Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,500,972 unique visits
994,903 downloads
Since November 1, 2009



No robots online now


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2012 - 1
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Speed and Current Control of Permanent Magnet Synchronous Motor Drive Using IMC Controllers

BRANDSTETTER, P. See more information about BRANDSTETTER, P. on SCOPUS See more information about BRANDSTETTER, P. on IEEExplore See more information about BRANDSTETTER, P. on Web of Science, KRECEK, T. See more information about KRECEK, T. on SCOPUS See more information about KRECEK, T. on SCOPUS See more information about KRECEK, T. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (989 KB) | Citation | Downloads: 3,968 | Views: 11,364

Author keywords
permanent magnet synchronous motor, closed loop systems, variable speed drive, vector control, digital signal processor

References keywords
control(14), permanent(11), magnet(11), synchronous(10), motor(9), drives(8), sensor(6), machines(6), power(5), electronics(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-11-30
Volume 12, Issue 4, Year 2012, On page(s): 3 - 10
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.04001
Web of Science Accession Number: 000312128400001
SCOPUS ID: 84872805931

Abstract
Quick view
Full text preview
The paper describes a current and speed control of the permanent magnet synchronous motor with vector control. For a current and speed controller, the Internal Model Control (IMC) method was chosen for its good tracking capability and demands on the controllers. A short analysis of the IMC method for design of the current and speed controller has been made. The paper contains mathematical description of the IMC controller design. Simulation and experimental results of the vector controlled AC drive with interior permanent magnet synchronous motor are shown to present features of the current and speed controller.


References | Cited By  «-- Click to see who has cited this paper

[1] K. B. Bose, Power Electronics and Modern Electric Drives. New Jersey: Prentice Hall, 2002.

[2] N. S. Vukosavic, Digital Control of Electric Drives. Springer, 2007.

[3] D. Uzel, Z. Peroutka, "Optimal Control and Identification of Model Parameters of Traction Interior Permanent Magnet Synchronous Motor Drive", In 37th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Melbourne, Australia, pp. 1960-1965, 2011.
[CrossRef]


[4] J. Vittek, P. Bris, P. Makys, M. Stulrajter, "Forced dynamics control of PMSM drives with torsion oscillations", The International Journal for Computation and Mathematics in Electrical and Electronic Engineering COMPEL Vol. 29, Issue 1, pp. 187-204, 2010.
[CrossRef] [Web of Science Times Cited 13]


[5] P. Chlebis, P. Moravcik, P. Simonik, "New Method od Direct Torque Control for Three-level Voltage Inverter", In 13th European Conference on Power Electronics and Applications - EPE 2009, Barcelona, Spain, Vols 1-9, pp. 4051-4056, 2009.

[6] M. J. Duran, T. Glasberger, D. Dujic, E. Levi, Z. Peroutka,"A Modified Sector Based Space Vector PWM Technique for Five-Phase Drives", IEEJ Transactions on Electrical and Electronic Engineering, Vol.4, No.4, pp. 453-464, 2009.
[CrossRef] [Web of Science Times Cited 7]


[7] F. J. Gieras, M. Wing, Permanent Magnet Motor Technology: Design and Applications. CRC Press, 2002.

[8] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall, 2001.

[9] J. Vittek, S. J. Dodds, Forced Dynamics Control of Electric Drives, EDIS - Zilina University, 2003.

[10] L. Jones, J. Lang, "A State Observer for the Permanent-Magnet Synchronous Motor", IEEE Transactions on Industrial Electronics, Vol. 36, pp. 374-382, 1989.
[CrossRef] [Web of Science Times Cited 138]


[11] R. Dhaouadi, N. Mohan, L. Norum, "Design and Implementation of an Extended Kalman Filter for the State Estimation of a Permanent Magnet Synchronous Motor", IEEE Transactions on Power Electronics, Vol. 6, pp. 491-497, 1991.
[CrossRef] [Web of Science Times Cited 252]


[12] W. Leonhard, Control of Electrical Drives. Springer Verlag, 3rd edition, 2001.
[CrossRef]


[13] T. Tudorache, M. Popescu, "Optimal Design Solutions for Permanent Magnet Synchronous Machines", Advances in Electrical and Computer Engineering Journal, Vol. 11, No. 4, pp. 77-82, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 27]


[14] S. Hosseini, J. S. Moghani, B. B. Jensen, "Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis", Advances in Electrical and Computer Engineering Journal, Vol. 11, No. 3, pp. 115-120, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 7]


[15] T. Tudorache, I. Trifu, C. Ghita, V. Bostan, "Improved Mathematical Model of PMSM Taking Into Account Cogging Torque Oscillations", Advances in Electrical and Computer Engineering Journal, Vol.12, No 3, pp. 59-64, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 16]


[16] O. Wallmark, "Control of Permanent-Magnet Synchronous Machines in Automotive Applications", PhD. Thesis, Chalmers University of Technology, Sweden, 2006.

[17] M. Viteckova, A. Vitecek, Selected Methods of Adjusting Controllers. VSB-Technical University of Ostrava, 2011.

[18] P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press, 1998.

[19] P. L. Jansen, R. D. Lorenz, "Transducerless Position and Velocity Estimation in Induction and Salient AC Machines", IEEE Transactions on Industry Applications, Vol. 31, pp. 240-247, 1995.
[CrossRef] [Web of Science Times Cited 596]


[20] M. Linke, R. Kennel, J. Holtz, "Sensorless speed and position control of synchronous machines using alternating carrier injection", IEEE International Electric Machines and Drives Conference - IEMDC'03, Vol. 2, pp. 1211- 1217, 2003.
[CrossRef]


[21] D. Saltiveri, A. Arias, G. Asher, M. Sumner, P. Wheeler, L. Empringham, A. C. Silva, "Sensorless Control of Surface Mounted Permanent Magnet Synchronous Motor Using Matrix Converters", Electrical Power Quality and Utilization Journal, Volume X, No. 1, 2006.

[22] Li Yongdong, Zhu Hao, "Sensorless control of permanent magnet synchronous motor - a survey", In Conference Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, pp. 1-8, 2008.
[CrossRef]


[23] F. I. Bakhsh, M. Khursheed, S. Ahmad, A. Iqbal, "A novel technique for the design of controller of a vector-controlled permanent magnet synchronous motor drive", In Conference Proceedings of the 2011 Annual IEEE India Conference - INDICON, Hyderabad, India, pp. 1-6, 2011.
[CrossRef]


[24] M. Schroedl, "Sensorless Control of AC Machines at Low Speed and Standstill Based on the "INFORM" Method. In 31st Conference Record of IEEE Industry Applications Conference, Vol. 1, pp. 270- 277, 1996.
[CrossRef]


[25] T. Krecek, "Sensorless Control of Permanent Magnet Synchronous Motor in the Area of Low Speed", PhD. Thesis, VSB-Technical University of Ostrava, 2009.



References Weight

Web of Science® Citations for all references: 1,056 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 41 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-20 08:44 in 81 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy