F. R. See more information about FULGINEI, F. R. on SCOPUS See more information about FULGINEI, F. R. on IEEExplore See more information about FULGINEI, F. R. on Web of Science, LAUDANI, A. See more information about  LAUDANI, A. on SCOPUS See more information about  LAUDANI, A. on SCOPUS See more information about LAUDANI, A. on Web of Science, SALVINI, A. See more information about  SALVINI, A. on SCOPUS See more information about  SALVINI, A. on SCOPUS See more information about SALVINI, A. on Web of Science, PARODI, M. See more information about PARODI, M. on SCOPUS See more information about PARODI, M. on SCOPUS See more information about PARODI, M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (705 KB) | Citation | Downloads: 1,266 | Views: 4,203

Author keywords
neural networks, multivariate function decomposition, learning optimization, parallel computing, genetic algorithms

References keywords
neural(23), networks(14), network(9), salvini(6), riganti(6), fulginei(6), decomposition(5), problems(4), optimization(4), feed(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-02-28
Volume 13, Issue 1, Year 2013, On page(s): 3 - 12
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.01001
Web of Science Accession Number: 000315768300001
SCOPUS ID: 84875323616

Abstract
Quick view
Full text preview
An automatic and optimized approach based on multivariate functions decomposition is presented to face Multi-Input-Multi-Output (MIMO) applications by using Single-Input-Single-Output (SISO) feed-forward Neural Networks (NNs). Indeed, often the learning time and the computational costs are too large for an effective use of MIMO NNs. Since performing a MISO neural model by starting from a single MIMO NN is frequently adopted in literature, the proposed method introduces three other steps: 1) a further decomposition; 2) a learning optimization; 3) a parallel training to speed up the process. Starting from a MISO NN, a collection of SISO NNs can be obtained by means a multi-dimensional Single Value Decomposition (SVD). Then, a general approach for the learning optimization of SISO NNs is applied. It is based on the observation that the performances of SISO NNs improve in terms of generalization and robustness against noise under suitable learning conditions. Thus, each SISO NN is trained and optimized by using limited training data that allow a significant decrease of computational costs. Moreover, a parallel architecture can be easily implemented. Consequently, the presented approach allows to perform an automatic conversion of MIMO NN into a collection of parallel-optimized SISO NNs. Experimental results will be suitably shown.


References | Cited By  «-- Click to see who has cited this paper

[1] K. H. Lim, K. P. Seng, L. M. Ang, S. W. Chin., "Lyapunov Theory-Based Multilayered Neural Network", IEEE Trans. on Circ. and Syst.—II: Express Briefs, vol. 56, no. 4, April (2009), pp. 305-309.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 12]


[2] B. Yalcin, K. Ohnishi, "Infinite-Mode Networks for Motion Control", IEEE Transactions on Ind. Elect., vol. 56, no. 8, August (2009), pp. 2933-2944.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 13]


[3] G. Capizzi, S. Coco, C. Giuffrida, A. Laudani, "A neural network approach for the differentiation of numerical solutions of 3-D electromagnetic problems", IEEE Trans. on Magnetics, Vol. 40, No. 2, pp. 953-956, 2004.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 19]


[4] N. Morariu, S. Vlad, "Using Pattern Classification and Recognition Techniques for Diagnostic and Prediction," Advances in Electrical and Computer Engineering, vol. 7, no. 1, pp. 63-67, 2007.
[CrossRef] [Full Text]


[5] N. S. Thomaidis, G. D. Dounias, "A Hybrid Neural Network-Based Trading System", Proceeding on HAIS '09 Proceedings of the 4th International Conference on Hybrid Artificial Intelligence Systems, Pages 694 - 701
[CrossRef] [SCOPUS Record]


[6] P. Shuang, Y. Wei-kang and G. Mei ling "Application of Simulated Annealing BP Neural Network in Financial Crisis Early Warning", International Conference on Computational Intelligence and Software Engineering (CiSE), 2010, pp. 1-3,
[CrossRef] [SCOPUS Record]


[7] L. O. Fedorovici, R. E. Precup, F. Dragan, R. C. David and C. Purcaru, "Embedding Gravitational Search Algorithms in Convolutional Neural Networks for OCR applications", 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), 2012, pp. 125 - 130
[CrossRef]


[8] L. Jianyo, L. Yongchun, B. Jianpeng, S. Xiaoyun, L. Aihua. Flaw, "Identification Based on Layered Multi-subnet Neural Networks", Proceedings of Second Int. Conf. on Intelligent Networks and Intelligent Systems. 1-3 November (2009). Tianjin, China, pp.118-128.
[CrossRef] [SCOPUS Record]


[9] A. Sun, A. Zhang, Y. Wang., "Largescale Artificial Neural Network Owning Function Subnets", Proceedings of 2006 IEEE Int. Conf. on Mechat. and Autom. June 25 - 28, (2006), Luoyang, China, pp. 2465-2470.
[CrossRef] [SCOPUS Times Cited 1]


[10] W. Haikun, D. Weiming, X. Sixin, "Designing Neural Networks Based on Structure Decomposition", Proceedings of the 3d World Congress on Intel. Cont. and Aut. June 28-July 2, (2000), Hefei, P.R. China. pp. 821-825.
[CrossRef]


[11] H. Kabir, Y. Wang, M. Yu and Q. J. Zhang, "High-Dimensional Neural-Network Technique and Applications to Microwave Filter Modeling", IEEE Trans on Micr. Theory and Tech., vol. 58, no. 1, January (2010), pp. 145-156.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 39]


[12] F. Riganti Fulginei, A. Salvini, "Neural Network Approach for Modelling Hysteretic Magnetic Materials under Distorted Excitations", IEEE Transactions On Magnetics, vol. 48, p. 307 -310, 2012.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 29]


[13] F. Riganti Fulginei, A. Salvini, C. Coltelli, "A Neuro-Genetic and Time-Frequency Approach Macromodeling Dynamic Hysteresis in Harmonic Regime", IEEE Transactions On Magnetics, vol. 39, p. 1401-1404, 2003.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 17]


[14] S. Fiori, Singular Value Decomposition Learning On Double Stiefel Manifold, Int.Journal of Neural Sys., Vol. 13, No. 2 (2003) World Sci. Pub.Comp. pp. 1-16. [PubMed]

[15] H. Trung Huynh, Y. Won, "Training Single Hidden Layer Feedforward Neural Networks by Singular Value Decomposition", Proceedings of 2009 Fourth Int. Conf. on Comp. Scie. and Conv. Inf. Tech. 30 November -2 December Seoul, Korea. pp. 1300-1304.
[CrossRef] [SCOPUS Times Cited 3]


[16] K. Rohani, M.S. Chen, M. T. Manry, "Neural Subnet Design by Direct Polynomial Mapping", IEEE Trans. on Neural Net., vol. 3, no. 6, November (1992). pp. 1024-1026.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 15]


[17] F. Riganti Fulginei, A. Salvini, M. Parodi, "Learning Optimization Of Neural Networks Used For Mimo Applications Based On Multivariate Functions Decomposition". Inverse Problems In Science & Engineering, vol. 20, p. 29-39, 2012.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 20]


[18] B. Curry, "Neural networks and seasonality: Some technical considerations", European Journal of Operational Research vol. 179, pp. 267-274, 2007.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 9]


[19] E. J. Teoh, K. C. Tan, C. Xiang, "Estimating the number of hidden neurons in a feedforward network using the singular value decomposition", IEEE Trans. on Neural Networks, vol. 17, no. 6, pp. 1623-1629, nov. 2006.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 65]


[20] G. Bebis, M. Georgiopoulos, "Optimal feed-forward neural network architectures", IEEE Potentials, October 1994, pp. 27-31.
[CrossRef] [SCOPUS Times Cited 57]


[21] C. Cernazanu, "Training Neural Networks Using Input Data Characteristics," Advances in Electrical and Computer Engineering, vol. 8, no. 2, pp. 65-70, 2008.
[CrossRef] [Full Text] [SCOPUS Times Cited 6]


[22] R. Mirsu, S. Micut, C. Caleanu, D. B. Mirsu, "Optimized Simulation Framework for Spiking Neural Networks using GPU's," Advances in Electrical and Computer Engineering, vol. 12, no. 2, pp. 61-68, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[23] R. Reed, "Pruning algorithms—A review," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, 1993.
[CrossRef] [Web of Science Times Cited 732] [SCOPUS Times Cited 860]


[24] T. Kwok, D. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Networks, vol. 8, n. 3, pp. 630-645, May 1997.
[CrossRef] [Web of Science Times Cited 221] [SCOPUS Times Cited 281]


[25] Wolpert D. H., Macready, W. G., "No free lunch theorems for optimization," IEEE Trans. on Evolutionary Computation, vol. 1, pp. 67-83, 1997.
[CrossRef] [SCOPUS Times Cited 2756]


[26] F. Riganti Fulginei, A. Salvini, "Comparative Analysis between Modern Heuristics and Hybrid Algorithms", COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronics Engineering, MCB University Press, vol. 26, no. 2, pp. 264-273, March 2007.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 28]


[27] F. Riganti Fulginei, A. Salvini, "Hysteresis model identification by the Flock-of-Starlings Optimization", International Journal Of Applied Electromagnetics And Mechanics, vol. 30, p. 321-331, 2009.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 21]


[28] F. Riganti Fulginei, A. Salvini and G. Pulcini, "Metric-topological-evolutionary optimization". Inverse Problems in Science & Engineering (IPSE), vol. 20, p. 41-58, 2012
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 21]




References Weight

Web of Science® Citations for all references: 1,161 TCR
SCOPUS® Citations for all references: 4,274 TCR

Web of Science® Average Citations per reference: 40 ACR
SCOPUS® Average Citations per reference: 147 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-04 22:00 in 153 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: