
Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

Exploring FPGA Logic Block Architecture for
Reduced Configuration Memory

Fasahat HUSSAIN1, Muhammad Mazher IQBAL1, Husain PARVEZ1, Muhammad RASHID2
1Karachi Institute of Economics and Technology, 75190, Pakistan

2Umm Al Qura University, Saudi Arabia
mazher.iqbal@kiet.edu.pk

1Abstract—The reduction of reconfiguration delay, during

the partial dynamic reconfiguration of FPGAs, is important. In
this context, the bitstream compression technique is one of the
widely used techniques. These compression techniques only
minimize the size of the bitstream whereas the actual
configuration memory size on FPGA remains the same, which
consumes area as well as power. Therefore, alternative
techniques are required to decrease area and power
consumption along with the reconfiguration delays. This work
optimizes the configuration memory requirements in the
Configurable Logic Block (CLB) of FPGA with SRAM table
sharing technique. The SRAM table of a Look-Up-Table (LUT)
is shared with one or more LUTs in the same CLB by
employing Negation-Permutation-Negation (NPN)
classification. Furthermore, the relevant CAD tools are
modified to explore the heterogeneous degree of SRAM table
sharing within a CLB. For validation, extensive explorations
are performed on the 20 largest MCNC benchmark circuits. It
has been found that the configuration memory requirements of
LUTs are reduced by 30% while retaining the same area,
occupancy, and delay. Moreover, it can be further reduced by
50% provided that the FPGA occupancy is allowed to increase
by only 15% while retaining the same delay.

Index Terms—clustering algorithms, field programmable
gate arrays, programmable logic arrays, reconfigurable
architectures, reconfigurable logic.

I. INTRODUCTION

Modern Field Programmable Gate Arrays (FPGA)
architectures have considerably evolved after they were
introduced almost four decades ago [1]. The internal
architecture of an FPGA is composed of two major
configurable portions: logic blocks and routing resources.
The logic blocks are configured to map the logic
functionality of a given circuit, while the configurable
routing resources establish some appropriate connections
between the logic functionality. The basic logic element of a
FPGA is still a Static Random Access Memory (SRAM)
based Look Up Table (LUT). However coarse-grained
blocks (such as memories, adders with carry chains,
multipliers and advanced routing architectures) have
increased the overall FPGA’s complexity [2].

For example, the commercial logic elements are modified
to improve the efficiency of complex arithmetic functions
by using hard adders, carry chains and fracture-able LUTs,
along with the corresponding modifications and restrictions
imposed on the CAD (Computer-Aided Design) tool
algorithms [3]. Moreover, there are specialized logic block
design efforts to optimize application-specific domains such

as deep learning inference

[4], low precision multiply and
accumulate operations [5] and self-repairing hard arithmetic
blocks [6]. Furthermore, multiplexers are added to allow the
creation of wider functions.

In addition to the efficiency of complex arithmetic
functions and specialized logic block design, LUTs can also
act as small storage elements such as bit memories [7]. The
LUT architectures have evolved to support faster arithmetic
operations and now include carry logic to support cascaded
addition. The flip flop, which is always an integral part of a
BLE (Basic Logic Element), now allows connectivity from
external inputs, internal carry or the LUT itself.

Similarly, other integral parts of FPGA architecture are
memory blocks, digital signal processing and multiplier
blocks with flexible connections. Additionally, the dynamic
partial reconfiguration is now a standard feature of modern
FPGAs that allows a run-time reconfiguration of partial
bitstream on selected regions of FPGA [8].

SRAM-based FPGAs are widely used due to their
flexibility, speed and ease of fabrication in Complementary
Metal Oxide Semiconductor (CMOS) process technology
[9]. Despite the increasing complexity of logic blocks in
SRAM-based FPGA architecture; it has been shown that
they occupy only 10-20% of the total FPGA area, whereas
almost 80-90% of the area is occupied by the configurable
routing resources [3]. Therefore, the reduction of
reconfiguration overheads in SRAM-based FPGAs is an
interesting research problem and is being explored
extensively [10]. Moreover, the adoption of non-volatile
memory such as Flash memory or Anti-Fuse [11] in FPGAs
is another direction for the practitioners and researchers of
this domain [12-13].

A. Related Work
Since the inception of FPGAs in 1985, the quest to find

the most efficient logic element is extensively explored.
Traditionally, the LUT sizes for the best area-delay product
are 4-6 with 4 better for the area and 6 appropriate for delay
[11], [14]. More recently, it has been shown that the
performance of FPGAs can be improved through the
adoption of a 7-input logic block that is constructed using
two 4-input logic blocks [15]. There have been several other
contributions to improve the area, delay and configuration
memory requirements of logic modules [16–19] which are
briefly described below:

The COGRE logic block [16] is a compactly organized
gate-based (AND, OR and NOT) reconfigurable element
that can map large portions of logic functions. It is generated
by using frequently used NPN equivalence class functions in

 15
1582-7445 © 2022 AECE

Digital Object Identifier 10.4316/AECE.2022.03002

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

a benchmark circuit. The results for the 6-input COGRE
cell, when compared with 6-LUT, reveal a reduction of 46%
area and 32% configuration memory cells at the expense of
a 7% increase in the delay. The major drawback of this
approach is that the COGRE cell, optimized for one set of
benchmark circuits, might not perform better for other
benchmark circuits.

To address the flexibility issues, observed in COGRE
logic blocks, the And-Invert-Cones [17] provide a better
compromise between programming flexibility, area, delay as
well as a total number of inputs and outputs. It is composed
of And gates and Not gates which are grouped in the form of
cone-like sub-graphs. Furthermore, the corresponding
synthesis and technology mapping algorithms are modified
for application mapping. Experimental results in [17] reveal
a 22-32% reduction in delay and 16% reduction in area.
Another flexible solution, known as the Scalable Logic
Module (SLM) [18], uses Shannon expansion to break down
a k-input function into a smaller partial (k-1) functions. It
employs a smaller-sized LUT, along with some additional
logic, to improve the area and configuration memory
requirements. Experimentation in [18] shows a reduction of
20% and 33% in area and configuration memory cells,
respectively, with an increase of 12% in the critical path.

In addition to the flexible and scalable approaches of [17]
and [18], the NPN equivalence class approach is presented
in [19–22]. The core idea in NPN equivalence is to share
SRAM memory tables across LUTs in CLBs. The NPN
classification describes a feature of synthesis, where the k-
input combinatorial Boolean functions are implemented
using the same circuit with few modifications provided that
they share the same class. By using the same class functions,
the SRAM tables are shared across ’M’ such LUTs where
’M’ is the degree of sharing. The degree of sharing
determines how many LUTs share a single SRAM table
within a single CLB. Synthesized Boolean functions,
targeted for the k-input LUT having the same NPN class, are
mapped on LUTs sharing the same SRAM tables.
Additional storage bits are needed for the negation of inputs
and output; however, the overall SRAM memory cells are
reduced.

The SRAM table sharing technique is initially proposed
for LUT-4 in a CLB of FPGAs [19]. Later, the same idea is
extended to work with higher LUT inputs such as LUT 4-7
in CLB architectures with 2-4 LUTs sharing a single SRAM
table [20-22]. Moreover, the area gains of 6-7% are reported
with no effect on delay. Furthermore, application-specific
FPGA architectures have also shown some reduction in the
area after deploying the same idea of SRAM table sharing
[23]. Such as, application-specific inflexible FPGA (ASIF
[24]) is an application-specific FPGA architecture employs
SRAM Table sharing technique in its logic blocks for the
reduction of the total area and reconfiguration time. ASIF’s
other variants are proposed in [25-29].

B. Research Gap and Contribution

Despite the significant contributions of previous works on
SRAM table sharing using the NPN equivalence class
approach [19-22], three aspects remain unexplored. These
three aspects may reveal a further reduction in area and
configuration memory requirements. The first major aspect

that needs to be explored in SRAM table sharing is to
analyze the effect of a higher degree of sharing in a CLB. It
implies that it is important to investigate the maximum
number of LUTs in a single CLB that can share a single
SRAM table without degrading the area and delay
parameters. Secondly, the effects of a heterogeneous degree
of sharing are required to be analyzed. It implies that a
single CLB may have multiple SRAM tables and may have
a varying degree of sharing. Finally, investigating the
impact of SRAM table sharing on reducing the number of
configuration cells is critical. No previous work on the
SRAM table sharing technique has explored these three
aspects. Therefore, a more extensive exploration along with
the modification of CAD tools is required to achieve the
above-mentioned objectives.

The key technical contributions of this work include the
following:
 Explore CLB architecture with a higher and

heterogeneous degree of SRAM table sharing: An
SRAM memory table is explored to be shared
between 2-16 LUTs in the same CLB (i.e., a higher
degree of sharing). Similarly, a CLB may consist of
multiple shared SRAM tables having a different
degree of sharing (i.e., heterogeneous degree of
sharing).

 Modification of CAD tools to support a higher and
heterogeneous degree of SRAM table sharing:
Changes in the clustering algorithms are proposed to
support applications mapping on the new
architecture.

 Exploration for reduced SRAM memory
requirements: Experiments are performed to explore
CLB architectures with reduced SRAM memory
requirements with or without compromise on area
and delay.

The aforementioned contributions are achieved by
representing the proposed CLB architectures in VTR
(Verilog-To-Routing) [30] and the corresponding
modifications are performed in associated CAD algorithms.
The validation is performed with MCNC (Microelectronics
Center of North Carolina) benchmark suites [31], which are
frequently employed for the evaluation of the newly
proposed architectures. Consequently, the results are
explored for the area, delay and configuration memory
requirements of LUTs. The exploration has been performed
in two different ways: (1) compromising the area and delay
parameters, and (2) without compromising the area and
delay parameters It has been concluded that CLBs with both
higher and heterogeneous degrees of sharing have shown
best-compromised results. It implies that with a slight
compromise in area, the configuration memory requirements
can be significantly reduced. This reduction in configuration
memory can significantly reduce the reconfiguration times
of the FPGA. Our current work focuses only on the SRAM-
table sharing in logic blocks without carry chain logic. In
our future work, we will consider testing this approach on
LUTs with carry chain logic. The core methodology and
technique, however, will not change. But, we need to
investigate how the carry chain logic affects the remaining
netlist's SRAM table sharing.

The rest of this article is organized as follows: Section II

 16

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

provides the necessary background information about FPGA
architectures, the CAD toolchain that is used to program the
FPGAs, and the NPN classification technique which is the
basis for SRAM table sharing. Section III presents the
proposed modifications in CLB architecture and the
corresponding CAD tools. Section IV presents the
experimental setup and obtained results. Finally, the article
is concluded in Section V.

II. BACKGROUND

This section presents the fundamentals of internal FPGA
Architecture in Section II (A). Subsequently, an appropriate
background on the VTR CAD tool and NPN classification
technique is presented in Section II (B) and Section II (C),
respectively.

A. FPGA Architecture

The internal architecture of FPGA is composed of two
main portions, 1) configurable logic blocks and 2)
configurable routing resources. A mesh-based FPGA is
composed of a two-dimensional array of logic blocks that
are connected through configurable routing resources. The
logic blocks can be configured to map the logic functionality
of a given circuit. Similarly, the configurable routing
resources create connections between the logic functionality
using uni-directional, single driver routing channels. A CLB
comprises a single basic logic element (BLE) or multiple
BLEs connected through a programmable cross-bar. A BLE
consists of a K-LUT, a Flip-Flop (FF) and a Multiplexer
(MUX). A LUT is constructed with multiplexers and
memory cells. The number of memory cells in each LUT is
related to the number of inputs of a LUT. For example, a K-
input LUT (LUT-K) has 2k memory cells and can implement
the truth table of the K-variables Boolean function.

B. VTR Design Tool

The VTR CAD tool [30] represents different FPGA
architectures in the form of data structures. It is used to
transform an application circuit from a high-level register
transfer level (RTL) definition to a connected list of
CLBs/IOs which is then mapped onto an FPGA architecture
representation such that the area, delay and power results are
reported to evaluate the effectiveness of the FPGA
architecture. As a first step, the ODIN tool [32] synthesizes
a high-level Verilog description to a connected list of
components, belonging to a standard cell library, which
includes the definitions of basic logic gates and flip-flops.
Subsequently, the technology mapping tool (named ABC
[33]) converts the netlist of standard cells to a connected list
of LUTs and flip-flops. Similarly, the packing algorithm
(TV-Pack [23]) clusters the corresponding LUTs and flip-
flops to form a connected netlist of CLBs. Furthermore, a
placement module places the CLB and IO instances of a
netlist to CLBs and IOs of the FPGA [34]. Moreover, a
routing module routes all the nets of a netlist on the FPGA
routing resources [34]. Finally, the bitstream is generated by
using the information provided by the technology mapping,
placement and routing module of the VTR CAD flow.

C. NPN Classification

The concept of NPN equivalency is defined as: two
functions, say f and g, are considered NPN equivalent, if one

can be derived from the other by negating (N) and/or
permuting (P) some/all of the inputs and/or by negating (N)
the outputs. These two functions are then called NPN
equivalent as they have the same NPN class. The NPN
classification technique is utilized to categorize a larger
number of functions into a smaller set of NPN classes. For
n-inputs, there are 2exp(2n) distinct possible representations of
Boolean functions.

The Boolean space grows very rapidly as the number of
inputs increases. However, the number of NPN classes
reduces the huge space to a smaller set of unique functions.
For example, a 4-input LUT supports 22n = 65536 possible
functions, while these are classified into 222 distinct NPN-
equivalent classes only. It is relevant to mention that no
formula can be given for the number of distinct functions.
However, [35] provides more details about NPN
classification. Furthermore, the functions belonging to the
same NPN class can be represented through the same
bitstream values provided that there is an option to negate
(N) and/or permute (P) the inputs, and/or negate (N) the
outputs. Consequently, the number of SRAMs in the LUTs
can be reduced by sharing the SRAM table between two or
more LUTs.

The work in this article uses the NPN class information
similar to the approach followed in [21]. The ABC synthesis
tool synthesizes the given benchmark logic functions for a
k-input LUT into k-input Boolean functions. The
corresponding class information is also given as output for
each of the synthesized Boolean functions. The modified
LUT and the CLB architecture, along with the
corresponding CAD tools to support an NPN mapping, are
discussed in Section III.

Figure 1. Configurable Logic Block with 4 BLEs and 1shared group with a
degree of sharing=2

III. PROPOSED CLB ARCHITECTURE EXPLORATION AND

CAD FLOW

This section presents the changes required for the
exploration of CLB architecture in Section III (A). The
proposed architectural modifications need to be harnessed
through proper changes in the clustering algorithm of
corresponding CAD tools. Therefore, Section III (B)
presents the necessary changes in the clustering algorithm.

 17

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

A. Modified CLB Architecture

An example of two LUTs, sharing a single SRAM table,
is shown in Fig. 1 which represents a configurable logic
block with 4 LUTs. The four inputs of each LUT are
connected with a crossbar which connects the global inputs
and outputs to individual inputs of the LUT. Two LUTs
named (a) and (b) in Fig. 1 are connected with their
corresponding SRAM tables, each having 16 SRAM cells.
However, the LUTs named (c) and (d) are sharing a single
SRAM table which is termed as a single group with a degree
of sharing=2.

The concept of NPN classification eases the
implementation of similar NPN class combinatorial
functions using the same circuit using the optional negation
of input and output or permutation of inputs. Consider three
basic examples:
Example 1: Consider the functions f1 = a b’ and f2 = a’b,
they are P-equivalent, i.e., one function’s inputs can be
swapped to implement the other function using the same
gate.
Example 2: Consider the functions f1 = ab + c and f2 = a’c’
+ b’c’. If f1 is inverted we get, (ab+c)’ = (ab)’c’ = (a’ + b’)
c’ = a’c’ + b’c’ (using de Morgan’s Theorem); the other
function f2 is inverted output of f1.

As we see, there may be cases where the function inputs
or outputs may be negated or inputs permuted and share the
same logic circuit. The Complementary Negation (CN)
circuitry is an addition to the shared BLE, but its usage is
solely dependent on the mapped Boolean functions. As you
can in example 2, the f2 function is derived by negating the
output of f1. It is a simple output negation in this example
and is only achieved by CN logic. However, P-equivalent
functions do not need CN logic (Example 1). Therefore, if
there are 4 BLE(s) in a shared LUT mode, three of the
BLE(s) will have the CN module to implement the same
NPN class functions, while the one BLE will be directly
implementing the Boolean function with no NPN
requirements, no input or output negation.

The optional CN circuit slightly increases the delay;
however, the critical path delay can be mitigated by shifting
the critical logic functions onto the LUTs without CN gates.

B. Proposed Modifications in Clustering Algorithm

The clustering algorithm in VTR [35] is modified to
cluster various logic elements of the user circuit based on
their class information. Under the standard scenario (without
any modifications), the clustering algorithm uses an
attraction function to group the closely connected logic
elements and place them in the current CLB. The same
process is repeated till all the logic elements are placed
inside a CLB. In this article, the normal clustering algorithm
is modified to incorporate the class information for packing.
In other words, the T-VPACK clustering algorithm in VTR
is modified to obtain an input blif file, representing the user
circuit and the class information of each Boolean function in
the user circuit.
1) Basic Principle

Modifications are made to cluster the Boolean function
based on their NPN class information and the attractive
function. The clustering algorithm uses a cost function
(named as an attractive function) to find out which logic

blocks need to be clustered together based on wire length
and delay. The goal is to decide if the random BLE
placement is good enough based on the reduction in the cost
function for the possible move, else the move is rejected.
Based on the occupancy of the current CLB, and the sharing
status of BLEs, the incoming Boolean function may or may
not be accommodated in the current CLB. If the SRAM
table of a BLE is shared with one or more BLEs, all of the
shared BLEs can map only the same class function. As
Boolean functions get mapped into a CLB, the available
unoccupied BLE(s) in the CLB are either tagged as shared
or unshared.

Figure 2. Clustering algorithm

The unshared BLE(s) can still get any Boolean function.

However, the available shared BLE can only accept the
same class function. This may leave CLB(s) partially
mapped if the next function is not one of the classes already
mapped. If the incoming Boolean function is rejected based
on the class information, a newer function along with the
corresponding class information is evaluated by the
attractive function. Thus, the clustering algorithm works
iteratively to map all the Boolean functions onto the CLB(s).
It is important to note that the modified clustering algorithm
maintains few dynamic queues to keep track of shared and
unshared LUTs within a CLB. These queues include the
class queue (CQ) and class count queue (CCQ) to keep track
of the number of shared and unshared LUTs occupations.
The shared CQ and shared CCQ allow users to try a
combination of one or more shared LUTs (2,3,4). These
queues allow the incoming class function to be mapped to
the shared LUT among N LUTs for the current CLB
provided the incoming class matches the one in the shared
queue.
2) Flow Chart for Clustering Algorithm

The modified T-VPACK algorithm that deals with the
grouping of BLEs, based on their class information, is
depicted through a flow chart in Fig. 2. The flow chart in
Fig. 2 can be explained with a simple example. Consider
that there are 16 LUTs in each CLB of an FPGA. Each CLB
has a few shared LUTs and a few non-shared LUTs. The
class CQ and class count queue CCQ are initially empty, as
no functions have been mapped onto LUTs. The first
incoming function can be mapped to any LUT. However,

 18

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

 19

the subsequent incoming function is mapped according to
the shared and non-shared LUTs rules. As an example,
consider three different degrees of sharing (2, 3 and 4). It
implies that 2 LUTs share a single SRAM, 3 other LUTs
share a single SRAM and 4 other LUTs share a single
SRAM. Consequently, the total number of unshared LUTs
with their corresponding SRAMs is 16-(2+3+4) = 7.

TABLE I. MCNC NETLISTS FOR LUT-6, CLUSTER-SIZE 16

Index Netlist Number FPGA Min Channel
 Name of CLBs Size Width*

1. pdc 228 16x16 76

2. ex5p 48 7x7 50

3. spla 191 14x14 78

4. apex4 61 8x8 68

5. ex1010 197 15x15 78

6. frisc 185 14x14 90

7. apex2 93 10x10 50

8. seq 83 10x10 52

9. misex3 75 9x9 42

10. elliptic 134 12x12 68

11. alu4 74 9x9 34

12. des 35 6x6 38

13. s298 83 10x10 40

14. bigkey 43 7x7 34

15. diffeq 55 8x8 46

16. dsip 43 6x6 36

17. tseng 50 8x8 80

18. clma 390 20x20 94

19. s38584.1 306 18x18 54

20. s38417 238 16x16 48

The clustering algorithm assigns the first LUT to the

incoming Boolean function. For the second function of the
same class, the function gets mapped to the same LUT.
However, if the second function has a different class than
the first, it gets mapped to a new LUT. Similarly, for all the
next new functions, the class information is checked. If the
new function matches and the shared count is greater than 1,
it indicates a shared class. Subsequently, the shared count is
checked to see if it does not exceed 4, 3 or 2 in this example.
If it does not match any of the mapped LUTs’ classes, the
newer function is mapped to an unmapped LUT. At any
time, the counts of shared and unshared LUTs are
continuously checked according to the given CLB
configuration.

Finally, if all the unshared LUTs are mapped and shared
LUTs are partially full and a new Boolean function of a new
class does not happen to be any of the shared LUTs classes,
it is rejected back to the FPGA mapping requestor. As it is
evident, the shared slots requires tracking to ensure same
class goes in the shared slot and it’s count does not exceed
the sharing configuration, a list and its count is maintained
for each shared slot. The mapper also ensures the N-BLE
CLB count is not exceeded. Once all N- BLE(s) are mapped,
the next empty CLB is then mapped.

It is important to note that there may be a higher number
of rejections in a high degree of sharing which compel
CLBs to remain partially mapped. The partial mapping of
CLBs decreases the packing efficiency as compared to the

case where CLBs get close to fully mapped. Higher
rejection rate, i.e., the ratio of total rejections to total
acceptances, results in more CLB usage thereby increasing
the total FPGA area compared to the case where the
rejection rate is small or none. It is therefore necessary to
apply a range of digital circuits, from various benchmark
test case suites, to validate the new architecture and compare
the obtained results with existing architectures. The
validation results of the new architecture, along with its
comparison, are presented in Section IV.

IV. EXPERIMENTATION DETAILS

The experimental setup, required to test our architecture,
consists of running the FPGA VTR tool on a given
benchmark test. The resulting run log provides details of all
the corresponding consumed resources in mapping digital
logic circuits onto FPGA. However, the resources of interest
in our exploration include the number of occupied CLB(s),
the logic and routing area for a particular netlist, the delay
and configuration memory requirements.

A. Benchmark Circuits
Several benchmark suits are used to test out different

possibilities of Boolean functions for a k-input LUT. One of
the commonly used, having a mix of combinatorial and
sequential logic, is the MCNC benchmark suite [31]. The
MCNC suite of benchmarks, as shown in Table I, is used to
evaluate the efficiency of the suggested architecture. To
summarize, there are 20 test cases in all, 7 of them are pure
combinatorial logic circuits while the remaining 13 also
involve sequential circuits. The MCNC netlists are
synthesized with LUT-6 and have 16 BLEs in a single CLB
cluster. Table I shows the number of CLBs, FPGA
dimensions and the minimum channel width required for
each netlist as shown in column 3, column 4 and column 5,
respectively.

TABLE II. CONFIGURATIONS FOR DEGREE OF SHARING INSIDE A CLB
S.No Homogeneous degree SNo Heterogeneous degree

 of sharing of sharing
1 [21111111111111] 27 [633211]
2 [2211111111111] 28 [6541]
3 [222111111111] 29 [75211]
4 [222211111111] 30 [6433]
5 [22222111111] 31 [533221]
6 [2222221111] 32 [75211]
7 [222222211] 33 [6433]
8 [22222222] 34 [3332221]
9 [31111111111111] 35 [64321]
10 [331111111111] 36 [6541]
11 [3331111111] 37 [4322211]
12 [33331111] 38 [652111]
13 [333331] 39 [74221]
14 [4111111111111] 40 [533221]
15 [4411111111] 41 [73321]
16 [4441111] 42 [7711]
17 [4444] 43 [65221]
18 [511111111111] 44 [4432111]
19 [55111111] 45 [55411]
20 [5551] 46 [743]
21 [61111111111] 47 [6442]
22 [661111] 48 [6541]
23 [7111111111] 49 [772]
24 [7711] 50 [652111]
25 [811111111] 51 [6532]
26 [88] 52 [44332]

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

Figure 3. Experimentation results for the netlist named PDC

B. Exploration of a CLB Architecture

This work explores the sharing of an SRAM memory
table between 2-8 LUTs in the same CLB, i.e., the degree of
sharing is varied between 2 to 8. Similarly, a CLB may
consist of multiple shared groups having a different degree
of sharing (i.e., the heterogeneous degree of sharing). For a
CLB with 16 BLEs, an exhaustive search yields 228
different sequences, containing a degree of sharing from 2
to8. Table II lists some of the 228 configurations used to
map the benchmark circuits onto a CLB size of 16 BLE(s).

The first type of sharing consists of a homogeneous
degree of sharing where a CLB consists of some shared
BLEs with the same degree of sharing along with some
unshared BLEs. The homogeneous degree of sharing is
shown in S.No 1-26 of Table II. For example, the
configuration [4 4 4 1 1 1 1] refers to a CLB with three
sharing cases (shown as 4, 4, 4). In each sharing case, 4
LUTs share the same SRAM table. The remaining four
LUTs are not shared (1, 1, 1, 1). Therefore, the CLB utilizes
only 7 SRAM tables instead of 16.

In addition to the homogeneous sharing, another type of
sharing consists of heterogeneous degrees of sharing i.e., a
CLB may consist of shared cases with different degrees of
sharing. Table II shows a few CLB configurations having a
heterogeneous degree of sharing (from S. No 27-52). The
idea to explore these different CLB architectures is to find
the best combination in terms of FPGA area, critical delay,
and/or configuration memory count. The Area-Delay
product is used to find an optimal architecture.

To find the best generic FPGA architecture with SRAM
table sharing, experiments are performed in three steps.
 Experimentation is performed for individual netlists

where the FPGA architecture is tailored concerning
individual netlists (Section IV (C)).

 The average results for all the netlists are analyzed
(Section IV (D)).

 Experimentation is performed on fixed FPGA
configurations and average results are reported for all
netlists (Section IV (E)). The reference configuration
is the non-shared case, where each of the sixteen

BLE(s) has its own LUT, thus allowing maximum
mapping flexibility to the incoming LUT function of the
benchmark. This non-shared case is used as a baseline
value to find the changes in various design parameters for
a shared case. The respective percent change concerning
the non-shared case is calculated and the most negative
ones suggest that the sharing sequence architecture yields
the best results.
The sharing sequences suggest savings of SRAM(s) and

consequently the logical area as the degree of sharing is
increased. However, this saving is consistent for any netlist
that is mapped onto a LUT sharing architecture. As an
example, a sequence of [6 3 3 2 1 1], implies six LUTs share
a single SRAM in the first shared group, three LUTs share
another SRAM, another three LUTs share another SRAM,
two LUTs share a single SRAM, and remaining two LUTs
don’t share any SRAM. Each shared SRAM table saves the
overall area and configuration memory count of the CLB;
however, additional CN cells need to be incorporated at the
inputs and output of LUT. In the context of the overall
FPGA area, the apparent tremendous gains per CLB
provided by reduced SRAM usage, is a tiny part of the
overall logical area, as interconnect memory also consumes
a large part of the logical area.

C. CLB Architectures for Individual Netlists

As a first step, each netlist is mapped onto the FPGA for
228 different CLB configurations using the VTR tool. The
FPGA dimensions and channel width are varied for each
netlist. The 130nm custom architecture file is adjusted for
the delay variations due to extra inputs and outputs required
for CN logic, as the logic delays of CN logic are measured
for the 150nm process node using Cadence Virtuoso. The
VTR logs are examined to analyze the number of CLB(s),
the size of the FPGA, the critical path delay, the routing and
logical area, and the number of configuration memories.

Consequently, Fig. 3 shows the results for one such netlist
named PDC. This figure shows six sub-graphs. The x-axis
of all the sub-graphs plots 229 different CLB configurations
with the first configuration as the non-shared CLB. The y-

 20

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

axis of the six sub-graphs respectively represents SRAM
tables saved, number of CLBs utilized by the netlist, critical
path delay of the netlist, change in delay, change in the area,
and change in area/delay product. Based on these results, a
few CLB configurations as discussed in Table II are
selected, which provide better results for each netlist.

An important aspect of the ineffectiveness of large SRAM
savings is the same NPN class requirement of the target
netlist. This is an unknown sequence; therefore, we see that
for all bench-marks, the number of CLB(s) used to map the
netlist increases as the degree of sharing increases, thus
confirming the random unpredictable nature of class
sequence for a netlist. As an example, please see Fig. 3 for
the high CLB usage as the sharing increases from left to
right on the x-axis for the pdc benchmark. The minimum
CLB usage for this benchmark is 230 and it grows to 1715
for the degree of sharing equal to 16, which is the best
SRAM saving but turns out to be the worst in terms of CLB
usage. This increases the overall FPGA grid size, thus
impacting the Area-Delay Product graph as well. As the
FPGA size increases, the logical and routing area also
increases, and the total area shows a steady increase with
increasing the degree of sharing.

Figure 4. Average results for different CLB configurations

The critical path delay shows a random pattern instead,

suggesting there are some sequences for the degree of
sharing which have a critical path as low as the unshared
case, showing the effectiveness of the sharing technique.
The Area-Delay Product, a transistor technology-
independent value, is commonly used to evaluate one
architecture gain against another. When the value is low, the
architecture is considered better for the area and/or delay for
the same benchmark circuits. The corresponding graph
confirms that there are sequences for which one can achieve
the same area delay product with lower LUT SRAMs. The
class distribution of NPN classes in the 20 benchmark suite
is wide and random enough to analyze FPGA mappings
across various FPGA architectures. The obtained results
confirm that the variations of NPN class frequency in
different benchmark circuits are broad enough to get one
sharing sequence in minimum percentage for the Area-
Delay Product parameter.

D. Average Results for all Netlists

To get a meaningful result that does not get skewed by
one benchmark or another, the average of the calculated
parameters is computed for all twenty benchmarks. The

resulting plot in Fig. 4 shows the average percentage change
in the total area on the y-axis whereas the required number
of SRAM tables for the few best from 229 different CLB
configurations is shown on the x-axis.. The total area
deviation of CLB remains close to zero when SRAM tables
are reduced from 16 to 10. As the SRAM table savings are
further reduced to 7, only a 20% increase in the area is
reported. However, as the SRAM tables are further reduced
below 7, the area increases at an exponential rate. Hence, it
can be deduced that by using SRAM table sharing, a CLB
cluster with 16 BLEs needs to have only 10~7 SRAM
tables, which incurs an area compromise of 0~20%,
respectively with configuration memory improvement in the
logic block from 38~56% and negligible effect on delay.

E. Results on Fixed Sized FPGA

As a third step, the fixed-sized FPGA with fixed channel
width is constructed for the selected CLB configurations
obtained from the previous experiments. By selecting a
fixed-sized FPGA, the effect of new CLB architectures can
be viewed on the occupancy of the FPGA for each netlist.
This scheme will give a true effect if the proposed
architecture is to be included in a commercial FPGA. The
fixed-sized FPGA is constructed by including the maximum
number of CLBs and the maximum channel width required
by any of the netlists.

The netlist results for the fixed-sized FPGAs are reported
in Table III. It shows the ten best CLB configurations
having SRAM tables with different degrees of sharing. The
first column shows the CLB configuration with the
corresponding degree of sharing. The number 1 in the CLB
configuration represents that a single SRAM table is
connected with a single BLE. Similarly, 2 mean that a single
SRAM table is shared with two BLEs and so on. Each of the
ten CLB configurations has a total of 16 BLEs, but the
number of SRAM tables varies for each configuration.
Therefore, the first row with 16 ones represents the
reference CLB architecture. The "Total SRAMs" used in
each CLB configuration, and the "Percentage SRAM
saving" are reported in the second and third columns,
respectively. The "Occupancy" column represents the
average number of CLBs on the FPGA occupied by all the
circuits in the benchmark. Similarly, the "delay" column
represents the average delay for all the netlists. The 6th and
7th columns report the true number of SRAM tables used,
and their percentage gain concerning the reference CLB
architecture. As the percentage occupancy increases for
CLB configurations having smaller number of SRAM
tables, the total SRAM tables concerning occupancy
(column 6) is higher than the SRAM savings reported in "%
SRAM saving" (column 3).

The first row in Table III shows the reference CLB
configuration, while the results in SRAM savings (column
3) and True SRAM savings (column 7) are compared with
their respective values in the first row. The following major
conclusions can be drawn from Table III:
 Effects of reduced SRAM tables on occupancy: It

should be noted that as the total SRAM tables are
reduced for different CLB configurations (shown in
column 2), the CLB occupancy on the FPGA
increases (shown in column 4).

 21

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

TABLE III. AVERAGE MCNC RESULTS ON FIXED-SIZED FPGA
CLB configuration shown

w.r.t degree of sharing
(1)

Total
SRAMS

(2)

% SRAMs
Saving

(3)

Occupancy

(4)

Delay

(5)

Total SRAMs
w.r.t occupancy

(6)

True % SRAM
Saving

(7)
[1111111111111111] 16 00.0 103.1 5.46 1649 00.0

[22222111111] 11 31.3 104.0 5.46 1144 30.6
[2222311111] 10 37.5 106.6 5.59 1066 35.3
[222331111] 9 43.7 110.1 5.31 991 39.9
[33331111] 8 50.0 113.0 5.56 904 45.2
[4441111] 7 56.3 119.3 5.55 835 49.3
[445111] 6 62.5 129.6 5.52 778 52.8
[67111] 5 68.7 149.1 5.41 745 54.8
[6811] 4 75.0 173.8 5.60 695 57.8
[781] 3 81.3 214.3 5.75 643 61.0

However, the CLB occupancy gradually increased
from 103.1 to 119.3 when the SRAM tables are
reduced from 16 to 7. This amounts to only a 0.5%
~15% increase in CLB occupancy of FPGA when
SRAM tables are reduced to 11~7, respectively. The
occupancy increases to 129.6 and 149.1 with further
SRAM table reductions to 6 and 5. These reductions
might be acceptable for few applications as the
SRAM tables for these two cases have reduced by
63% and 69% more reduction of SRAM tables down
to 4 and 3 increases the occupancy to 173.8 and
214.3.

 Representation of true SRAM tables after
considering the corresponding increase in
occupancy: Column 3 in Table III shows the
percentage reduction in SRAM tables for any CLB
architecture. However, this is not the true gain, as a
netlist is synthesized into more CLBs with reduced
SRAM tables. In other words, a more realistic gain
can be considered after considering the increase in
CLB occupancy on the FPGA. Consequently, column
7 in Table III represents the true percentage savings
in the SRAM tables.

 Effects of reduced SRAM tables on delay: As the
SRAM tables in a CLB are reduced, each netlist
occupies more CLB blocks on the FPGA which
slightly increases the delay (as shown in column 4).
However, for most of the cases, the increase in delay
is well within 2.5%. Only the last two CLB
configurations, with 4 and 3 SRAM tables, exhibit
more skewed delays.

 Effects of the higher and heterogeneous degree of
sharing: The results in Table III show the CLB
architecture with a degree of sharing up to 8.
Moreover, a heterogeneous degree of sharing is also
shown such that the degree heterogeneity is
architecture with a degree of sharing up to 8.
Moreover, a heterogeneous degree of sharing is also
shown such that the degree of heterogeneity is
restricted to maximum of two different types of
sharing. The degree of sharing in each type is greater
than 1.

F. Practical Design Netlists

To measure the effectiveness of the proposed approach,
three different sized more real netlists were tested with ten
sets of SRAM sharing. The CLB consumption was varied
for various sets of sharing. Compared to the non-shared

mode, the CLB consumption reduced in the shared mode for
the first of the sharing sets for two of the three netlists.
Overall, the logical area of the resulting FPGA was less than
one in the non-shared mode for one netlist. Accordingly, the
routing area also reduced, resulting in the total area
reduction of 50%. Table IV shows the FPGA mapping
parameter values for the three netlists in non-shared mode
and shared mode (best sharing sequence selected in terms of
least CLB consumption). Table IV lists the best mapping
result for each of the three netlists in shared versus non-
shared mode.

The given formula calculates the overall reductions in
SRAM cells in the total size of FPGA.
Number of SRAMs Reduced = [2k∗(d-1)∗N∗N]
– [CN∗(d-1)∗N∗N] (1)
where, k is the LUT input size, d is the degree of sharing
and N is the size of FPGA whereas CN is the area of CN
logic.

G. Comparison with Previous Works

This work can be compared with logic blocks proposed in
COGRE [16], SLM [18] and previously proposed SRAM
table sharing-based CLB architectures [21]. The 6-input
COGRE cell [16] is 46% smaller and consumes 32% less
configuration memory than a 6-input LUT. However, the
delay increased by 6.96%. Furthermore, the COGRE cell is
optimized for one set of benchmark circuits and might not
provide optimized results for another benchmark circuit.
Similarly, the 6-input SLM cell [18] is a generic logic block
with a 52% smaller area and 58% less configuration
memory than a 6-input LUT. However, the delay of the BLE
has increased by more than 140%. After combining the
SLM BLE into CLBs, and then placement and routing of the
netlist, the overall increase in delay is recorded to be around
12%. The 6-input shared SRAM table LUT proposed in this
work (with 16 BLEs in a CLB using only 7 SRAM tables) is
on average 25% smaller and consumes on average 55% less
configuration memory than a standard 6-input LUT with a
negligible effect on delay (i.e., around only 2%).

 While comparing the higher and heterogeneous degree
of sharing proposed in this work with the previous work in
[21], it has been found that many groups of smaller degrees
of sharing (2, 3, 4) work best as compared to the unshared
case. A large degree of sharing provides relatively higher
gains in terms of apparent SRAM savings, however, the
mapping of application to FPGA(s) results in an abundant
use of CLBs. This is due to the fact that a large number of
LUT(s) may go unshared due to different classes of LUTs.

This can be particularly noted in Table III where the CLB

 22

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

TABLE IV. FPGA MAPPING PARAMETERS FOR SHARED AND NON-SHARED MODES

XML Architecture
File

DSN N SHR CLB
Blocks

FPGA
Size

Channel
Width

Logical
Area

Routing
Area

Delay Total
Area

K6_N16_L4_130n
m.xml blob_merge_6 16 [1] 427 21 86

18937100
.00

4555060.00 11.76 23492160.
00

K6_N16_L4_130n
m.xml blob_merge_6 16 [2 2 2 2 2] 444 22 90

20783600
.00

5446860.00 12.42 26230460.
00

K6_N16_L4_130n
m.xml sha_6 16 [1] 156 13 58

7257110.
00

1271160.00 14.89 23736910.
00

K6_N16_L4_130n
m.xml sha_6 16 [2 2 2 2 2] 152 13 58

7257110.
00

1271160.00 14.66 25771450.
00

K6_N16_L4_130n
m.xml stereovision_6 16 [1] 21 5 26

1073540.
00

115557.00 3.84 26039660.
00

K6_N16_L4_130n
m.xml stereovision_6 16 [2 2 2 2 2] 16 4 28

687063.0
0

79528.30 3.76 25771450.
00

proposed in the last row termed as [7 8 1] requires only 3-
SRAM tables. However, the number of occupied CLBs has
increased to 214%. Since the reconfiguration delay is
directly proportional to the size of the bitstream (number of
SRAMs to be written in an FPGA). We can safely comment
that the reduction in SRAM count will eventually reduce the
reconfiguration delay. This work has reduced the
configuration memory of the logic blocks by 30~50%.
However, the SRAMs of routing architectures are not
reduced in this work. Hence the total reduction in
reconfigurable delay of the FPGA is expected to be reduced
by 10~18%.

V. CONCLUSION

This work explores the impact of shared pairs and degree
of sharing of SRAM table sharing technique on area, delay
and configuration bitstreams of FPGA extensively using a
previously proposed clustering technique. A single SRAM
table is shared among various LUTs in a CLB by placing
optional inverters at their inputs and output. Moreover, the
corresponding CAD tools have been modified to support the
clustering of NPN equivalent classes on LUTs with shared
SRAM tables. The validation of the proposal has been
performed with MCNC benchmark circuits. It has been
found that a CLB cluster with 16 BLEs may require only
10~7 SRAM tables. This saving in the number of utilized
SRAM tables incurs an overall area reduction of 0~20%,
38~56% in configuration memory cells of the logic blocks
while having only a negligible effect on the overall delay.
For future direction, the SRAM sharing technique also needs
to be extended for fracturable LUTs.

REFERENCES
[1] T. S. S. Phani, A. Arumalla, M. D. Prakash, “Partial dynamic

reconfiguration framework for FPGA: A survey with concepts,
constraints and trends,” Materials Today: Proceedings 2021.
doi:10.1016/j.matpr.2021.01.851

[2] A. Podobas, K. Sano, S. Matsuoka, “A survey on coarse grained
reconfigurable architectures from a performance perspective,” IEEE
Access 8 (2020) 146719–146743.
doi:10.1109/ACCESS.2020.3012084

[3] K.E. Murray, J. Luu, M.J.P. Walker, C. McCullough, S. Wang, S.
Huda, B. Yan, C. Chiasson, K.B. Kent, J. Anderson, J. Rose,
V. Betz, “Optimizing FPGA logic block architectures for arithmetic,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
28 (6) (2020) 1378–1391. doi:10.1109/TVLSI.2020.2965772

[4] M. Eldafrawy, A. Boutros, S. Yazdanshenas, V. Betz, “FPGA logic
block architectures for effcient deep learning inference,”
ACM Trans. Reconfigurable Technol. Syst. 13 (3).
doi:10.1145/3393668

[5] A. Boutros, M. Eldafrawy, S. Yazdanshenas, V. Betz, “Math doesn’t
have to be hard: Logic block architectures to enhance low-precision
multiply-accumulate on FPGAs,” in: Proceedings of the 2019

ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’19, Association for Computing Machinery, New
York, NY, USA, 2019, p. 94–103. doi:10.1145/3289602.3293912

[6] A. Valanarasi, S. SithiShameem Fathima, C. Priya, B. Babu Mohan, J.
Preethipilomina, M. Jannath Juvairiya, “Optimizing FPGA logic
block architectures for self-repairing hardened arithmetic,” Materials
Today: Proceedings. doi:10.1016/j.matpr.2021.01.819

[7] H. Chen, H. Yang, W. Song, Z. Lu, Y. Fu, L. Li, Z. Yu, “Symmetric-
mapping LUT-based method and architecture for computing XY-like
functions,” IEEE Transactions on Circuits and Systems I: Regular
Papers 68 (3) (2021) 1231–1244. doi:10.1109/TCSI.2020.3046783

[8] K. Vipin, S.A. Fahmy, “FPGA dynamic and partial reconfiguration: A
survey of architectures, methods, and applications,” ACM Comput.
Surv. 51 (4). doi:10.1145/3193827

[9] J. S. Meena, S. M. Sze, U. Chand, T. Y. Tseng, “Overview of
emerging nonvolatile memory technologies,” Nanoscale Research
Letters 9 (526) (2014) 118:1–118:39. doi:10.1186/1556-276X-9-526

[10] R.T. I. Kuon, J. Rose, “FPGA architecture: Survey and challenges,”
Foundations and Trends in Electronic Design Automation 2.2 (2008)
135–253. doi:10.1561/1000000005

[11] X. Zhang, C. Paerson, Y. Liu, C. Yang, C. J. Xue, J. Hu, “Low
overhead online data flow tracking for intermittently powered non-
volatile FPGAs,” ACM Journal on Emerging Technologies in
Computing Systems. doi:10.1145/3371392

[12] A. Chen, “A review of emerging non-volatile memory (NVM)
technologies and applications,” Solid-State Electronics 125 (2016)
25–38. doi:10.1016/j.sse.2016.07.006

[13] I. Hariharan, M. Kannan, “Efficient use of on-chip memories and
scheduling techniques to eliminate the reconfiguration overheads in
reconfigurable systems,” Journal of Circuits, Systems and Computers
28 (14) (2019) 1950246. doi:10.1142/S0218126619502463

[14] E. Ahmed, J. Rose, “The effect of LUT and cluster size on deep
submicron FPGA performance and density,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions, 2004, pp. 288–298,
doi:10.1109/TVLSI.2004.824300

[15] W. Feng, J. Greene, A. Mishchenko, “Improving FPGA performance
with a S44 LUT structure,” in: Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’18, Association for Computing Machinery, New York, NY, USA,
2018, p. 61–66. doi:10.1145/3174243.3174272

[16] Y. Okamoto, Y. Ichinomiya, M. Amagasaki, M. Iida and T. Sueyoshi,
"COGRE: A configuration memory reduced reconfigurable logic cell
architecture for area minimization," 2010 International Conference on
Field Programmable Logic and Applications, 2010, pp. 304-309.
doi:10.1109/FPL.2010.68

[17] P. A. Hadi, B. Hind, N. David, P. Ienne, “Rethinking FPGAs: Elude
the flexibility excess of LUTs with and-inverter cones,” in
International Symposium On Field Programmable Gate Arrays (2012)
119–128. doi:10.1145/2145694.2145715

[18] Q. Zhao, K. Yanagida, M. Amagasaki, M. Iida, M. Kuga, T.
Sueyoshi, “A logic cell architecture exploiting the shannon expansion
for the reduction of configuration memory,” in Field Programmable
Logic and Applications (FPL), 2014. doi:10.1109/FPL.2014.6927460

[19] J. Meyer, F. Kocan, “Sharing of SRAM tables among NPN-equivalent
LUTs in SRAM-based FPGAs,” vol. 15, IEEE Transactions on Very
Large Scale Integration Systems (VLSI), 2007.
 doi:10.1109/TVLSI.2007.893581

[20] A. Asghar, M. M. Iqbal, W. Ahmed, M. Ali, H. Parvez, and M.
Rashid, “Exploring shared SRAM tables among NPN equivalent
large LUTs in SRAM-based FPGAs,” in International Conference on
Field Programmable Technology (ICFPT).
doi:10.1109/FPT.2016.7929540

[21] A. Asghar, M. M. Iqbal, W. Ahmed, M. Ali, H. Parvez, M. Rashid,
“Exploring shared SRAM tables in FPGAs for larger LUTs and

 23

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 22, Number 3, 2022

higher degree of sharing,” International Journal of Reconfigurable
Computing 2017. doi:10.1155/2017/7021056

[22] A. Asghar, M. M. Iqbal, W. Ahmed, M. Ali, H. Parvez, M. Rashid,
"Logic algebra for exploiting shared SRAM-table based FPGAs for
large LUT inputs," 2017 First International Conference on Latest
trends in Electrical Engineering and Computing Technologies
(INTELLECT), IEEE. doi:10.1109/INTELLECT.2017.8277632

[23] M. M. Iqbal, H. Parvez, F. Hussain, M. Rashid, “An application
specific reconfigurable architecture with reduced area and static
memory cells,” Journal of Circuits, Systems and Computers 30 (4).
doi:10.1142/S0218126621500651

[24] H. Parvez, and M. Habib, "ASIF: Application specific inflexible
FPGA,” Application-Specific Mesh-based Heterogeneous FPGA
Architectures. Springer, New York, NY, 2011, pp 77-101.
doi:10.1007/978-1-4419-7928-5_5

[25] U. Farooq, H. Parvez, H. Mehrez, and Z. Marrakchi, “A new
heterogeneous tree-based application specific FPGA and its
comparison with mesh-based application specific FPGA,” In
Microprocessors and Microsystems, (2012). 36(8), pp 588-605.
doi:10.1016/j.micpro.2012.06.012

[26] H. Parvez, Z. Marrakchi, A. Kilic, and H. Mehrez, “Application-
specific FPGA using heterogeneous logic blocks,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), (2011) 4(3),
pp 1-14. doi:10.1145/2000832.2000836

[27] U. Farooq, H. Parvez, H. Mehrez, and Z. Marrakchi, “Exploration and
optimization of a homogeneous tree-based application specific
inflexible FPGA,” Microelectronics Journal, 2013, 44(12), pp 1052-
1062. doi:10.1016/j.mejo.2012.12.010

[28] M. M. Iqbal, H. Parvez, and M. Rashid, “Multi-Circuit”: Automatic
generation of an application specific configurable core for known set
of application circuits,” Journal of Circuits, Systems and
Computers, 2016, 25(09), 1650102. doi:10.1142/S0218126616501024

[29] M. M. Iqbal, H. Parvez, “Optimizing routing network of shared
hardware design for multiple application circuits,” In 2017 First
International Conference on Latest trends in Electrical Engineering
and Computing Technologies (INTELLECT) (pp. 1-4). IEEE.
doi:10.1109/INTELLECT.2017.8277646

[30] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J. P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P.
Patros, J. Luu, K. B. Kent, V. Betz, “VTR 8: High performance CAD
and customizable FPGA architecture modelling,” ACM Transactions
on Reconfigurable Technology and SystemsVolume 13 Issue 2 June
2020 Article No.: 9 pp 1–55. doi:10.1145/3388617

[31] K. S. McElvain, “Benchmark Set: Version 4.0,” MCNC International
Workshop on Logic Synthesis, 1993. doi:10.1.1.49.591

[32] P. Jamieson, K. B. Kent, F. Gharibian, L. Shannon, “Odin II - An
open-source verilog HDL synthesis tool for CAD research,”
in: 2010 18th IEEE Annual International Symposium on Field
Programmable Custom Computing Machines, 2010, pp. 149–156.
Berkeley Logic Synthesis and Verification1 Group, ABC: A System
for Sequential Synthesis and Verification.
doi:10.1109/FCCM.2010.31

[33] R. Brayton, A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” In: Touili T., Cook B., Jackson P. (eds) Computer
Aided Verification. CAV 2010. Lecture Notes in Computer Science,
vol 6174. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-
14295-6_5

[34] V. P. Correia, A. I. Reis, Classifying n-input Boolean functions, VII
Workshop Iberchip. doi:10.1.1.734.9856

[35] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K.
Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, et al., “VTR 7.0:
Next generation architecture and CAD system for FPGAs,” vol. 7,
ACM Transactions on Reconfgurable Technology and Systems
(TRETS), 2014. doi:10.1145/2617593

 24

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:43:49 (UTC) by 3.89.200.155. Redistribution subject to AECE license or copyright.]

