Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Aug 2017
Next issue: Nov 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,718,726 unique visits
505,895 downloads
Since November 1, 2009



Robots online now
Baiduspider


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  2/2012 - 6

WAMS Based Damping Control of Inter-area Oscillations Employing Energy Storage System

MA, J. See more information about MA, J. on SCOPUS See more information about MA, J. on IEEExplore See more information about MA, J. on Web of Science, WANG, T. See more information about  WANG, T. on SCOPUS See more information about  WANG, T. on SCOPUS See more information about WANG, T. on Web of Science, THORP, J. S. See more information about  THORP, J. S. on SCOPUS See more information about  THORP, J. S. on SCOPUS See more information about THORP, J. S. on Web of Science, WANG, Z. See more information about  WANG, Z. on SCOPUS See more information about  WANG, Z. on SCOPUS See more information about WANG, Z. on Web of Science, YANG, Q. See more information about  YANG, Q. on SCOPUS See more information about  YANG, Q. on SCOPUS See more information about YANG, Q. on Web of Science, PHADKE, A. G. See more information about PHADKE, A. G. on SCOPUS See more information about PHADKE, A. G. on SCOPUS See more information about PHADKE, A. G. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,204 KB) | Citation | Downloads: 586 | Views: 2,658

Author keywords
damping, energy storage, phasor measurement units, power system stability, robustness

References keywords
power(27), systems(8), control(8), tpwrs(7), system(7), stability(6), energy(6), area(6), wide(5), interval(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-05-30
Volume 12, Issue 2, Year 2012, On page(s): 33 - 40
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.02006
Web of Science Accession Number: 000305608000006
SCOPUS ID: 84865283884

Abstract
Quick view
Full text preview
This paper presents a systematic design procedure for a wide-area damping controller (WADC) employing Energy Storage Systems (ESSs). The WADC is aimed at enhancing the damping of multiple inter-area modes in a large scale power system. Firstly, geometric measures of controllability and obsevability are used to select the control locations for ESSs and most effective stabilizing signals, respectively. Then, the WADC coordinates these signals to achieve multiple-input-multiple-output (MIMO) controllers with the least Frobenius norm feedback gain matrix. The simulation results of frequency and time domains verify the effectiveness of the wide-area damping controller for various operating conditions. Furthermore, the robustness of the wide-area damping controller is also tested with respect to time delay and uncertainty of models.


References | Cited By  «-- Click to see who has cited this paper

[1] Hasan Ali, Bin Wu, Roger A. Dougal, "An overview of SMES applications in power and energy systems," IEEE Trans. on Sustainable Ener., vol. 1, no. 1, pp. 38-47, Apr. 2010
[CrossRef] [Web of Science Times Cited 134] [SCOPUS Times Cited 205]


[2] Du W., Wang H. F., Dunn R., "Power system oscillation stability and control by FACTS and ESS-a survey," International Conference on Sustainable Power Generation and Supply, pp. 1-13, Nanjing, China, Apr.6-7, 2009.
[CrossRef] [SCOPUS Times Cited 9]


[3] Bharat Bhargava, Gary Dishaw, "Application of an energy source power system stabilizer on the 10 MW battery energy storage system at Chino substation power systems," IEEE Trans. on Power Syst., vol.13, no.1, pp.145-151, Feb. 1998
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 54]


[4] Kamwa, I., Robert Grondin, Yves Hébert, "Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach," IEEE Trans. on Power Syst., vol. 16, no.1, pp. 136-153, Feb. 2001
[CrossRef] [Web of Science Times Cited 298] [SCOPUS Times Cited 381]


[5] A. Elices, L. Rouco, H. Bourles, and T. Margotin, "Physical interpretation of state feedback controllers to damp power system oscillations," IEEE Trans. on Power Syst., vol, 19, no. 1, pp. 436-443, Jan. 2004
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 11]


[6] Francis Okou, Louis-A. Dessaint, Ouassima Akhrif, "Power systems stability enhancement using a wide-area signals based hierarchical controller," IEEE Trans. on Power Syst., vol. 20, no.3, pp. 1465-1477, Aug. 2005
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 76]


[7] Bikash C. Pal, Alun H. Coonick, Donald C. Macdonnld Robust, "Damping controller design in power systems with superconducting magnetic energy storage devices," IEEE Trans. on Power Syst., vol. 15, no. 1, pp. 320-325, Feb. 2000
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 50]


[8] M. H. Ali, T. Murata, and J. Tamura, "A fuzzy logic-controlled superconducting magnetic energy storage (SMES) for transient stability augmentation," IEEE Trans. Control Syst. Technol., vol. 15, no. 1, pp. 144-150, Jan. 2007
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 52]


[9] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.

[10] I. J. Perez-Arriage, G. C. Verghese, and F. C. Schweppe, "Selective modal analysis with applications to electric power systems, Part I: Heuristic introduction," IEEE Trans. on Power Syst., vol. PAS-101, no. 9, pp. 3117-3125, Sep. 1982
[CrossRef] [Web of Science Times Cited 163] [SCOPUS Times Cited 259]


[11] G. Rogers, Power System Oscillations. MA: Kluwer, 2000.

[12] Bikash C. Pal, Alun A. Coonick, Imad M. Jaimoukha, Haitham El-Zobaidi, "A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device," IEEE Trans. on Power Syst. vol. 15, no.1, pp. 356-362, Feb. 2005
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 79]


[13] Yang Zhang, Anjan Bose, "Design of wide-area damping controllers for interarea oscillations," IEEE Trans. on Power Syst., vol. 23, no. 3, pp. 1136-1143, Aug. 2008
[CrossRef] [Web of Science Times Cited 144] [SCOPUS Times Cited 181]


[14] Heniche, A., Kamwa, I., "Assessment of two methods to select wide-area signals for power system damping control," IEEE Trans. on Power Syst., vol. 23, no. 2, pp. 572-581, May 2008
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 81]


[15] A. Heniche and I. Kamwa, "Control loops selection to damp inter-area oscillations of electric networks," IEEE Trans. on Power Syst., vol. 17, no. 2, pp. 378-384, May 2002
[CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 59]


[16] A. Vaccaro and D. Villacci, "Radial power flow tolerance analysis by interval constraint propagation," IEEE Trans on Power Syst., vol. 24, no.1, pp. 28-39, Jan. 2009
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 24]


[17] V. Puig, J. Quevedo, T. Escobet, F. Nejjari, and S. de las Heras, "Passive robust fault detection of dynamic processes using interval models", IEEE Trans. on Contr. Syst. Tech., vol. 16, no. 5, pp. 1083-1089, Sept. 2008.
[CrossRef] [Web of Science Times Cited 44] [SCOPUS Times Cited 55]


[18] A. C. Bartlett, C. V. Hollot, and L. Huang, "Root locations of an entire polytope of polynomials: It Suffices to check the edges" in Amer. Contr. Conf., pp. 1611 - 1616, Jun. 1987.

[19] B. R. Barmish, M. Fu, and S. Saleh, "Stability of a polytope of matrices: counter examples", IEEE Trans. Automat. Contr., vol. 33, no. 6, pp. 569-752, Jun. 1988
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 59]


[20] B. R. Barmish, "A generalization of Karitonov’s four polynomial concept for robust stability problems with dependent coefficient perturbations", IEEE Trans. Automat. Contr., vol. 34, no. 2, pp. 157-165, Feb. 1989
[CrossRef] [Web of Science Times Cited 148] [SCOPUS Times Cited 149]


[21] S.-H. Chen, H.-D. Lian. X.-W. Yang, "Interval eigenvalue analysis for structures with interval parameters", Finite Elements in Analysis and Design, vol. 39, issues 5-6, pp. 419-431, Mar. 2003.

[22] S. Adhikari and M. I. Friswell, "Random matrix eigenvalue problems in structural dynamics", International Journal of Numerical Methods in Engineering, vol. 69, no. 3, pp. 562-591, 2007
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 59]


[23] X.-M. Zhang, Y.-D. Chen, S.-H. Chen, and C.-Y. Pei, "Interval eigenvalues of closed-loop systems of uncertain structures," ACTA Mechanica Solida Sinica, vol. 26, no. 2, pp. 182-186, Jun. 2005.

[24] Dotta, D.; e Silva, A.S.; Decker, I.C., "Wide-area measurements-based two-level control design considering signal transmission delay," IEEE Trans on Power Syst., vol. 24, no.1, pp. 208-216, Feb. 2009
[CrossRef] [Web of Science Times Cited 101] [SCOPUS Times Cited 120]




References Weight

Web of Science® Citations for all references: 1,488 TCR
SCOPUS® Citations for all references: 1,963 TCR

Web of Science® Average Citations per reference: 60 ACR
SCOPUS® Average Citations per reference: 79 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-09-21 06:34 in 129 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: