Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Aug 2020
Next issue: Nov 2020
Avg review time: 58 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,707,470 unique visits
686,226 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  


FEATURED ARTICLE

Improved Wind Speed Prediction Using Empirical Mode Decomposition, ZHANG, Y., ZHANG, C., SUN, J., GUO, J.
Issue 2/2018

AbstractPlus






LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  3/2009 - 16

 HIGH-IMPACT PAPER 

An Efficient Technique for Classification of Electrocardiogram Signals

EBRAHIMZADEH, A. See more information about EBRAHIMZADEH, A. on SCOPUS See more information about EBRAHIMZADEH, A. on IEEExplore See more information about EBRAHIMZADEH, A. on Web of Science, KHAZAEE, A. See more information about KHAZAEE, A. on SCOPUS See more information about KHAZAEE, A. on SCOPUS See more information about KHAZAEE, A. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (484 KB) | Citation | Downloads: 970 | Views: 4,287

Author keywords
ECG beat classification, wavelet, radial basis function neural network

References keywords
classification(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2009-10-26
Volume 9, Issue 3, Year 2009, On page(s): 89 - 93
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2009.03016
Web of Science Accession Number: 000271872000016
SCOPUS ID: 77954728832

Abstract
Quick view
Full text preview
This work describes a Radial Basis Function (RBF) neural network method used to analyze ECG signals for diagnosing cardiac arrhythmias effectively. The proposed method can accurately classify and differentiate normal (Normal) and abnormal heartbeats. Abnormal heartbeats include left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature contractions (APC) and premature ventricular contractions (PVC). This paper proposes a three stage, preprocessing, feature extraction and classification method for the detection of ECG beat types. In the first stage, ECG beats is normalized to a mean of zero and standard deviation of unity. Feature extraction module extracts wavelet approximate coefficients of ECG signals in conjunction with three timing interval features. Then a number of radial basis function (RBF) neural networks with different value of spread parameter are designed. We compared the classification ability of five different classes of ECG signals that were achieved over eight files from the MIT/BIH arrhythmia database.


References | Cited By  «-- Click to see who has cited this paper

[1] Hu, G. M., S. Palreddy, and W., Tompkins, "Patient Adaptable ECG Beat Classifier Using a Mixture of Experts Approach", IEEE Trans. Biomed. Eng., Vol. 44, 1997, pp. 891-900
[CrossRef] [PubMed] [SCOPUS Times Cited 424]


[2] T.H. Yeap, F. Johnson, M. Rachniowski, "ECG Beat Classification by a Neural Network", Proceedings Annual International Conference of the IEEE EMBS Society pg 1457-1458, 1990

[3] O. T. Inan, L. Giovangrandi, and G. T. A. Kovacs., "Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features", IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2507-2515, Dec. 2006
[CrossRef] [PubMed] [Web of Science Times Cited 170] [SCOPUS Times Cited 247]


[4] S. N. Yu, and K. T. Chou., "Selection of significant for ECG beat classification", Expert Systems with Applications, Vol. 36, pp. 2088-2096, 2009
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 78]


[5] Chazal P., O'Dwyer M., Reilly R.B., "Automatic classification of heartbeats using ECG morphology and heartbeat interval features", IEEE Trans Biomed Eng 2004; 51:1196-1206
[CrossRef] [Web of Science Times Cited 654] [SCOPUS Times Cited 861]


[6] G. D. Clifford, F. Azuaje, P. E. McShary, "Advanced Methods and Tools for ECG Data Analysis", Artech House: Norwood, MA 02062, 2006

[7] R. Mark and G. Moody, "MIT-BIH Arrhythmia Database 1997", http://ecg.mit.edu/dbinfo.html

[8] G. B. Moody and R. G. Mark, "The impact of the mit/bih arrhythmia database", IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, May-Jun, 2001 [PubMed]

[9] Amara Graps, "An Introduction to Wavelets", IEEE Comp. Sc. And Eng., Vol. 2, No. 2, 1995
[CrossRef] [Web of Science Times Cited 653] [SCOPUS Times Cited 1029]


References Weight

Web of Science® Citations for all references: 1,539 TCR
SCOPUS® Citations for all references: 2,639 TCR

Web of Science® Average Citations per reference: 171 ACR
SCOPUS® Average Citations per reference: 293 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-11-23 07:31 in 38 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: