Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Aug 2017
Next issue: Nov 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,718,912 unique visits
505,909 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  1/2012 - 3

Study of the communication distance of a MEMS Pressure Sensor Integrated in a RFID Passive Tag

FERNANDEZ, I. See more information about FERNANDEZ, I. on SCOPUS See more information about FERNANDEZ, I. on IEEExplore See more information about FERNANDEZ, I. on Web of Science, ASENSIO, A. See more information about  ASENSIO, A. on SCOPUS See more information about  ASENSIO, A. on SCOPUS See more information about ASENSIO, A. on Web of Science, GUTIERREZ, I. See more information about  GUTIERREZ, I. on SCOPUS See more information about  GUTIERREZ, I. on SCOPUS See more information about GUTIERREZ, I. on Web of Science, GARCIA, J. See more information about  GARCIA, J. on SCOPUS See more information about  GARCIA, J. on SCOPUS See more information about GARCIA, J. on Web of Science, REBOLLO, I. See more information about  REBOLLO, I. on SCOPUS See more information about  REBOLLO, I. on SCOPUS See more information about REBOLLO, I. on Web of Science, de NO, J. See more information about de NO, J. on SCOPUS See more information about de NO, J. on SCOPUS See more information about de NO, J. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (871 KB) | Citation | Downloads: 978 | Views: 2,888

Author keywords
radiofrequency identification, sensor systems, low power electronics, wireless sensor networks

References keywords
rfid(14), link(5), temperature(4), power(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-02-28
Volume 12, Issue 1, Year 2012, On page(s): 15 - 18
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.01003
Web of Science Accession Number: 000301075000003
SCOPUS ID: 84860715578

Abstract
Quick view
Full text preview
The performance of a MEMS (Micro Electro-Mechanical Systems) Sensor in a RFID system has been calculated, simulated and analyzed. It documents the viability - from the power consumption point of view - of integrating a MEMS sensor in a passive tag maintaining its long range. The wide variety of sensors let us specify as many applications as the imagination is able to create. The sensor tag works without battery, and it is remotely powered through a commercial reader accomplishing the EPC standard Class 1 Gen 2. The key point is the integration in the tag of a very low power consumption pressure MEMS sensor. The power consumption of the sensor is 12.5 uW. The specifically developed RFID CMOS passive module, with an integrated temperature sensor, is able to communicate up to 2.4 meters. Adding the pressure MEMS sensor - an input capacity, a maximum range of 2 meters can be achieved between the RFID sensor tag and a commercial reader (typical reported range for passive pressure sensors are in the range of a few centimeters). The RFID module has been fabricated with a CMOS process compatible with a bulk micromachining MEMS process. So, the feasibility of a single chip is presented.


References | Cited By  «-- Click to see who has cited this paper

[1] K. Opasjumruskit, "Self-Powered Wireless Temperature Sensors Exploit RFID Technology," IEEE Pervasive Computing 5(1), 2006. pp. 54-61.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 103]


[2] N. Cho, "A 5.1-uW UHF RFID Tag Chip integrated with Sensors for Wireless Environmental Monitoring," European Solid-State Circuits Conference (ESSCIRC). 2005. Grenoble: IEEE, pp. 279-282.
[CrossRef] [Web of Science Times Cited 64] [SCOPUS Times Cited 114]


[3] Pardo, D. "Design criteria for full passive long range UHF RFID sensor for human body temperature monitoring," Proceedings of IEEE RFID Conf., Mar. 2007, pp. 141-148.
[CrossRef] [SCOPUS Times Cited 26]


[4] ETSI EN 302 208-1 V1.1.2 Electromagnetic compatibility and Radio spectrum Matters (ERM); Radio Frequency Identification Equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W. 2006.

[5] Motorola, MC9090-G RFID, [Online] Available: Temporary on-line reference link removed - see the PDF document

[6] EPC-C1G2, Specification for RFID Air Interface. EPC Global Class 1 Gen 2 UHF RFID Version 1.2.0. EPC GlobalTM, 2008.

[7] A. Vaz, "Long range, low power UHF RFID analog front end suitable for battery less wireless sensors," IEEE IMS, 2010. p. 836-839.
[CrossRef]


[8] I. Zalbide, J. Vicario, I. Velez, "Power and energy optimization of the digital core of a Gen 2 long range full passive RFID sensor tag," Proceedings IEEE RFID Conf., 2008, pp. 125-133.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 19]


[9] A. Vaz, A. Ubarretxena, I. Zalbide, D. Pardo, H. Solar, "Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring," IEEE Transactions on Circuits and Systems II Express Briefs (2010). Volume: 57, Issue: 2, Pages: 95-99.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 111]


[10] I. Zalbide, J. F. Sevillano, I. VĂ©lez, "Design considerations for the digital core of a C1G2 RFID Tag," Chapter in the handbook: Radio Frequency Identification Fundamentals and Applications Design Methods and Solutions, Editor: Cristina Turcu (Ed.), ISBN: 978-953-7619-72-5 (2010).

[11] VTI Technologies, Datasheet from VTI (SCP1000). [Online] Available: Temporary on-line reference link removed - see the PDF document

[12] Freescale, Datasheet from Freescale (MPL115A). [Online] Available: Temporary on-line reference link removed - see the PDF document

[13] Bosch Sensortec, Datasheet from Bosch (BMA222). [Online] Available: Temporary on-line reference link removed - see the PDF document

[14] Jingtian, Xi. Low-cost low-power UHF RFID tag with on-chip antenna. Journal Semiconductors, 2009. v. 30 075012.
[CrossRef] [SCOPUS Times Cited 15]


[15] XFAB, Semiconductor Foundries, [Online] Available: Temporary on-line reference link removed - see the PDF document



References Weight

Web of Science® Citations for all references: 222 TCR
SCOPUS® Citations for all references: 388 TCR

Web of Science® Average Citations per reference: 14 ACR
SCOPUS® Average Citations per reference: 24 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-09-24 09:33 in 49 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: