
Advances in Electrical and Computer Engineering                                                                      Volume 22, Number 3, 2022 

Exploring FPGA Logic Block Architecture for 
Reduced Configuration Memory  

Fasahat HUSSAIN1, Muhammad Mazher IQBAL1, Husain PARVEZ1, Muhammad RASHID2  
1Karachi Institute of Economics and Technology, 75190, Pakistan 

2Umm Al Qura University, Saudi Arabia  
mazher.iqbal@kiet.edu.pk 

 
1Abstract—The reduction of reconfiguration delay, during 

the partial dynamic reconfiguration of FPGAs, is important. In 
this context, the bitstream compression technique is one of the 
widely used techniques. These compression techniques only 
minimize the size of the bitstream whereas the actual 
configuration memory size on FPGA remains the same, which 
consumes area as well as power. Therefore, alternative 
techniques are required to decrease area and power 
consumption along with the reconfiguration delays. This work 
optimizes the configuration memory requirements in the 
Configurable Logic Block (CLB) of FPGA with SRAM table 
sharing technique. The SRAM table of a Look-Up-Table (LUT) 
is shared with one or more LUTs in the same CLB by 
employing Negation-Permutation-Negation (NPN) 
classification. Furthermore, the relevant CAD tools are 
modified to explore the heterogeneous degree of SRAM table 
sharing within a CLB. For validation, extensive explorations 
are performed on the 20 largest MCNC benchmark circuits. It 
has been found that the configuration memory requirements of 
LUTs are reduced by 30% while retaining the same area, 
occupancy, and delay. Moreover, it can be further reduced by 
50% provided that the FPGA occupancy is allowed to increase 
by only 15% while retaining the same delay. 
 

Index Terms—clustering algorithms, field programmable 
gate arrays, programmable logic arrays, reconfigurable 
architectures, reconfigurable logic. 

I. INTRODUCTION 

Modern Field Programmable Gate Arrays (FPGA) 
architectures have considerably evolved after they were 
introduced almost four decades ago [1]. The internal 
architecture of an FPGA is composed of two major 
configurable portions: logic blocks and routing resources. 
The logic blocks are configured to map the logic 
functionality of a given circuit, while the configurable 
routing resources establish some appropriate connections 
between the logic functionality. The basic logic element of a 
FPGA is still a Static Random Access Memory (SRAM) 
based Look Up Table (LUT). However coarse-grained 
blocks (such as memories, adders with carry chains, 
multipliers and advanced routing architectures) have 
increased the overall FPGA’s complexity [2]. 

For example, the commercial logic elements are modified 
to improve the efficiency of complex arithmetic functions 
by using hard adders, carry chains and fracture-able LUTs, 
along with the corresponding modifications and restrictions 
imposed on the CAD (Computer-Aided Design) tool 
algorithms [3]. Moreover, there are specialized logic block 
design efforts to optimize application-specific domains such 

as deep learning inference 

 
 

[4], low precision multiply and 
accumulate operations [5] and self-repairing hard arithmetic 
blocks [6]. Furthermore, multiplexers are added to allow the 
creation of wider functions. 

In addition to the efficiency of complex arithmetic 
functions and specialized logic block design, LUTs can also 
act as small storage elements such as bit memories [7]. The 
LUT architectures have evolved to support faster arithmetic 
operations and now include carry logic to support cascaded 
addition. The flip flop, which is always an integral part of a 
BLE (Basic Logic Element), now allows connectivity from 
external inputs, internal carry or the LUT itself. 

Similarly, other integral parts of FPGA architecture are 
memory blocks, digital signal processing and multiplier 
blocks with flexible connections. Additionally, the dynamic 
partial reconfiguration is now a standard feature of modern 
FPGAs that allows a run-time reconfiguration of partial 
bitstream on selected regions of FPGA [8]. 

SRAM-based FPGAs are widely used due to their 
flexibility, speed and ease of fabrication in Complementary 
Metal Oxide Semiconductor (CMOS) process technology 
[9]. Despite the increasing complexity of logic blocks in 
SRAM-based FPGA architecture; it has been shown that 
they occupy only 10-20% of the total FPGA area, whereas 
almost 80-90% of the area is occupied by the configurable 
routing resources [3]. Therefore, the reduction of 
reconfiguration overheads in SRAM-based FPGAs is an 
interesting research problem and is being explored 
extensively [10]. Moreover, the adoption of non-volatile 
memory such as Flash memory or Anti-Fuse [11] in FPGAs 
is another direction for the practitioners and researchers of 
this domain [12-13]. 

A. Related Work 
Since the inception of FPGAs in 1985, the quest to find 

the most efficient logic element is extensively explored. 
Traditionally, the LUT sizes for the best area-delay product 
are 4-6 with 4 better for the area and 6 appropriate for delay 
[11], [14]. More recently, it has been shown that the 
performance of FPGAs can be improved through the 
adoption of a 7-input logic block that is constructed using 
two 4-input logic blocks [15]. There have been several other 
contributions to improve the area, delay and configuration 
memory requirements of logic modules [16–19] which are 
briefly described below: 

The COGRE logic block [16] is a compactly organized 
gate-based (AND, OR and NOT) reconfigurable element 
that can map large portions of logic functions. It is generated 
by using frequently used NPN equivalence class functions in 
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a benchmark circuit. The results for the 6-input COGRE 
cell, when compared with 6-LUT, reveal a reduction of 46% 
area and 32% configuration memory cells at the expense of 
a 7% increase in the delay. The major drawback of this 
approach is that the COGRE cell, optimized for one set of 
benchmark circuits, might not perform better for other 
benchmark circuits. 

To address the flexibility issues, observed in COGRE 
logic blocks, the And-Invert-Cones [17] provide a better 
compromise between programming flexibility, area, delay as 
well as a total number of inputs and outputs. It is composed 
of And gates and Not gates which are grouped in the form of 
cone-like sub-graphs. Furthermore, the corresponding 
synthesis and technology mapping algorithms are modified 
for application mapping. Experimental results in [17] reveal 
a 22-32% reduction in delay and 16% reduction in area. 
Another flexible solution, known as the Scalable Logic 
Module (SLM) [18], uses Shannon expansion to break down 
a k-input function into a smaller partial (k-1) functions. It 
employs a smaller-sized LUT, along with some additional 
logic, to improve the area and configuration memory 
requirements. Experimentation in [18] shows a reduction of 
20% and 33% in area and configuration memory cells, 
respectively, with an increase of 12% in the critical path. 

In addition to the flexible and scalable approaches of [17] 
and [18], the NPN equivalence class approach is presented 
in [19–22]. The core idea in NPN equivalence is to share 
SRAM memory tables across LUTs in CLBs. The NPN 
classification describes a feature of synthesis, where the k-
input combinatorial Boolean functions are implemented 
using the same circuit with few modifications provided that 
they share the same class. By using the same class functions, 
the SRAM tables are shared across ’M’ such LUTs where 
’M’ is the degree of sharing. The degree of sharing 
determines how many LUTs share a single SRAM table 
within a single CLB. Synthesized Boolean functions, 
targeted for the k-input LUT having the same NPN class, are 
mapped on LUTs sharing the same SRAM tables. 
Additional storage bits are needed for the negation of inputs 
and output; however, the overall SRAM memory cells are 
reduced. 

The SRAM table sharing technique is initially proposed 
for LUT-4 in a CLB of FPGAs [19]. Later, the same idea is 
extended to work with higher LUT inputs such as LUT 4-7 
in CLB architectures with 2-4 LUTs sharing a single SRAM 
table [20-22]. Moreover, the area gains of 6-7% are reported 
with no effect on delay. Furthermore, application-specific 
FPGA architectures have also shown some reduction in the 
area after deploying the same idea of SRAM table sharing 
[23]. Such as, application-specific inflexible FPGA (ASIF 
[24]) is an application-specific FPGA architecture employs 
SRAM Table sharing technique in its logic blocks for the 
reduction of the total area and reconfiguration time. ASIF’s 
other variants are proposed in [25-29].             

B. Research Gap and Contribution 

Despite the significant contributions of previous works on 
SRAM table sharing using the NPN equivalence class 
approach [19-22], three aspects remain unexplored. These 
three aspects may reveal a further reduction in area and 
configuration memory requirements. The first major aspect 

that needs to be explored in SRAM table sharing is to 
analyze the effect of a higher degree of sharing in a CLB. It 
implies that it is important to investigate the maximum 
number of LUTs in a single CLB that can share a single 
SRAM table without degrading the area and delay 
parameters. Secondly, the effects of a heterogeneous degree 
of sharing are required to be analyzed. It implies that a 
single CLB may have multiple SRAM tables and may have 
a varying degree of sharing. Finally, investigating the 
impact of SRAM table sharing on reducing the number of 
configuration cells is critical. No previous work on the 
SRAM table sharing technique has explored these three 
aspects. Therefore, a more extensive exploration along with 
the modification of CAD tools is required to achieve the 
above-mentioned objectives. 

The key technical contributions of this work include the 
following: 
 Explore CLB architecture with a higher and 

heterogeneous degree of SRAM table sharing: An 
SRAM memory table is explored to be shared 
between 2-16 LUTs in the same CLB (i.e., a higher 
degree of sharing). Similarly, a CLB may consist of 
multiple shared SRAM tables having a different 
degree of sharing (i.e., heterogeneous degree of 
sharing). 

 Modification of CAD tools to support a higher and 
heterogeneous degree of SRAM table sharing: 
Changes in the clustering algorithms are proposed to 
support applications mapping on the new 
architecture. 

 Exploration for reduced SRAM memory 
requirements: Experiments are performed to explore 
CLB architectures with reduced SRAM memory 
requirements with or without compromise on area 
and delay. 

The aforementioned contributions are achieved by 
representing the proposed CLB architectures in VTR 
(Verilog-To-Routing) [30] and the corresponding 
modifications are performed in associated CAD algorithms. 
The validation is performed with MCNC (Microelectronics 
Center of North Carolina) benchmark suites [31], which are 
frequently employed for the evaluation of the newly 
proposed architectures. Consequently, the results are 
explored for the area, delay and configuration memory 
requirements of LUTs. The exploration has been performed 
in two different ways: (1) compromising the area and delay 
parameters, and (2) without compromising the area and 
delay parameters It has been concluded that CLBs with both 
higher and heterogeneous degrees of sharing have shown 
best-compromised results. It implies that with a slight 
compromise in area, the configuration memory requirements 
can be significantly reduced. This reduction in configuration 
memory can significantly reduce the reconfiguration times 
of the FPGA. Our current work focuses only on the SRAM-
table sharing in logic blocks without carry chain logic. In 
our future work, we will consider testing this approach on 
LUTs with carry chain logic. The core methodology and 
technique, however, will not change. But, we need to 
investigate how the carry chain logic affects the remaining 
netlist's SRAM table sharing. 

The rest of this article is organized as follows: Section II 
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provides the necessary background information about FPGA 
architectures, the CAD toolchain that is used to program the 
FPGAs, and the NPN classification technique which is the 
basis for SRAM table sharing. Section III presents the 
proposed modifications in CLB architecture and the 
corresponding CAD tools. Section IV presents the 
experimental setup and obtained results. Finally, the article 
is concluded in Section V. 

II. BACKGROUND 

This section presents the fundamentals of internal FPGA 
Architecture in Section II (A). Subsequently, an appropriate 
background on the VTR CAD tool and NPN classification 
technique is presented in Section II (B) and Section II (C), 
respectively. 

A. FPGA Architecture 

The internal architecture of FPGA is composed of two 
main portions, 1) configurable logic blocks and 2) 
configurable routing resources. A mesh-based FPGA is 
composed of a two-dimensional array of logic blocks that 
are connected through configurable routing resources. The 
logic blocks can be configured to map the logic functionality 
of a given circuit. Similarly, the configurable routing 
resources create connections between the logic functionality 
using uni-directional, single driver routing channels. A CLB 
comprises a single basic logic element (BLE) or multiple 
BLEs connected through a programmable cross-bar. A BLE 
consists of a K-LUT, a Flip-Flop (FF) and a Multiplexer 
(MUX). A LUT is constructed with multiplexers and 
memory cells. The number of memory cells in each LUT is 
related to the number of inputs of a LUT. For example, a K-
input LUT (LUT-K) has 2k memory cells and can implement 
the truth table of the K-variables Boolean function. 

B. VTR Design Tool 

The VTR CAD tool [30] represents different FPGA 
architectures in the form of data structures. It is used to 
transform an application circuit from a high-level register 
transfer level (RTL) definition to a connected list of 
CLBs/IOs which is then mapped onto an FPGA architecture 
representation such that the area, delay and power results are 
reported to evaluate the effectiveness of the FPGA 
architecture. As a first step, the ODIN tool [32] synthesizes 
a high-level Verilog description to a connected list of 
components, belonging to a standard cell library, which 
includes the definitions of basic logic gates and flip-flops. 
Subsequently, the technology mapping tool (named ABC 
[33]) converts the netlist of standard cells to a connected list 
of LUTs and flip-flops. Similarly, the packing algorithm 
(TV-Pack [23]) clusters the corresponding LUTs and flip-
flops to form a connected netlist of CLBs. Furthermore, a 
placement module places the CLB and IO instances of a 
netlist to CLBs and IOs of the FPGA [34]. Moreover, a 
routing module routes all the nets of a netlist on the FPGA 
routing resources [34]. Finally, the bitstream is generated by 
using the information provided by the technology mapping, 
placement and routing module of the VTR CAD flow. 

C. NPN Classification 

The concept of NPN equivalency is defined as: two 
functions, say f and g, are considered NPN equivalent, if one 

can be derived from the other by negating (N) and/or 
permuting (P) some/all of the inputs and/or by negating (N) 
the outputs. These two functions are then called NPN 
equivalent as they have the same NPN class. The NPN 
classification technique is utilized to categorize a larger 
number of functions into a smaller set of NPN classes. For 
n-inputs, there are 2exp(2n) distinct possible representations of 
Boolean functions.  

The Boolean space grows very rapidly as the number of 
inputs increases. However, the number of NPN classes 
reduces the huge space to a smaller set of unique functions. 
For example, a 4-input LUT supports 22n = 65536 possible 
functions, while these are classified into 222 distinct NPN-
equivalent classes only. It is relevant to mention that no 
formula can be given for the number of distinct functions. 
However, [35] provides more details about NPN 
classification. Furthermore, the functions belonging to the 
same NPN class can be represented through the same 
bitstream values provided that there is an option to negate 
(N) and/or permute (P) the inputs, and/or negate (N) the 
outputs. Consequently, the number of SRAMs in the LUTs 
can be reduced by sharing the SRAM table between two or 
more LUTs. 

The work in this article uses the NPN class information 
similar to the approach followed in [21]. The ABC synthesis 
tool synthesizes the given benchmark logic functions for a 
k-input LUT into k-input Boolean functions. The 
corresponding class information is also given as output for 
each of the synthesized Boolean functions. The modified 
LUT and the CLB architecture, along with the 
corresponding CAD tools to support an NPN mapping, are 
discussed in Section III. 

 
Figure 1. Configurable Logic Block with 4 BLEs and 1shared group with a 
degree of sharing=2 

III. PROPOSED CLB ARCHITECTURE EXPLORATION AND 

CAD FLOW 

This section presents the changes required for the 
exploration of CLB architecture in Section III (A). The    
proposed architectural modifications need to be harnessed 
through proper changes in the clustering algorithm of 
corresponding CAD tools. Therefore, Section III (B) 
presents the necessary changes in the clustering algorithm. 
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A. Modified CLB Architecture 

An example of two LUTs, sharing a single SRAM table, 
is shown in Fig. 1 which represents a configurable logic 
block with 4 LUTs. The four inputs of each LUT are 
connected with a crossbar which connects the global inputs 
and outputs to individual inputs of the LUT. Two LUTs 
named (a) and (b) in Fig. 1 are connected with their 
corresponding SRAM tables, each having 16 SRAM cells. 
However, the LUTs named (c) and (d) are sharing a single 
SRAM table which is termed as a single group with a degree 
of sharing=2. 

The concept of NPN classification eases the 
implementation of similar NPN class combinatorial 
functions using the same circuit using the optional negation 
of input and output or permutation of inputs. Consider three 
basic examples: 
Example 1: Consider the functions f1 = a b’ and f2 = a’b, 
they are P-equivalent, i.e., one function’s inputs can be 
swapped to implement the other function using the same 
gate. 
Example 2: Consider the functions f1 = ab + c and f2 = a’c’ 
+ b’c’. If f1 is inverted we get, (ab+c)’ = (ab)’c’ = (a’ + b’) 
c’ = a’c’ + b’c’ (using de Morgan’s Theorem); the other 
function f2 is inverted output of f1. 

As we see, there may be cases where the function inputs 
or outputs may be negated or inputs permuted and share the 
same logic circuit. The Complementary Negation (CN) 
circuitry is an addition to the shared BLE, but its usage is 
solely dependent on the mapped Boolean functions. As you 
can in example 2, the f2 function is derived by negating the 
output of f1. It is a simple output negation in this example 
and is only achieved by CN logic. However, P-equivalent 
functions do not need CN logic (Example 1). Therefore, if 
there are 4 BLE(s) in a shared LUT mode, three of the 
BLE(s) will have the CN module to implement the same 
NPN class functions, while the one BLE will be directly 
implementing the Boolean function with no NPN 
requirements, no input or output negation. 

The optional CN circuit slightly increases the delay; 
however, the critical path delay can be mitigated by shifting 
the critical logic functions onto the LUTs without CN gates.  

B. Proposed Modifications in Clustering Algorithm 

The clustering algorithm in VTR [35] is modified to 
cluster various logic elements of the user circuit based on 
their class information. Under the standard scenario (without 
any modifications), the clustering algorithm uses an 
attraction function to group the closely connected logic 
elements and place them in the current CLB. The same 
process is repeated till all the logic elements are placed 
inside a CLB. In this article, the normal clustering algorithm 
is modified to incorporate the class information for packing. 
In other words, the T-VPACK clustering algorithm in VTR 
is modified to obtain an input blif file, representing the user 
circuit and the class information of each Boolean function in 
the user circuit. 
1) Basic Principle 

Modifications are made to cluster the Boolean function 
based on their NPN class information and the attractive 
function. The clustering algorithm uses a cost function 
(named as an attractive function) to find out which logic 

blocks need to be clustered together based on wire length 
and delay. The goal is to decide if the random BLE 
placement is good enough based on the reduction in the cost 
function for the possible move, else the move is rejected. 
Based on the occupancy of the current CLB, and the sharing 
status of BLEs, the incoming Boolean function may or may 
not be accommodated in the current CLB. If the SRAM 
table of a BLE is shared with one or more BLEs, all of the 
shared BLEs can map only the same class function. As 
Boolean functions get mapped into a CLB, the available 
unoccupied BLE(s) in the CLB are either tagged as shared 
or unshared.  

 
Figure 2.  Clustering algorithm 

 
The unshared BLE(s) can still get any Boolean function. 

However, the available shared BLE can only accept the 
same class function. This may leave CLB(s) partially 
mapped if the next function is not one of the classes already 
mapped. If the incoming Boolean function is rejected based 
on the class information, a newer function along with the 
corresponding class information is evaluated by the 
attractive function. Thus, the clustering algorithm works 
iteratively to map all the Boolean functions onto the CLB(s). 
It is important to note that the modified clustering algorithm 
maintains few dynamic queues to keep track of shared and 
unshared LUTs within a CLB. These queues include the 
class queue (CQ) and class count queue (CCQ) to keep track 
of the number of shared and unshared LUTs occupations. 
The shared CQ and shared CCQ allow users to try a 
combination of one or more shared LUTs (2,3,4). These 
queues allow the incoming class function to be mapped to 
the shared LUT among N LUTs for the current CLB 
provided the incoming class matches the one in the shared 
queue. 
2) Flow Chart for Clustering Algorithm 

The modified T-VPACK algorithm that deals with the 
grouping of BLEs, based on their class information, is 
depicted through a flow chart in Fig. 2. The flow chart in 
Fig. 2 can be explained with a simple example. Consider 
that there are 16 LUTs in each CLB of an FPGA. Each CLB 
has a few shared LUTs and a few non-shared LUTs. The 
class CQ and class count queue CCQ are initially empty, as 
no functions have been mapped onto LUTs. The first 
incoming function can be mapped to any LUT. However, 
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the subsequent incoming function is mapped according to 
the shared and non-shared LUTs rules. As an example, 
consider three different degrees of sharing (2, 3 and 4). It 
implies that 2 LUTs share a single SRAM, 3 other LUTs 
share a single SRAM and 4 other LUTs share a single 
SRAM. Consequently, the total number of unshared LUTs 
with their corresponding SRAMs is 16-(2+3+4) = 7. 
 

TABLE I. MCNC NETLISTS FOR LUT-6, CLUSTER-SIZE 16 

Index Netlist Number FPGA Min Channel 
 Name of CLBs Size Width* 

     

1. pdc 228 16x16 76 

2. ex5p 48 7x7 50 

3. spla 191 14x14 78 

4. apex4 61 8x8 68 

5. ex1010 197 15x15 78 

6. frisc 185 14x14 90 

7. apex2 93 10x10 50 

8. seq 83 10x10 52 

9. misex3 75 9x9 42 

10. elliptic 134 12x12 68 

11. alu4 74 9x9 34 

12. des 35 6x6 38 

13. s298 83 10x10 40 

14. bigkey 43 7x7 34 

15. diffeq 55 8x8 46 

16. dsip 43 6x6 36 

17. tseng 50 8x8 80 

18. clma 390 20x20 94 

19. s38584.1 306 18x18 54 

20. s38417 238 16x16 48 
     

 
The clustering algorithm assigns the first LUT to the 

incoming Boolean function. For the second function of the 
same class, the function gets mapped to the same LUT. 
However, if the second function has a different class than 
the first, it gets mapped to a new LUT. Similarly, for all the 
next new functions, the class information is checked. If the 
new function matches and the shared count is greater than 1, 
it indicates a shared class. Subsequently, the shared count is 
checked to see if it does not exceed 4, 3 or 2 in this example. 
If it does not match any of the mapped LUTs’ classes, the 
newer function is mapped to an unmapped LUT. At any 
time, the counts of shared and unshared LUTs are 
continuously checked according to the given CLB 
configuration.  

Finally, if all the unshared LUTs are mapped and shared 
LUTs are partially full and a new Boolean function of a new 
class does not happen to be any of the shared LUTs classes, 
it is rejected back to the FPGA mapping requestor. As it is 
evident, the shared slots requires tracking to ensure same 
class goes in the shared slot and it’s count does not exceed 
the sharing configuration, a list and its count is maintained 
for each shared slot. The mapper also ensures the N-BLE 
CLB count is not exceeded. Once all N- BLE(s) are mapped, 
the next empty CLB is then mapped. 

It is important to note that there may be a higher number 
of rejections in a high degree of sharing which compel 
CLBs to remain partially mapped. The partial mapping of 
CLBs decreases the packing efficiency as compared to the 

case where CLBs get close to fully mapped. Higher 
rejection rate, i.e., the ratio of total rejections to total 
acceptances, results in more CLB usage thereby increasing 
the total FPGA area compared to the case where the 
rejection rate is small or none. It is therefore necessary to 
apply a range of digital circuits, from various benchmark 
test case suites, to validate the new architecture and compare 
the obtained results with existing architectures. The 
validation results of the new architecture, along with its 
comparison, are presented in Section IV. 

IV.  EXPERIMENTATION DETAILS 

The experimental setup, required to test our architecture, 
consists of running the FPGA VTR tool on a given 
benchmark test. The resulting run log provides details of all 
the corresponding consumed resources in mapping digital 
logic circuits onto FPGA. However, the resources of interest 
in our exploration include the number of occupied CLB(s), 
the logic and routing area for a particular netlist, the delay 
and configuration memory requirements. 

A. Benchmark Circuits 
Several benchmark suits are used to test out different 

possibilities of Boolean functions for a k-input LUT. One of 
the commonly used, having a mix of combinatorial and 
sequential logic, is the MCNC benchmark suite [31]. The 
MCNC suite of benchmarks, as shown in Table I, is used to 
evaluate the efficiency of the suggested architecture. To 
summarize, there are 20 test cases in all, 7 of them are pure 
combinatorial logic circuits while the remaining 13 also 
involve sequential circuits. The MCNC netlists are 
synthesized with LUT-6 and have 16 BLEs in a single CLB 
cluster. Table I shows the number of CLBs, FPGA 
dimensions and the minimum channel width required for 
each netlist as shown in column 3, column 4 and column 5, 
respectively. 

  
TABLE II. CONFIGURATIONS FOR DEGREE OF SHARING INSIDE A CLB  
S.No Homogeneous degree SNo Heterogeneous degree

 of sharing  of sharing 
1 [21111111111111] 27 [633211] 
2 [2211111111111] 28 [6541] 
3 [222111111111] 29 [75211] 
4 [222211111111] 30 [6433] 
5 [22222111111] 31 [533221] 
6 [2222221111] 32 [75211] 
7 [222222211] 33 [6433] 
8 [22222222] 34 [3332221] 
9 [31111111111111] 35 [64321] 
10 [331111111111] 36 [6541] 
11 [3331111111] 37 [4322211] 
12 [33331111] 38 [652111] 
13 [333331] 39 [74221] 
14 [4111111111111] 40 [533221] 
15 [4411111111] 41 [73321] 
16 [4441111] 42 [7711] 
17 [4444] 43 [65221] 
18 [511111111111] 44 [4432111] 
19 [55111111] 45 [55411] 
20 [5551] 46 [743] 
21 [61111111111] 47 [6442] 
22 [661111] 48 [6541] 
23 [7111111111] 49 [772] 
24 [7711] 50 [652111] 
25 [811111111] 51 [6532] 
26 [88] 52 [44332] 
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Figure 3. Experimentation results for the netlist named PDC

B. Exploration of a CLB Architecture 

This work explores the sharing of an SRAM memory 
table between 2-8 LUTs in the same CLB, i.e., the degree of 
sharing is varied between 2 to 8. Similarly, a CLB may 
consist of multiple shared groups having a different degree 
of sharing (i.e., the heterogeneous degree of sharing). For a 
CLB with 16 BLEs, an exhaustive search yields 228 
different sequences, containing a degree of sharing from 2 
to8. Table II lists some of the 228 configurations used to 
map the benchmark circuits onto a CLB size of 16 BLE(s). 

The first type of sharing consists of a homogeneous 
degree of sharing where a CLB consists of some shared 
BLEs with the same degree of sharing along with some 
unshared BLEs. The homogeneous degree of sharing is 
shown in S.No 1-26 of Table II. For example, the 
configuration [4 4 4 1 1 1 1] refers to a CLB with three 
sharing cases (shown as 4, 4, 4). In each sharing case, 4 
LUTs share the same SRAM table. The remaining four 
LUTs are not shared (1, 1, 1, 1). Therefore, the CLB utilizes 
only 7 SRAM tables instead of 16. 

In addition to the homogeneous sharing, another type of 
sharing consists of heterogeneous degrees of sharing i.e., a 
CLB may consist of shared cases with different degrees of 
sharing. Table II shows a few CLB configurations having a   
heterogeneous degree of sharing (from S. No 27-52). The 
idea to explore these different CLB architectures is to find 
the best combination in terms of FPGA area, critical delay, 
and/or configuration memory count. The Area-Delay 
product is used to find an optimal architecture. 

To find the best generic FPGA architecture with SRAM 
table sharing, experiments are performed in three steps.  
 Experimentation is performed for individual netlists 

where the FPGA architecture is tailored concerning 
individual netlists (Section IV (C)). 

 The average results for all the netlists are analyzed 
(Section IV (D)). 

 Experimentation is performed on fixed FPGA 
configurations and average results are reported for all 
netlists (Section IV (E)). The reference configuration 
is the non-shared case, where each of the sixteen  

 
BLE(s) has its own LUT, thus allowing maximum 
mapping flexibility to the incoming LUT function of the 
benchmark. This non-shared case is used as a baseline 
value to find the changes in various design parameters for 
a shared case. The respective percent change concerning 
the non-shared case is calculated and the most negative 
ones suggest that the sharing sequence architecture yields 
the best results. 
The sharing sequences suggest savings of SRAM(s) and 

consequently the logical area as the degree of sharing is 
increased. However, this saving is consistent for any netlist 
that is mapped onto a LUT sharing architecture. As an 
example, a sequence of [6 3 3 2 1 1], implies six LUTs share 
a single SRAM in the first shared group, three LUTs share 
another SRAM, another three LUTs share another SRAM, 
two LUTs share a single SRAM, and remaining two LUTs 
don’t share any SRAM. Each shared SRAM table saves the 
overall area and configuration memory count of the CLB; 
however, additional CN cells need to be incorporated at the 
inputs and output of LUT. In the context of the overall 
FPGA area, the apparent tremendous gains per CLB 
provided by reduced SRAM usage, is a tiny part of the 
overall logical area, as interconnect memory also consumes 
a large part of the logical area. 

C. CLB Architectures for Individual Netlists 

As a first step, each netlist is mapped onto the FPGA for 
228 different CLB configurations using the VTR tool. The 
FPGA dimensions and channel width are varied for each 
netlist. The 130nm custom architecture file is adjusted for 
the delay variations due to extra inputs and outputs required 
for CN logic, as the logic delays of CN logic are measured 
for the 150nm process node using Cadence Virtuoso. The 
VTR logs are examined to analyze the number of CLB(s), 
the size of the FPGA, the critical path delay, the routing and 
logical area, and the number of configuration memories. 

Consequently, Fig. 3 shows the results for one such netlist 
named PDC. This figure shows six sub-graphs. The x-axis 
of all the sub-graphs plots 229 different CLB configurations 
with the first configuration as the non-shared CLB. The y-
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axis of the six sub-graphs respectively represents SRAM 
tables saved, number of CLBs utilized by the netlist, critical 
path delay of the netlist, change in delay, change in the area, 
and change in area/delay product. Based on these results, a 
few CLB configurations as discussed in Table II are 
selected, which provide better results for each netlist. 

An important aspect of the ineffectiveness of large SRAM 
savings is the same NPN class requirement of the target 
netlist. This is an unknown sequence; therefore, we see that 
for all bench-marks, the number of CLB(s) used to map the 
netlist increases as the degree of sharing increases, thus 
confirming the random unpredictable nature of class 
sequence for a netlist. As an example, please see Fig. 3 for 
the high CLB usage as the sharing increases from left to 
right on the x-axis for the pdc benchmark. The minimum 
CLB usage for this benchmark is 230 and it grows to 1715 
for the degree of sharing equal to 16, which is the best 
SRAM saving but turns out to be the worst in terms of CLB 
usage.  This increases the overall FPGA grid size, thus 
impacting the Area-Delay Product graph as well. As the 
FPGA size increases, the logical and routing area also 
increases, and the total area shows a steady increase with 
increasing the degree of sharing. 

 

 
Figure 4. Average results for different CLB configurations 

 
The critical path delay shows a random pattern instead, 

suggesting there are some sequences for the degree of 
sharing which have a critical path as low as the unshared 
case, showing the effectiveness of the sharing technique. 
The Area-Delay Product, a transistor technology-
independent value, is commonly used to evaluate one 
architecture gain against another. When the value is low, the 
architecture is considered better for the area and/or delay for 
the same benchmark circuits. The corresponding graph 
confirms that there are sequences for which one can achieve 
the same area delay product with lower LUT SRAMs. The 
class distribution of NPN classes in the 20 benchmark suite 
is wide and random enough to analyze FPGA mappings 
across various FPGA architectures. The obtained results 
confirm that the variations of NPN class frequency in 
different benchmark circuits are broad enough to get one 
sharing sequence in minimum percentage for the Area-
Delay Product parameter. 

D. Average Results for all Netlists 

To get a meaningful result that does not get skewed by 
one benchmark or another, the average of the calculated 
parameters is computed for all twenty benchmarks. The 

resulting plot in Fig. 4 shows the average percentage change 
in the total area on the y-axis whereas the required number 
of SRAM tables for the few best from 229 different CLB 
configurations is shown on the x-axis.. The total area 
deviation of CLB remains close to zero when SRAM tables 
are reduced from 16 to 10. As the SRAM table savings are 
further reduced to 7, only a 20% increase in the area is 
reported. However, as the SRAM tables are further reduced 
below 7, the area increases at an exponential rate. Hence, it 
can be deduced that by using SRAM table sharing, a CLB 
cluster with 16 BLEs needs to have only 10~7 SRAM 
tables, which incurs an area compromise of 0~20%, 
respectively with configuration memory improvement in the 
logic block from 38~56% and negligible effect on delay. 

E. Results on Fixed Sized FPGA 

As a third step, the fixed-sized FPGA with fixed channel 
width is constructed for the selected CLB configurations 
obtained from the previous experiments. By selecting a 
fixed-sized FPGA, the effect of new CLB architectures can 
be viewed on the occupancy of the FPGA for each netlist. 
This scheme will give a true effect if the proposed 
architecture is to be included in a commercial FPGA. The 
fixed-sized FPGA is constructed by including the maximum 
number of CLBs and the maximum channel width required 
by any of the netlists. 

The netlist results for the fixed-sized FPGAs are reported 
in Table III. It shows the ten best CLB configurations 
having SRAM tables with different degrees of sharing. The 
first column shows the CLB configuration with the 
corresponding degree of sharing. The number 1 in the CLB 
configuration represents that a single SRAM table is 
connected with a single BLE. Similarly, 2 mean that a single 
SRAM table is shared with two BLEs and so on. Each of the 
ten CLB configurations has a total of 16 BLEs, but the 
number of SRAM tables varies for each configuration. 
Therefore, the first row with 16 ones represents the 
reference CLB architecture. The "Total SRAMs" used in 
each CLB configuration, and the "Percentage SRAM 
saving" are reported in the second and third columns, 
respectively. The "Occupancy" column represents the 
average number of CLBs on the FPGA occupied by all the 
circuits in the benchmark. Similarly, the "delay" column 
represents the average delay for all the netlists. The 6th and 
7th columns report the true number of SRAM tables used, 
and their percentage gain concerning the reference CLB 
architecture. As the percentage occupancy increases for 
CLB configurations having smaller  number of SRAM 
tables, the total SRAM tables concerning occupancy 
(column 6) is higher than the SRAM savings reported in "% 
SRAM saving" (column 3). 

The first row in Table III shows the reference CLB 
configuration, while the results in SRAM savings (column 
3) and True SRAM savings (column 7) are compared with 
their respective values in the first row. The following major 
conclusions can be drawn from Table III: 
 Effects of reduced SRAM tables on occupancy: It 

should be noted that as the total SRAM tables are 
reduced for different CLB configurations (shown in 
column 2), the CLB occupancy on the FPGA 
increases (shown in column 4).
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TABLE III. AVERAGE MCNC RESULTS ON FIXED-SIZED FPGA 
CLB configuration shown 

w.r.t degree of sharing 
(1) 

Total 
SRAMS 

(2) 

% SRAMs 
Saving 

(3) 

Occupancy 
 

(4) 

Delay 
 

(5) 

Total SRAMs 
w.r.t occupancy 

(6) 

True % SRAM 
Saving 

(7) 
[1111111111111111] 16 00.0 103.1 5.46 1649 00.0 

[22222111111] 11 31.3 104.0 5.46 1144 30.6 
[2222311111] 10 37.5 106.6 5.59 1066 35.3 
[222331111] 9 43.7 110.1 5.31 991 39.9 
[33331111] 8 50.0 113.0 5.56 904 45.2 
[4441111] 7 56.3 119.3 5.55 835 49.3 
[445111] 6 62.5 129.6 5.52 778 52.8 
[67111] 5 68.7 149.1 5.41 745 54.8 
[6811] 4 75.0 173.8 5.60 695 57.8 
[781] 3 81.3 214.3 5.75 643 61.0 

 
However, the CLB occupancy gradually increased 
from 103.1 to 119.3 when the SRAM tables are 
reduced from 16 to 7. This amounts to only a 0.5% 
~15% increase in CLB occupancy of FPGA when 
SRAM tables are reduced to 11~7, respectively. The 
occupancy increases to 129.6 and 149.1 with further 
SRAM table reductions to 6 and 5. These reductions 
might be acceptable for few applications as the 
SRAM tables for these two cases have reduced by 
63% and 69% more reduction of SRAM tables down 
to 4 and 3 increases the occupancy to 173.8 and 
214.3. 

 Representation of true SRAM tables after 
considering the corresponding increase in 
occupancy: Column 3 in Table III shows the 
percentage reduction in SRAM tables for any CLB 
architecture. However, this is not the true gain, as a 
netlist is synthesized into more CLBs with reduced 
SRAM tables. In other words, a more realistic gain 
can be considered after considering the increase in 
CLB occupancy on the FPGA. Consequently, column 
7 in Table III represents the true percentage savings 
in the SRAM tables. 

 Effects of reduced SRAM tables on delay: As the 
SRAM tables in a CLB are reduced, each netlist 
occupies more CLB blocks on the FPGA which 
slightly increases the delay (as shown in column 4). 
However, for most of the cases, the increase in delay 
is well within 2.5%. Only the last two CLB 
configurations, with 4 and 3 SRAM tables, exhibit 
more skewed delays.  

 Effects of the higher and heterogeneous degree of 
sharing: The results in Table III show the CLB 
architecture with a degree of sharing up to 8. 
Moreover, a heterogeneous degree of sharing is also 
shown such that the degree heterogeneity is 
architecture with a degree of sharing up to 8. 
Moreover, a heterogeneous degree of sharing is also 
shown such that the degree of heterogeneity is 
restricted to maximum of two different types of 
sharing. The degree of sharing in each type is greater 
than 1. 

F.  Practical Design Netlists 

To measure the effectiveness of the proposed approach, 
three different sized more real netlists were tested with ten 
sets of SRAM sharing. The CLB consumption was varied 
for various sets of sharing. Compared to the non-shared
  

 
mode, the CLB consumption reduced in the shared mode for 
the first of the sharing sets for two of the three netlists. 
Overall, the logical area of the resulting FPGA was less than 
one in the non-shared mode for one netlist. Accordingly, the 
routing area also reduced, resulting in the total area 
reduction of 50%. Table IV shows the FPGA mapping 
parameter values for the three netlists in non-shared mode 
and shared mode (best sharing sequence selected in terms of 
least CLB consumption). Table IV lists the best mapping 
result for each of the three netlists in shared versus non-
shared mode. 

The given formula calculates the overall reductions in 
SRAM cells in the total size of FPGA. 
Number of SRAMs Reduced = [2k∗(d-1)∗N∗N]  
– [CN∗(d-1)∗N∗N]                                                              (1) 
where, k is the LUT input size, d is the degree of sharing 
and N is the size of FPGA whereas CN is the area of CN 
logic. 

G. Comparison with Previous Works 

This work can be compared with logic blocks proposed in 
COGRE [16], SLM [18] and previously proposed SRAM 
table sharing-based CLB architectures [21]. The 6-input 
COGRE cell [16] is 46% smaller and consumes 32% less 
configuration memory than a 6-input LUT. However, the 
delay increased by 6.96%. Furthermore, the COGRE cell is 
optimized for one set of benchmark circuits and might not 
provide optimized results for another benchmark circuit. 
Similarly, the 6-input SLM cell [18] is a generic logic block 
with a 52% smaller area and 58% less configuration 
memory than a 6-input LUT. However, the delay of the BLE 
has increased by more than 140%. After combining the 
SLM BLE into CLBs, and then placement and routing of the 
netlist, the overall increase in delay is recorded to be around 
12%. The 6-input shared SRAM table LUT proposed in this 
work (with 16 BLEs in a CLB using only 7 SRAM tables) is 
on average 25% smaller and consumes on average 55% less 
configuration memory than a standard 6-input LUT with a 
negligible effect on delay (i.e., around only 2%). 

  While comparing the higher and heterogeneous degree 
of sharing proposed in this work with the previous work in 
[21], it has been found that many groups of smaller degrees 
of sharing (2, 3, 4) work best as compared to the unshared 
case. A large degree of sharing provides relatively higher 
gains in terms of apparent SRAM savings, however, the 
mapping of application to FPGA(s) results in an abundant 
use of CLBs. This is due to the fact that a large number of 
LUT(s) may go unshared due to different classes of LUTs. 

This can be particularly noted in Table III where the CLB
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TABLE IV. FPGA MAPPING PARAMETERS FOR SHARED AND NON-SHARED MODES

XML Architecture 
File 

DSN N SHR CLB 
Blocks 

FPGA 
Size 

Channel 
Width 

Logical 
Area 

Routing 
Area 

Delay Total 
Area 

K6_N16_L4_130n
m.xml blob_merge_6 16 [1] 427 21 86 

18937100
.00 

4555060.00 11.76 23492160.
00 

K6_N16_L4_130n
m.xml blob_merge_6 16 [2 2 2 2 2] 444 22 90 

20783600
.00 

5446860.00 12.42 26230460.
00 

K6_N16_L4_130n
m.xml sha_6 16 [1] 156 13 58 

7257110.
00 

1271160.00 14.89 23736910.
00 

K6_N16_L4_130n
m.xml sha_6 16 [2 2 2 2 2] 152 13 58 

7257110.
00 

1271160.00 14.66 25771450.
00 

K6_N16_L4_130n
m.xml stereovision_6 16 [1] 21 5 26 

1073540.
00 

115557.00 3.84 26039660.
00 

K6_N16_L4_130n
m.xml stereovision_6 16 [2 2 2 2 2] 16 4 28 

687063.0
0 

79528.30 3.76 25771450.
00 

proposed in the last row termed as [7 8 1] requires only 3-
SRAM tables. However, the number of occupied CLBs has 
increased to 214%. Since the reconfiguration delay is 
directly proportional to the size of the bitstream (number of 
SRAMs to be written in an FPGA). We can safely comment 
that the reduction in SRAM count will eventually reduce the 
reconfiguration delay. This work has reduced the 
configuration memory of the logic blocks by 30~50%. 
However, the SRAMs of routing architectures are not 
reduced in this work. Hence the total reduction in 
reconfigurable delay of the FPGA is expected to be reduced 
by 10~18%. 

V.  CONCLUSION 

This work explores the impact of shared pairs and degree 
of sharing of SRAM table sharing technique on area, delay 
and configuration bitstreams of FPGA extensively using a 
previously proposed clustering technique. A single SRAM 
table is shared among various LUTs in a CLB by placing 
optional inverters at their inputs and output. Moreover, the 
corresponding CAD tools have been modified to support the 
clustering of NPN equivalent classes on LUTs with shared 
SRAM tables. The validation of the proposal has been 
performed with MCNC benchmark circuits. It has been 
found that a CLB cluster with 16 BLEs may require only 
10~7 SRAM tables. This saving in the number of utilized 
SRAM tables incurs an overall area reduction of 0~20%, 
38~56% in configuration memory cells of the logic blocks 
while having only a negligible effect on the overall delay. 
For future direction, the SRAM sharing technique also needs 
to be extended for fracturable LUTs. 
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