Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2017
Next issue: Aug 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,684,240 unique visits
501,798 downloads
Since November 1, 2009



Robots online now
Googlebot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  3/2010 - 13

Observerless Scheme for Sensorless Speed Control of PMSM Using Direct Torque Control Method With LP Filter

BEKIROGLU, N. See more information about BEKIROGLU, N. on SCOPUS See more information about BEKIROGLU, N. on IEEExplore See more information about BEKIROGLU, N. on Web of Science, OZCIRA, S. See more information about OZCIRA, S. on SCOPUS See more information about OZCIRA, S. on SCOPUS See more information about OZCIRA, S. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (904 KB) | Citation | Downloads: 1,473 | Views: 4,089

Author keywords
DTC, LP filter, observerless and sensorless speed control, PMSM, SVPWM

References keywords
control(14), torque(10), sensor(9), permanent(9), magnet(9), direct(9), electronics(8), motor(7), synchronous(6), motors(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2010-08-31
Volume 10, Issue 3, Year 2010, On page(s): 78 - 83
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2010.03013
Web of Science Accession Number: 000281805600013
SCOPUS ID: 77956635969

Abstract
Quick view
Full text preview
In this study, direct torque control (DTC) of a permanent magnet synchronous motor is realized with a sensorless speed control technique without using an observer. Space vector pulse width modulation (SVPWM) technique is applied in order to determine the switching sequence of the voltage source inverter. Torque and flux, the main variables of the DTC, are estimated by using the mathematical model of the motor. Estimated torque and flux values are compared with their references in every control cycle. Then, according to the torque and flux demand, the voltage vector is constituted. In the proposed control scheme, speed is estimated by using flux calculations and a PI controller is used to process the torque and flux errors. Furthermore, a low-pass (LP) filter is implemented within the proposed system for voltage and current harmonics suppression. The results proved that proposed scheme for the DTC provides the speed control under various torque demands without employing a sensor. The proposed system performs very well for a sensorless operation and effectively eliminates the harmonics due to the LP filter.


References | Cited By  «-- Click to see who has cited this paper

[1] M. O. Efe, A. B. Koku, and O. Kaynak, "Comparison of soft-computing and conventional methodologies in control of servo systems," in Proc., The 24th Annual Conference of the IEEE Industrial Electronics Society, (IECON’98), Aachen, Germany, 1998.
[CrossRef]


[2] A. Piippo, M. Hinkkanen, and J. Luomi, "Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors," IEEE Trans. on Ind. Elec., vol. 55, no. 2, pp. 570-576, Feb. 2008,
[CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 125]


[3] J. Luukko, M. Niemela and J. Pyrhonen, "Estimation of rotor and load angle of direct torque controlled permanent magnet synchronous machine drive," IET Elect. Power App., vol. 1, no. 3, pp. 209-306, May 2007.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 7]


[4] G. D. Adreescu and R. Rabinovici, "Torque-speed adaptive observer and inertia identification without current transducers for control of electrical drives," Proc. of the Romanian Academy Series A, vol. 5, no. 1, pp. 89-95, Apr. 2004.

[5] Y. Yan, J. Zhu, and H. Lu, "Direct torque control of surface-mounted permanent magnet synchronous motor based on accurate modeling", in Proc., Australasian Universities Power Engineering Conference, (AUPEC’05), Tasmania, Australia, Sept. 25-28, 2005.

[6] S. Bolognani, R. Oboe, and M. Zigliotto, "Sensorless full-digital PMSM drive with EFK estimation of speed and rotor position", IEEE Trans. on Ind. Electronics, vol. 46, no. 1, pp. 184-191, Feb. 1999.
[CrossRef] [Web of Science Times Cited 273] [SCOPUS Times Cited 384]


[7] S. Ichikawa, Z. Chen, M. Tomita, S. Doki and S. Okuma, "Sensorless controls of salient-pole permanent magnet synchronous motors using extended electromotive force models", Electrical Eng. in Japan, vol. 146, no. 3, pp. 55-64, Dec. 2003.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 10]


[8] H. A. Toliyat, L. Hao, D.S. Shet, and T.A. Nondahl, "Position-sensorless control of surface-mount permanent-magnet AC (PMAC) motors at low speeds," IEEE Trans. on Ind. Electr., vol. 49, no. 1, pp. 157-164, 2002.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 22]


[9] K. M. Rahman and H.A. Toliyat, "Sensorless operation of permanent magnet AC (PMAC) motors with modified stator windings", in Proc., Conference Records IEEE-IAS 31st Annual Meeting, pp. 326-333, 1996.
[CrossRef]


[10] S. Dan, H. Yikang, and J. G. Zhu, "Sensorless direct torque control for permanent magnet synchronous motor based on fuzzy logic", in Proc., 4th International Power Electronics and Motion Control Conference, (IPEMC’04), Xi’an, China, Aug. 2004.
[CrossRef]


[11] L. M. Grzesiak and M. P. Kazmierkowski, "Improving flux and speed estimators for sensorless ac drives," IEEE Industrial Electronics Magazine, pp. 9-19, Fall 2007.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 14]


[12] Y. Sozer, D.A. Torrey, and S. Reva, "New inverter output filter topology for pwm motor drives", IEEE Trans. on Power Electronics, vol. 15, no. 6, pp. 1007-1017, Nov. 2000.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 89]


[13] S. Ozcira, N. Bekiroglu, and E. Aycicek, "Direct torque control of permanent magnet synchronous motor using LP filter", in Proc., 19th International Conference on Electrical Machines, (ICEM’08), Vilamoura, Portugal, Sept. 6-9, 2008.
[CrossRef] [SCOPUS Times Cited 8]


[14] D. Swierczynski, P. Wojcik, M.P. Kazmierkowski, and M. Janaszek, "Direct torque controlled PWM inverter fed PMSM drive for public transport," in Proc., 10th IEEE International Workshop on Advanced Motion Control (AMC’08), Trento, Italy, March 26-28, 2008.
[CrossRef] [SCOPUS Times Cited 7]


[15] A. Sikorski, M. Korzeniewski, A. Ruszczyk, M. P. Kazmierkowski, P. Antoniewicz, W. Kolomyjski, and M. Jasinski, "A comparison of properties of direct torque and flux control methods (DTC-SVM, DTC-d, DTC-2x2, DTFC-3A)", in Proc., The International Conference on "Computer as a Tool" (EUROCON’07), Warsaw, Poland, Sept. 9-12, 2007.
[CrossRef] [SCOPUS Times Cited 7]


[16] P. Vas, Sensorless Vector and Direct Torque Control. Oxford University Press, New York, 1998.

[17] M. F. Rahman, L. Zhong, and E. Haque, "Voltage switching tables for DTC controlled interior permanent magnet motor", in Proc., The 25th Annual Conference of the IEEE Industrial Electronics Society (IECON'99), California, USA, 1999.
[CrossRef]


[18] X. del Toro Garcia, A. Arias, M. G. Jayne, and P.A. Witting, "Direct torque control of induction motors utilizing three-level voltage source inverters", IEEE Trans. on Ind. Electronics, vol. 55, no. 2, pp. 956-958, Feb. 2008.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 46]


[19] Direct torque control-The world’s most advanced AC drive technology, Tech. Guide, no. 1. ABB Helsinki, Finland, 2004.

[20] X. Chen, D. Xu, F. Liu and J. Zhang, "A novel inverter-output passive filter for reducing both differential and common-mode dv/dt at the motor terminals in PWM drive systems," IEEE Trans. on Ind. Elect., vol. 54, no. 1, pp. 419-426, Feb. 2007.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 67]


[21] J. Salomaki, M. Hinkkanen, and J. Luomi, Sensorless "Control of induction motor drives equipped with inverter output filter", IEEE Trans. on Ind. Electronics, vol. 53, no. 4, pp. 1188-1197, Aug. 2006.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 32]


References Weight

Web of Science® Citations for all references: 571 TCR
SCOPUS® Citations for all references: 818 TCR

Web of Science® Average Citations per reference: 27 ACR
SCOPUS® Average Citations per reference: 39 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-08-10 08:08 in 112 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: