Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Aug 2017
Next issue: Nov 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,718,915 unique visits
505,909 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  2/2011 - 1
View TOC | « Previous Article | Next Article »

Queueing Theory-based Path Delay Analysis of Wireless Sensor Networks

QIU, T. See more information about QIU, T. on SCOPUS See more information about QIU, T. on IEEExplore See more information about QIU, T. on Web of Science, XIA, F. See more information about  XIA, F. on SCOPUS See more information about  XIA, F. on SCOPUS See more information about XIA, F. on Web of Science, FENG, L. See more information about  FENG, L. on SCOPUS See more information about  FENG, L. on SCOPUS See more information about FENG, L. on Web of Science, WU, G. See more information about  WU, G. on SCOPUS See more information about  WU, G. on SCOPUS See more information about WU, G. on Web of Science, JIN, B. See more information about JIN, B. on SCOPUS See more information about JIN, B. on SCOPUS See more information about JIN, B. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (794 KB) | Citation | Downloads: 2,504 | Views: 7,682

Author keywords
wireless sensor networks, queueing networks, modeling, path planning, delay analysis

References keywords
networks(15), sensor(14), network(11), queueing(7), communications(6), theory(5), performance(4), modeling(4), energy(4), delay(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-05-30
Volume 11, Issue 2, Year 2011, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.02001
Web of Science Accession Number: 000293840500001
SCOPUS ID: 79958773857

Abstract
Quick view
Full text preview
Path planning is one of the important factors that affect data transmission and processing in wireless sensor networks (WSNs). This paper addresses this issue by means of the paths delay analysis. Considering that WSNs are used for temperature monitoring, we model the WSNs using the open queueing network theory and analyze the paths delay based on the model. An iterative approximation algorithm is proposed for the qualitative analysis of the packet arrival rate of sensor nodes. According to the capacity and redundancy of nodes along the path, the destination node search trees are created for pre-selecting the transmission paths. Then the end-to-end delays of the pre-selected node paths and the average delay of sub-queueing networks are calculated. The optimal path and the assistant path for data transmission in WSNs could be obtained on the basis of the delay analysis. Numerical results demonstrate the effectiveness of the proposed approach.


References | Cited By  «-- Click to see who has cited this paper

[1] E. Onur, C. Ersoy, H. DeliƧ, and L. Akarun, "Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours," Computer Networks, vol. 54, no. 3, pp. 428-441, Feb. 2010,
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]


[2] J. Li, and H. Gao, "Survey on sensor network research," Journal of Computer Research and Development, vol. 45, no. 1, pp. 1-15, Feb. 2008.

[3] H. Jeon, J. Choi, H. Lee, and J. Ha, "Channel-aware energy efficient transmission strategies for large wireless sensor networks," IEEE Signal Processing Letters, vol. 17, no. 7, pp. 643-646, Dec. 2010,
[CrossRef] [SCOPUS Record]


[4] P. S. Sausen, M. A. Spohn, and A. Perkusich, "Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones," Information Sciences, vol. 180, no. 5, pp. 653-663, Mar. 2010,
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 38]


[5] Y. Tang, M. Zhou, and X. Zhang, "Overview of routing protocols in wireless sensor networks," Journal of Software, vol. 17, no. 3, pp. 410-421, Mar. 2006.

[6] H. Chen, C. K. Tse, and J. Feng, "Impact of topology on performance and energy efficiency in wireless sensor networks for source extraction," IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 886-897, 2009,
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 29]


[7] G. Li, C. Zhu, and X. Li, "Application of chaos theory and wavelet to modeling the traffic of wireless sensor networks," 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS, pp. 1-4, Wuhan, Apr. 2010:
[CrossRef] [SCOPUS Times Cited 3]


[8] A. Shareef, and Y. Zhu, "Energy modeling of processors in wireless sensor networks based on petri nets," Proceedings of the International Conference on Parallel Processing Workshops, pp. 129-134, Portland, Sep. 2008,
[CrossRef] [SCOPUS Times Cited 9]


[9] B. Vidhyacharan, "State diagrams and steady-state balance equations for open queueing network models," Computers and Electrical Engineering,vol. 31, no. 7, pp. 460-467, Oct. 2005,
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 2]


[10] J. N. Daigle, Queueing theory with applications to packet telecommunication, Boston, MA: Springer Science and Business Media, Inc., 2005.

[11] L. Wang, Z. Wang, and K. Dai, "An approximate method by queueing network modeling for performance evaluation of asynchronous pipeline rings," 2006 IEEE Int Conf on Computer and Information Technology, pp. 244-249, Seoul, sep. 2006,
[CrossRef] [SCOPUS Times Cited 1]


[12] A. A. A. Kock, L. F. P. Etman, and J. E. Rooda, "Effective process times for multi-server flowlines with finite buffers," IIE Transactions, vol. 40, no. 3, pp. 177-186, Mar. 2008,
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 16]


[13] M. V. Vuuren, I. J. B. F. Adan, and S. A. E. Resingsassen, "Performance analysis of multi-server tandem queues with finite buffers and blocking," OR Spectrum, vol. 27, no. 2-3, pp. 315-338, 2005,
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 27]


[14] J. C. Bolot, "Characterizing end-to-end packet delay and loss in the internet," Journal of High Speed Networks, vol. 2, no. 3, pp. 305, 1993.

[15] O. Gurewitz, I. Cidon, and M. Sidi, "One-way delay estimation using network-wide measurements," IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2710-2724, Jun. 2006,
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 50]


[16] K. Papagiannaki, S. Moon, C. Fraleigh, and et al., "Analysis of measured single-hop delay from an operational backbone network," Proceedings of IEEE INFOCOM'02. pp. 535-544, New York, IEEE, Jun. 2002,
[CrossRef] [SCOPUS Times Cited 75]


[17] D. Kouvatsos, and I. Awan, "Entropy maximisation and open queueing networks with priorities and blocking," Performance Evaluation, vol. 51, no. 2-4, pp. 191-227, Feb. 2003,
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 41]


[18] I. Awan, "Analysis of multiple-threshold queues for congestion control of heterogeneous traffic streams," Simulation Modelling Practice and Theory, vol. 14, no. 6, pp. 712-724, Aug. 2006,
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[19] J. Sheu, P. K. Sahoo, C. Su, and W. Hu, "Efficient path planning and data gathering protocols for the wireless sensor network," Computer Communications, vol. 33, no. 3, pp. 398-408, Feb. 2010,
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 22]


[20] N. Bisnik, and A. A. Abouzeid, "Queueing network Models for Delay Analysis of Multihop Wireless Ad Hoc Networks," Ad Hoc Networks, , vol. 7, no. 1, pp. 79-97, Jan. 2009,
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 66]


[21] G. Chen, W. Guo, and Y. Chen, "Research on dynamic alliance of task allocation and its algorithm in wireless sensor network," Journal on Communications, vol. 30, no. 11, pp. 48-55, 2009.

[22] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008,
[CrossRef] [Web of Science Times Cited 2079] [SCOPUS Times Cited 3138]


[23] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug. 2002,
[CrossRef] [Web of Science Times Cited 5181] [SCOPUS Times Cited 8980]


[24] J. Son, J. Lee, and S. Seo, "Topological key hierarchy for energy-efficient group key management in wireless sensor networks," Wireless Personal Communications, vol. 52, no. 2, pp. 359-382 Jun. 2010,
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 23]


[25] S. A. B. Awwad, C. K. Ng, N. K. Noordin, and M. F. A. Rasid, "Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network," Wireless Personal Communications, vol. 55, no. 5, pp. 1-31, 2010,
[CrossRef]


[26] H. Abusaimeh, and S. Yang. Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, vol. 6, no. 1, pp. 48-54, Feb. 2009,
[CrossRef] [SCOPUS Times Cited 37]


[27] Y. Sheng. Queueing Theory and Its Application in Modern Communication. BeiJing, Posts & Telecom Press, 2007.

[28] T. Qiu, L. Wang, H. Guo, L. Feng, and L. Shu, "A new modeling method for vector processor pipeline using queueing network," 5th International ICST Conference on Communications and Networking, pp. 1-6, Beijing, Aug. 2010.



References Weight

Web of Science® Citations for all references: 7,501 TCR
SCOPUS® Citations for all references: 12,573 TCR

Web of Science® Average Citations per reference: 259 ACR
SCOPUS® Average Citations per reference: 434 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-09-24 20:59 in 141 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: