Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2017
Next issue: Aug 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,684,245 unique visits
501,798 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  3/2012 - 7

An Algorithm for Induction Motor Stator Flux Estimation

STOJIC, D. M. See more information about STOJIC, D. M. on SCOPUS See more information about STOJIC, D. M. on IEEExplore See more information about STOJIC, D. M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (625 KB) | Citation | Downloads: 803 | Views: 3,730

Author keywords
digital control, induction motors, motor drives, numerical models, sensorless control

References keywords
induction(23), flux(21), sensor(17), control(14), motors(11), electronics(10), stator(9), motor(9), speed(8), power(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-08-31
Volume 12, Issue 3, Year 2012, On page(s): 47 - 52
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.03007
Web of Science Accession Number: 000308290500007
SCOPUS ID: 84865848529

Abstract
Quick view
Full text preview
A new method for the induction motor stator flux estimation used in the sensorless IM drive applications is presented in this paper. Proposed algorithm advantageously solves problems associated with the pure integration, commonly used for the stator flux estimation. An observer-based structure is proposed based on the stator flux vector stationary state, in order to eliminate the undesired DC offset component present in the integrator based stator flux estimates. By using a set of simulation runs it is shown that the proposed algorithm enables the DC-offset free stator flux estimated for both low and high stator frequency induction motor operation.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Zhen, and L. Xu, "Sensorless field orientation control of induction machines based on a mutual MRAS scheme," IEEE Transactions on Industrial Electronics, vol. 45, pp. 824-831, 1998.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 115]


[2] M. Tsuji, and S. Chen, "A sensorless vector control system for induction motors using q-axis flux with stator resistance identification," IEEE Transactions on Industrial Electronics, vol. 48, pp. 185-190, 2001.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 96]


[3] H. Tajima, and Y. Hori, "Speed sensorless field oriented control of the Induction machine," Proceedings of the IEEE Conference IEEE-LAS'91, pp. 385-391, 1991.

[4] B. K. Bose, and N. R. Patel, "A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive," IEEE Transactions on Industrial Electronics, vol. 44, pp. 140-143, 1997.
[CrossRef] [Web of Science Times Cited 76] [SCOPUS Times Cited 114]


[5] J. Hu, and B. Wu, "New integration algorithm for estimating motor flux over wide speed range," IEEE Transactions on Power Electronics, vol. 13, pp. 969-977, 1998.
[CrossRef] [Web of Science Times Cited 239] [SCOPUS Times Cited 440]


[6] K. D. Hurst, T. G. Habetler, G. Griva, F. Profumo, and P. L. Jansen, "A self tuning closed-loop flux observer for sensorless torque control of standard induction machines," IEEE Transactions on Power Electronics, vol. 12, pp. 807-816, 1997.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 30]


[7] Ogata, K., "Modern Control Engineering", Prentice-Hall, Englewood Cliffs, N.J., 2010

[8] M. Shin, D. Hyun, and S. Cho, "An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors," IEEE Transactions on Power Electronics, vol. 15, pp. 312-318, 2000.
[CrossRef] [Web of Science Times Cited 120] [SCOPUS Times Cited 193]


[9] B. Karanayil, M. F. Rahman, and C. Grantham, "An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive," IEEE Transactions on Power Electronics, vol. 19, pp. 257 - 263, 2004.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 42]


[10] M. Hinkkanen, "Analysis and design of full-order flux observers for sensorless induction motors," IEEE Transactions on Industrial Electronics, vol. 51, pp. 1033 - 1040, 2004.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 78]


[11] M. H. Shin, D. S. Hyun, S. B. Cho, and S. Y. Choe, "An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors," IEEE Trans. Power Electron., vol. 15, pp. 312-318, 2000.
[CrossRef] [Web of Science Times Cited 120] [SCOPUS Times Cited 193]


[12] J. Holtz, "Sensorless control of induction motor drives," Proc. IEEE, 2000, vol. 90, pp. 1359-1383, Aug. 2002.
[CrossRef] [Web of Science Times Cited 322] [SCOPUS Times Cited 457]


[13] J. Holtz and J. Quan, "Drift and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors," IEEE Trans. Ind. Appl., vol. 39, pp. 1052-1060, 2003.
[CrossRef] [Web of Science Times Cited 164] [SCOPUS Times Cited 217]


[14] B. Karanayil, M. F. Rahman, and C. Grantham, "An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 257-263, 2004.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 42]


[15] J. Holtz, J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," IEEE Trans. Ind. Applicat., vol. 38, pp. 1087-1095, 2002.
[CrossRef] [Web of Science Times Cited 230] [SCOPUS Times Cited 293]


[16] H. Kubota, I. Sato, Y. Tamura, K. Matsuse, H. Ohta, H, and Y. Hori, "Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer." IEEE Trans. Ind. Applicat., vol. 38, pp. 1081-1086, 2002.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 148]


[17] J. Maes, and J. Melkebeek, "Speed-sensorless direct torque control of Induction motors using an adaptive flux observer" IEEE Trans. Ind. Applicat., vol. 36, pp. 778-785, 2000.
[CrossRef] [Web of Science Times Cited 193] [SCOPUS Times Cited 273]


[18] M. Hinkkanen, and J. Luomi, "Modified integrator for voltage model Flux estimation of induction motors," IEEE Trans. Ind. Electron., vol. 50, pp. 818-820, 2003.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 87]


[19] M. Hinkkanen, "Analysis and design of full-order flux observers for sensorless induction motors," IEEE Trans. Ind. Electron., vol. 51, pp. 1033-1040, 2004.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 78]


[20] M. Hinkkanen, and J. Luomi, "Stabilization of regenerating-mode Operation in sensorless induction motor drives by full-order flux observer design," IEEE Trans.Ind. Electron., vol. 51, pp. 1318-1328, 2004.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 78]


[21] M. Hinkkanen, V. Leppanen, and J. Luomi, "Flux observer enhanced with low-frequency signal injection allowing sensorless zero-frequency operation of induction motors," IEEE Trans. Ind. Applicat., vol. 41, pp. 1160-1156, 2005.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 34]


[22] S. Gadoue, D. Giaouris, and J. Finch, "Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers," IEEE Transactions on Industrial Electronics, vol. 56, pp. 3029-3039, 2009.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 88]


[23] M. Comanescu, L. Xu, "An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors," IEEE Transactions on Industrial Electronics, 53, pp. 53-56, 2006.
[CrossRef] [Web of Science Times Cited 74] [SCOPUS Times Cited 116]


[24] I. Nik, and Y. Abdul, "An improved stator flux estimation in steady- state operation for direct torque control of induction machines," IEEE Transactions on Industry Applications, vol. 38, pp. 110-116, 2002.
[CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 156]


[25] F. Zidani, D. Diallo, M. Benbouzid, and R. Nait-Said, "Direct torque control of induction motor with fuzzy stator resistance adaptation," IEEE Transactions on Energy Conversion, vol. 21, pp. 619-621, 2006.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 27]


[26] C. Veganzones, and F. Blazquez, "Adaptation of floating point DSP- based technology for small variable-speed wind turbine," IEEE Transactions on Energy Conversion, vol. 22, pp. 376-382, 2007.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 13]


References Weight

Web of Science® Citations for all references: 2,248 TCR
SCOPUS® Citations for all references: 3,408 TCR

Web of Science® Average Citations per reference: 86 ACR
SCOPUS® Average Citations per reference: 131 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-08-16 12:14 in 163 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: