Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Feb 2018
Next issue: May 2018
Avg review time: 107 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,880,703 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 18 (2018)
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


  2/2011 - 1
View TOC | « Previous Article | Next Article »

Queueing Theory-based Path Delay Analysis of Wireless Sensor Networks

QIU, T. See more information about QIU, T. on SCOPUS See more information about QIU, T. on IEEExplore See more information about QIU, T. on Web of Science, XIA, F. See more information about  XIA, F. on SCOPUS See more information about  XIA, F. on SCOPUS See more information about XIA, F. on Web of Science, FENG, L. See more information about  FENG, L. on SCOPUS See more information about  FENG, L. on SCOPUS See more information about FENG, L. on Web of Science, WU, G. See more information about  WU, G. on SCOPUS See more information about  WU, G. on SCOPUS See more information about WU, G. on Web of Science, JIN, B. See more information about JIN, B. on SCOPUS See more information about JIN, B. on SCOPUS See more information about JIN, B. on Web of Science
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (794 KB) | Citation | Downloads: 2,543 | Views: 8,088

Author keywords
wireless sensor networks, queueing networks, modeling, path planning, delay analysis

References keywords
networks(15), sensor(14), network(11), queueing(7), communications(6), theory(5), performance(4), modeling(4), energy(4), delay(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-05-30
Volume 11, Issue 2, Year 2011, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.02001
Web of Science Accession Number: 000293840500001
SCOPUS ID: 79958773857

Quick view
Full text preview
Path planning is one of the important factors that affect data transmission and processing in wireless sensor networks (WSNs). This paper addresses this issue by means of the paths delay analysis. Considering that WSNs are used for temperature monitoring, we model the WSNs using the open queueing network theory and analyze the paths delay based on the model. An iterative approximation algorithm is proposed for the qualitative analysis of the packet arrival rate of sensor nodes. According to the capacity and redundancy of nodes along the path, the destination node search trees are created for pre-selecting the transmission paths. Then the end-to-end delays of the pre-selected node paths and the average delay of sub-queueing networks are calculated. The optimal path and the assistant path for data transmission in WSNs could be obtained on the basis of the delay analysis. Numerical results demonstrate the effectiveness of the proposed approach.

References | Cited By  «-- Click to see who has cited this paper

[1] E. Onur, C. Ersoy, H. DeliƧ, and L. Akarun, "Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours," Computer Networks, vol. 54, no. 3, pp. 428-441, Feb. 2010,
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]

[2] J. Li, and H. Gao, "Survey on sensor network research," Journal of Computer Research and Development, vol. 45, no. 1, pp. 1-15, Feb. 2008.

[3] H. Jeon, J. Choi, H. Lee, and J. Ha, "Channel-aware energy efficient transmission strategies for large wireless sensor networks," IEEE Signal Processing Letters, vol. 17, no. 7, pp. 643-646, Dec. 2010,
[CrossRef] [SCOPUS Record]

[4] P. S. Sausen, M. A. Spohn, and A. Perkusich, "Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones," Information Sciences, vol. 180, no. 5, pp. 653-663, Mar. 2010,
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 38]

[5] Y. Tang, M. Zhou, and X. Zhang, "Overview of routing protocols in wireless sensor networks," Journal of Software, vol. 17, no. 3, pp. 410-421, Mar. 2006.

[6] H. Chen, C. K. Tse, and J. Feng, "Impact of topology on performance and energy efficiency in wireless sensor networks for source extraction," IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 886-897, 2009,
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 31]

[7] G. Li, C. Zhu, and X. Li, "Application of chaos theory and wavelet to modeling the traffic of wireless sensor networks," 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS, pp. 1-4, Wuhan, Apr. 2010:
[CrossRef] [SCOPUS Times Cited 3]

[8] A. Shareef, and Y. Zhu, "Energy modeling of processors in wireless sensor networks based on petri nets," Proceedings of the International Conference on Parallel Processing Workshops, pp. 129-134, Portland, Sep. 2008,
[CrossRef] [SCOPUS Times Cited 9]

[9] B. Vidhyacharan, "State diagrams and steady-state balance equations for open queueing network models," Computers and Electrical Engineering,vol. 31, no. 7, pp. 460-467, Oct. 2005,
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 2]

[10] J. N. Daigle, Queueing theory with applications to packet telecommunication, Boston, MA: Springer Science and Business Media, Inc., 2005.

[11] L. Wang, Z. Wang, and K. Dai, "An approximate method by queueing network modeling for performance evaluation of asynchronous pipeline rings," 2006 IEEE Int Conf on Computer and Information Technology, pp. 244-249, Seoul, sep. 2006,
[CrossRef] [SCOPUS Times Cited 1]

[12] A. A. A. Kock, L. F. P. Etman, and J. E. Rooda, "Effective process times for multi-server flowlines with finite buffers," IIE Transactions, vol. 40, no. 3, pp. 177-186, Mar. 2008,
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 16]

[13] M. V. Vuuren, I. J. B. F. Adan, and S. A. E. Resingsassen, "Performance analysis of multi-server tandem queues with finite buffers and blocking," OR Spectrum, vol. 27, no. 2-3, pp. 315-338, 2005,
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 27]

[14] J. C. Bolot, "Characterizing end-to-end packet delay and loss in the internet," Journal of High Speed Networks, vol. 2, no. 3, pp. 305, 1993.

[15] O. Gurewitz, I. Cidon, and M. Sidi, "One-way delay estimation using network-wide measurements," IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2710-2724, Jun. 2006,
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 52]

[16] K. Papagiannaki, S. Moon, C. Fraleigh, and et al., "Analysis of measured single-hop delay from an operational backbone network," Proceedings of IEEE INFOCOM'02. pp. 535-544, New York, IEEE, Jun. 2002,
[CrossRef] [SCOPUS Times Cited 75]

[17] D. Kouvatsos, and I. Awan, "Entropy maximisation and open queueing networks with priorities and blocking," Performance Evaluation, vol. 51, no. 2-4, pp. 191-227, Feb. 2003,
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 41]

[18] I. Awan, "Analysis of multiple-threshold queues for congestion control of heterogeneous traffic streams," Simulation Modelling Practice and Theory, vol. 14, no. 6, pp. 712-724, Aug. 2006,
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]

[19] J. Sheu, P. K. Sahoo, C. Su, and W. Hu, "Efficient path planning and data gathering protocols for the wireless sensor network," Computer Communications, vol. 33, no. 3, pp. 398-408, Feb. 2010,
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 22]

[20] N. Bisnik, and A. A. Abouzeid, "Queueing network Models for Delay Analysis of Multihop Wireless Ad Hoc Networks," Ad Hoc Networks, , vol. 7, no. 1, pp. 79-97, Jan. 2009,
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 70]

[21] G. Chen, W. Guo, and Y. Chen, "Research on dynamic alliance of task allocation and its algorithm in wireless sensor network," Journal on Communications, vol. 30, no. 11, pp. 48-55, 2009.

[22] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008,
[CrossRef] [Web of Science Times Cited 2314] [SCOPUS Times Cited 3348]

[23] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug. 2002,
[CrossRef] [Web of Science Times Cited 5464] [SCOPUS Times Cited 9205]

[24] J. Son, J. Lee, and S. Seo, "Topological key hierarchy for energy-efficient group key management in wireless sensor networks," Wireless Personal Communications, vol. 52, no. 2, pp. 359-382 Jun. 2010,
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 25]

[25] S. A. B. Awwad, C. K. Ng, N. K. Noordin, and M. F. A. Rasid, "Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network," Wireless Personal Communications, vol. 55, no. 5, pp. 1-31, 2010,

[26] H. Abusaimeh, and S. Yang. Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, vol. 6, no. 1, pp. 48-54, Feb. 2009,
[CrossRef] [SCOPUS Times Cited 39]

[27] Y. Sheng. Queueing Theory and Its Application in Modern Communication. BeiJing, Posts & Telecom Press, 2007.

[28] T. Qiu, L. Wang, H. Guo, L. Feng, and L. Shu, "A new modeling method for vector processor pipeline using queueing network," 5th International ICST Conference on Communications and Networking, pp. 1-6, Beijing, Aug. 2010.

References Weight

Web of Science® Citations for all references: 8,029 TCR
SCOPUS® Citations for all references: 13,020 TCR

Web of Science® Average Citations per reference: 277 ACR
SCOPUS® Average Citations per reference: 449 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-03-24 02:31 in 141 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: