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1Abstract—Minimum mean-square error (MMSE) 

approaches have been shown to achieve state-of-the-art 
performance on the task of speech enhancement. However, 
MMSE approaches lack the ability to accurately estimate non-
stationary noise sources. In this paper, a long short-term 
memory fully convolutional network (LSTM-FCN) is utilized 
to accurately estimate a priori signal-to-noise ratio (SNR) since 
the speech enhancement performance of an MMSE approach 
improves with the accuracy of the used a priori SNR estimator. 
The proposed MMSE approach makes no assumptions about 
the characteristics of the noise or the speech. MMSE 
approaches that utilize the LSTM-FCN estimator are evaluated 
using the mean opinion score of the perceptual evaluation of 
speech quality (PESQ) and the short-time objective 
intelligibility (STOI) measures of speech. The experimental 
investigation shows that the speech enhancement performance 
of an MMSE approach that utilizes LSTM-FCN estimator 
significantly increases. 
 

Index Terms—long short-term memory, machine learning, 
mean square error methods, recurrent neural networks, speech 
enhancement. 

I. INTRODUCTION 

Speech processing applications, such as automatic speech 
recognition, mobile communications, health care, and voice 
activity detection, received a lot of attention over the past 
decade. Speech intelligibility and quality may be degraded 
by coloured or non-stationary background noises, with 
examples including airplane, car, factory, and street noises. 
Background noises can affect the performance of a speech 
processing system. However, speech processing robustness 
can be improved by speech enhancement techniques. A 
speech enhancement algorithm aims to improve the 
intelligibility and quality of noisy speech.  These algorithms 
can be categorized as single-channel and multi-channel 
algorithms [1-3]. In this paper, single-channel speech 
enhancement algorithms are considered.  

The objective of a single-channel speech enhancement 
algorithm is to recover the components of the clean speech 
from the noisy speech with improved perceptual quality and 
intelligibility. Most single-channel speech enhancement 
algorithms need an estimate of the noise power spectral 
density (PSD). Therefore, inaccurate estimation of the noise 
PSD can affect the performance of a speech enhancement 
algorithm. Spectral subtraction is commonly used for the 
enhancement of single-channel speech. In these methods, 
the noise PSD is estimated during speech absence and is 
subtracted from the noisy speech spectrum to estimate the 
clean speech [4-5]. Such methods are effective under fairly 
stationary noise conditions, but often fail to estimate 

coloured or non-stationary noise sources during active 
regions of the noisy speech signal. 
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 To improve speech enhancement algorithms, several 
approaches have been proposed during the last decade. 
Among the most speech enhancement algorithms are those 
based on minimum mean square error (MMSE) [6-7]. In [6], 
the minimum mean-square error short-time spectral 
amplitude (MMSE-STSA) estimator is proposed to 
optimally estimate the magnitude spectrum of the clean 
speech. A gain function is utilized to minimize the mean-
square error between the clean and enhanced speech spectra. 
In [8], an optimum non-linear estimator based on an MMSE 
sense is proposed to minimize the background noises in 
different conditions of the speech signal. In [9], the short-
time spectral amplitude (STSA) of the bioacoustics signal is 
used to identify the estimated clean speech signal in the 
MMSE sense. A modified version of the MMSE-STSA 
estimator used in [6] has been developed in [10]. In [10], a 
non-stationary noise tracking approach based on a log-
spectral power MMSE estimator is proposed. In [11], the 
two-step noise reduction (TSNR) technique is utilized to 
enhance speech signals in noisy environments. The TSNR 
technique introduces harmonic distortion in the enhanced 
speech because of the unreliability of estimators for small 
signal-to-noise ratio (SNR). In [12], a nonlinear mapping 
technique is utilized to regenerate the degraded harmonics 
of the distorted signal. However, all these approaches have 
in common that they are a function of the a priori SNR 
estimate of noisy speech spectral component. Voice activity 
detection (VAD) is commonly utilized to update the a priori 
SNR estimate during speech absence [13].  This algorithm is 
effective in numerous applications but often causes 
detection errors mainly due to the loss of discrimination at 
low SNR levels. In [6], the a priori SNR is estimated by 
employing the decision-directed (DD) approach. The DD 
approach lacks the ability to accurately estimate non-
stationary noise sources. In [14], the problem of maximum 
likelihood (ML) estimation of the SNR parameter is 
considered. To extend the maximum likelihood estimation 
method of the a priori SNR, Selective cepstro-temporal 
smoothing (SCTS) is performed in [15]. In [15], an estimate 
of the a priori SNR is obtained by adaptively smoothing its 
maximum likelihood estimate in the cepstral domain.  

Recently, deep neural networks have been employed for 
speech enhancement systems. Deep learning techniques are 
able to establish very complex relationships and nonlinear 
feature interactions to solve a particular problem [16-19]. In 
[20], the convolutional neural network is used to segregate 
speech in background noise. This network is utilized to 
explain the features of the noisy speech signal. In [21], a 
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boosted two-stage neural network with a multi-objective 
learning method has been applied to enhance the noisy 
speech signal. In the first stage, a single deep neural network 
is utilized to obtain multiple base predictions. Also, 
convolution layers are employed to concatenate the base 
predictions in the second stage [21]. In [22], a three-stage 
deep neural network by boosting contextual information is 
used for VAD. In [23], a stack of two deep neural networks 
is proposed for speech enhancement via a multi-objective 
learning and ensembling (MOLE) framework. Static noise is 
estimated using the first several frames of an utterance and 
thus fixed within that utterance. Also, the dynamic noise is 
calculated from the output of the first DNN. Unlike MMSE 
approaches, these speech enhancement algorithms do not 
require a priori SNR estimator. However, the performance 
of these speech enhancement systems is not always 
satisfactory due to non-stationary and coloured noises that 
make it difficult to estimate noise signals mathematically.  

In [24], a long short-term memory (LSTM) network is 
developed when the source is impaired by bursty impulsive 
noise.  The trained model estimate the noise PSD online and 
thus applies a linear minimum mean square error (LMMSE) 
approach to enhance speech signal in noisy environments. In 
[25], a deep learning approach to a priori SNR estimation is 
utilized to increase the performance of MMSE approaches 
to speech enhancement. This framework utilizes a residual 
long short-term memory (ResLSTM) recurrent neural 
network (RNN) to estimate the a priori SNR directly from 
the noisy speech magnitude spectrum of a given time-frame. 
In [26], an MMSE-based noise PSD estimator is proposed 
for the a priori SNR estimation. In [26], a temporal 
convolutional network (TCN) is used to estimate the a priori 
SNR. The bottlenecks of these MMSE-based estimators are 
a large number of hyperparameters and the complexity of 
training a recurrent architecture. 

In this paper, an LSTM-FCN framework is utilized to 
accurately estimate a priori SNR. Compared with the 
literature in the field, the main contribution of this 
paper is as follows: 1) a speech enhancement algorithm is 
designed and developed with better results in comparison 
with other algorithms; 2) the framework outperforms other 
machine learning algorithms, while using fewer parameters 
and avoiding the complexity of training a recurrent 
architecture. The proposed LSTM-FCN framework is 
motivated by the following advantages [27-28]: 1) MMSE 
approaches lack the ability to accurately estimate a priori 
SNR in presence of non-stationary noise sources; 2) LSTM-
FCN does not make assumptions about the characteristics of 
the noise or the speech; 3) LSTM-FCN framework shows no 
phase delay.  

This paper is organized as follows. In section II, the 
signal model and notations is described. In section III, the 
speech enhancement based on MMSE approaches are 
reviewed. In section IV, an LSTM fully convolutional 
network (LSTM-FCN) framework is introduced and a novel 
speech enhancement algorithm is developed. In section V, to 
investigate the proposed framework, simulation results are 
performed in different scenarios and compared with DD 
approach [13], TSNR technique [11], HRNR technique [12], 
and ResLSTM framework [25]. Finally, the paper is 
summarized in the last section. 

II. SIGNAL MODEL AND NOTATION 

In this paper, the speech enhancement of the noisy speech 
signal is performed in the time-frequency domain by using 
the short-time Fourier transform (STFT). This framework 
consists of three stages: (1) the analysis stage, where the 
noisy speech signal is analyzed frame-wise using the STFT, 
(2) the compensation stage, where the noisy speech STFT is 
modified to enhance the noisy STFT, (3) the reconstruction 
stage, where inverse STFT procedure is used to construct 
enhance speech in time-domain.  In the time-domain, the 
speech signal can be written as (1). In (1), n is discrete-time 
index, y(n) is noisy speech, x(n) is clean speech and d(n) is 
uncorrelated additive noise.  

( ) ( ) ( )y n x n d n     (1) 

Let Y(l,k), X(l,k),and D(l,k) denote the complex-valued 
STFT coefficients of the noisy speech, the clean speech, and 
the noise respectively, l denotes time-frame index, k denotes 
discrete frequency index, and having defined the above, the 
STFT coefficients of noisy speech signal error can be 
defined as: 

( , ) ( , ) ( , )Y l k X l k D l k    (2) 

It is assumed that D(l,k) and X(l,k), are statistically 
independent across time and frequency, follow conditional 
zero-mean Gaussian distributions, and satisfy (3) and (4) for 
each l and k respectively. In (3) and (4), E{•}is the expected 
value, λx(l,k) is the spectral variance of clean speech, and 
λd(l,k) is the spectral variance of the noise.   

 2( , ) ( , )xE X l k l k    (3) 

 2( , ) ( , )dE D l k l k    (4) 

An MMSE approach to speech enhancement uses the a 
priori SNR to calculate a gain function. The gain function is 
utilized to the magnitude spectrum of the noisy speech, 
which constructs the enhanced speech magnitude spectrum. 
The a priori SNR and the a posteriori SNR of a noisy 
speech spectral component can be written as [6]:  

( , )
, )

( , )
x

d

l k
l k

l k


 


   (5) 

and 
2( , )

, )
( , )d

Y l k
l k

l k
 


   (6) 

respectively. In (6), |Y(l,k)| is the noisy speech magnitude 
spectrum. The a priori SNR and the a posteriori SNR must 
be estimated from the noisy speech since λx(l,k)  and λd(l,k) 
are unobserved during speech enhancement. In this paper, 
an LSTM-FCN framework is utilized to accurately estimate 
the a priori SNR. Clearly, when training an LSTM-FCN 
framework to estimate the a priori SNR, the variances of the 
clean speech and noise speech are given. In the following, l 
and k are omitted from the notation unless otherwise 
indicated. 

III. SPEECH ENHANCEMENT BASED ON MMSE 

APPROACHES 

An MMSE approach utilized the noisy signal to compute 
a gain function for each time-frame and discrete frequency 
indexes. The gain function is used to enhance the noisy 
speech magnitude, |Y(l,k)| spectrum. The minimum mean-
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square error short-time spectral amplitude (MMSE-STSA) 
algorithm minimizes the mean-square error (MSE) between 
the clean and enhanced speech spectra [29-30]. The MMSE-
STSA algorithm gain function is given by (7). In (7), I0(•) 
and I1(•) are modified Bessel functions of the zero and first 
kind, respectively, and h(l,k) is given by (8). 

( , )
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( , ) ( , )
exp

2 ( , ) 2

( , ) ( , )
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2
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          (8) 

The minimum mean-square error log-spectral amplitude 
(MMSE-LSA) is used to minimize the MSE between the 
clean speech and enhanced speech log-magnitude spectra 
[31]. The MMSE-LSA algorithm gain function is given by  

 
   ( , )

, 1
exp

21 ,

t

MMSE LSA
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 
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 dt 



  (9) 

In the derivation of the classic Wiener Filter (WF), a 
posteriori SNR is assumed to be equal to "1+the a priori 
SNR". The WF algorithm is utilized to minimize the MSE 
between the clean and enhanced speech complex discrete 
Fourier transform (DFT) coefficients [7]. The WF algorithm 
gain function is given by 

 
 
,

1 ,
WF

l k
G

l k







     (10) 

Considering all the above, the MMSE-based approach 
uses both the a priori SNR, ξ, and a posteriori SNR, γ, of 
the noisy speech to enhance the noisy speech magnitude 
spectrum. As the clean speech and noise are unobserved 
during speech enhancement, the a priori SNR must be 
estimated from the noisy speech. Therefore, an accurate the 

a priori SNR estimate, , affects the speech enhancement 

performance of an MMSE approach. In this paper, an 
LSTM-FCN framework is utilized to accurately estimate the 
a priori SNR.  

̂

IV. THE LSTM-FCN ESTIMATOR 

Temporal convolutions have proven to be an effective 
learning framework for speech enhancement problems. In 
this paper, an LSTM fully convolutional network (LSTM-
FCN) framework is used to estimate the a priori SNR of the 
noisy signal for MMSE approaches, as shown in Fig. 1. In 

the proposed architecture, the input feature tensor is 
conveyed into a fully connected layer. The output of the 
fully connected layer is then passed into the LSTM block. 
The LSTM block is followed by a dropout. Simultaneously, 
the input feature vector is passed into a fully convolutional 
block in each step. The global average pooling layer is 
applied after the output of the fully convolutional block. 
Finally, the output of the LSTM block followed by the 
dropout is augmented by the output of the global average 
pooling layer. In Fig. 1, FC denotes a fully-connected layer, 
OL denotes the output layer, the dropout block is as [32], 
FCN denotes a fully convolutional network. The output 
layer is a fully-connected layer with sigmoidal units. Also, 
the FCN block is followed by a pooling layer. The pooling 
layer is utilized to reduce the number of parameters in the 
model before the a priori SNR estimation.  

The pooling layer is a global average pooling layer 
proposed by [33]. This layer creates one feature map from 
the previous convolutional layer and takes the average of 
each feature map. An illustration of the global average 
pooling layer is shown in Fig. 2. Clearly, in the proposed 
approach, the output of the pooling layer and LSTM are 
concatenated. 

Remark 1. Without the FC and the dropout layers, the 
performance of the LSTM block is significantly reduced due 
to the rapid overfitting of small short-sequence speech 
datasets and a failure to learn long-term dependencies in the 
long-sequence speech datasets. In the proposed LSTM-FCN 
framework, a high dropout rate of 80% was used after the 
LSTM to combat overfitting. 

A. Fully Convolutional Block 

Fully convolutional networks (FCNs) are generally 
utilized to extract features. In the proposed architecture, the 
FCN block contains of three temporal convolutional 
networks with filter sizes of 128, 256, and 128 respectively. 
A temporal convolutional network is a one-dimensional 
causal convolutional network [26]. An illustration of the 
FCN block is shown in Fig. 3. The filter for a temporal 
convolutional network is parameterized by tensor 

and biases , where N0 is the output 
dimension, d is the filter duration, and Ni is the input 
dimension [28]. Lea et al. [34] define the computation at t-th 
step as follows: 
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Figure 1. The overall architecture of the LSTM-FCN 
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Figure 2. The global average pooling layer  
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In (11), denotes the input feature tensor, 
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Figure 3. The Fully convolutional networks (FCNs) block 

B. Long Short-Term Memory Block 

The LSTM block contains three residual long short-term 
memory recurrent neural networks, (LSTM RNNs), as 
shown in Fig. 4. The LSTM RNNs are utilized to solve the 
vanishing gradient problem. The LSTM RNNs address the 
vanishing gradient problem commonly found in ordinary 
recurrent neural networks by incorporating gating functions 
into their state dynamics [35]. Each residual LSTM RNN 
contains an LSTM cell, as shown in Fig. 5. 

G G G+ + +

 
Figure 4. The residual LSTM block. It consists of three residual LSTM 
RNN, G 

 ߪ  ߪ ݄݊ܽݐ ߪ

+ ݉ݐെ1

െ1ݐ݄

ݐݔ

݂ܩ
 

ݐܥ
݅ܩ

݄݊ܽݐ

 

ݐ݉

ݐ݄

 
Figure 5. Basic architecture of the LSTM cell 

Based on the architecture shown in Fig. 5, the 
computation at each time step is as of the following form 
[36]: 

1
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In (12), Gi, Gf, G0 and Ct are the activation vectors of the 
input, forget, output, and cell state respectively, Wi, Wf, 
W0,and Wc are the weight matrices of the input, forget, 
output, and cell state gates respectively, Bi, Bf, B0  and Bc are 
the projection matrices of the input, forget, output and cell 
state gates respectively,ht denotes the hidden state vector of 
the LSTM cell,mt denotes the memory vector,xt denotes the 
input vector, σ(•) denotes a standard logistic sigmoid 
function, and the elementwise multiplication is represented 
by  . 

C. Mathematical Model 

Let denotes the input feature vector of length l0 

for i-th discrete-time index. In the proposed architecture, the 
input feature tensor can be defined as (13). In (13), 

0l
iX 

 120
~  mltX  is the input feature tensor in a window whit 

2m+1 frames for t-th step, and Ns denotes frame shift. 

  },...,2,1{,
~

)1( 
 tXX m

miiNt s
    (13) 

Considering all the above, the proposed LSTM-FCN 
estimator can be written as: 

 ,t GPLsoftmax Y Y  DL  


     (14) 

In (14), t


is estimate of the cumulative distribution 

function (CDF) of  ,dB l k

GPLY

(in dB) for t-th step, softmax(•) 

is softmax function, 1N


is output of the global 

pooling layer, and 1N
DLY 


is output of the dropout layer. 

Remark 2. In this paper, the Adam optimizer [37] is used 
since it converges better than stochastic gradient descent 
(SGD) [38] and root mean squared propagation (RMSprop) 
[39] optimizers when using the LSTM-FCN framework. 
Also, a priori SNR was mapped to the interval [0-1] to 
improve the rate of convergence of the used Adam 
algorithm.  

In [25], it can be seen that  is distributed 

normally with mean 

 ,dB l k 
k  and variance 2  for a given 

frequency component. Therefore, CDF of  ,dB l k was 

used as the map in the proposed LSTM-FCN framework. 
The map is given by: 

   ,1
, 1

2 2

dB

k

l k
l k erf






  
      

 (15) 

In (15),  ,l k is the cumulative distribution function 

of  ,dB l k , and σ(•) is the error function. 

Remark 3. Since the loss function (cross-entropy) is an 
arbitrary unknown sequence of a convex function, the 
convergence of the proposed LSTM-FCN framework can be 
proved the same as [37]. 

V. EXPERIMENTAL SETUP 

All clean speech and noise signals are single-channel, 
with a sampling frequency of 16 kHz. The Hamming 
window function is utilized for spectral analysis and 
synthesis, with a frame-length of 32 ms (512 time-domain 
samples) and a frame-shift of 16 ms (256 time-domain 
samples). The a priori SNR estimate was calculated by 
using the single-sided noisy speech magnitude spectrum, 
which included both the Nyquist frequency component and 
the DC frequency component. To investigate the proposed 
LSTM-FCN framework, simulation results are performed in 
different scenarios and compared with the decision-directed 
(DD) approach [13], the two-step noise reduction (TSNR) 
technique [11], harmonic regeneration noise reduction 
(HRNR) technique [12], and ResLSTM framework [25]. In 
simulation results, the complexity and the design 
specifications of the ResLSTM framework is similar to that 

 74 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:19:10 (UTC) by 54.210.85.205. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 22, Number 2, 2022 

of the LSTM-FCN framework. In the LSTM-FCN 
framework, the a posteriori SNR estimate, ),(ˆ kl , is as (16) 

where is the a priori SNR estimate. ),(ˆ kl

),(ˆ1),(ˆ klkl         (16) 

A. Training Set 

The training procedure is performed on a speech dataset 
that is produced from the TIMIT corpus [6], and train-clean-
100 set from the Librispeech corpus [7]. To improve the 
performance of the speech enhancement approach 
processing methods in various noisy backgrounds, babble, 
airport, factory, car, F16, street, pink, white, Hall, destroyer 
engine, and HF channel noises are selected from the 
NOISEX-92 [8] and Aurora-4 [9] databases. Therefore, both 
real-world non-stationary (e.g., voice babble) and coloured 
noise sources (e.g., factory), were included in the noise 
training set. 

B. Test Set 

For the test set, real-world noise sources, including two 
non-stationary (babble and street) and two coloured (F16 
and factory), were included in the test set. 20 clean speech 
signals were randomly selected from the TIMIT speech 
corpus [6] for each of the four noise signals. Finally, the test 
set is built by adding four real-world noise sources to the 
clean speech signals with various SNR: -5 to 15 dB, in 5 dB 
increments. 

C. Validation Set 

In order to validate the model obtained, 10% of the clean 
speech training set was used as a validation set. Also, to 
create the validation set, a random section of the noise 
signals was mixed with the clean speech at the following 
SNR levels: -5 to 15 dB, in 5 dB increments. 

D. Training Strategy 

The training target for a deep neural network within the 
LSTM-FCN framework is the mapped a priori SNR, as 
described in the previous section. Table I gives a formal 
algorithmic description of training strategy. The following 
strategy was utilized to train the LSTM-FCN:  
 Cross-entropy as the loss function; 
 16 time-frames were used simultaneously for the LSTM 

training; 
 The LSTM-FCN was trained via Adam optimizer [10], 

with an initial learning rate of 10-3 and a final learning 
rate of 10-4. At each epoch, the learning rate is halved; 

 The number of training epochs was kept constant at 200 
epochs; 

 The batch size of the noisy speech signals is set to 10; 
 90% of the clean speech training set was for LSTM-FCN 

training, and the remaining 10% was used as validation 
set; 

 A clean speech and noise signals were randomly selected 
from speech and noise training datasets, respectively, to 
build a noisy speech signal. The noise signal was mixed 
with a randomly selected SNR between −5 and 10 dB. 

E. Evaluation Metrics 

In this paper, the LSTM-FCN framework was evaluated 
using the short-time objective intelligibility (STOI) [40], 

and the perceptual evaluation of speech quality (PESQ) [26]. 
STOI and PESQ measures were utilized to evaluate both the 
quality and intelligibility of the enhanced speech signal 
respectively. Average STOI and PESQ scores were 
computed over the test set. 

 
TABLE I. A FORMAL ALGORITHMIC DESCRIPTION OF TRAINING STRATEGY 

Modelweights = Initial_Modelweights 
while (epoch < max_epoch || Covergence_Flag) 
 train(model; Data; initiallr; batch_size) 
                 Update Modelweights  
                 epoch = epoch +1; 
                 initiallr=UpdateLearningRate(initiallr, epoch) 
                 Covergence_Flag = ConvergenceFunction(Modelweights) 
end while 

F. A priori SNR Estimation Spectral Distortion (SD) Levels 

To evaluate the performance of the LSTM-FCN 
framework, real-work noise sources, including two non-
stationary (babble and street) and two coloured (F16 and 
factory) at multiple SNR levels, were included in the test 
set, and the results are compared to DD approach [13], 
TSNR technique [11], HRNR technique [12], and ResLSTM 
framework [25]. The average frame-wise SD of the a priori 
SNR estimation as (17) is used to evaluate the accuracy of 
the a priori SNR estimators. In (17), NF is the total number 
of frames, and Nl is the frame length in discrete-time 
samples.  

 2/2

1 0

1 1 ˆ( , ) ( , )
1

F lN N

dB dBn k
F l

SD

n k n k
N N

 
 



 
  

   (17) 

The a priori SNR estimation SD levels are shown in 
Table II. The LSTM-FCN framework outperformed all 
previous a priori SNR estimation methods (DD, TSNR, 
HRNR, and ResLSTM) with respect to SD levels for all 
noise types. The LSTM-FCN SD level averages around 15.2 
while the DD, TSNR, HRNR, and ResLSTM frameworks 
give SD levels that average about 22.1, 19.6, 17.8, and 16.2 
respectively. It can be seen that the average SD level of the 
LSTM-FCN framework is reduced by 31% for the DD 
approach, 22% for the TSNR technique, 14% for the HRNR 
technique, and 6% for the ResLSTM framework.  

 
TABLE II. SD LEVELS FOR MMSE-STSA ESTIMATOR USING EACH OF THE 

A PRIORI SNR ESTIMATORS  
SNR level(dB) 

Noise type ˆ( , )n k  
-5 0 5 10 

DD 20.2 18.1 16.7 16.8 
TSNR 18.3 17.2 17.0 17.0 
HRNR 15.7 13.5 12.9 12.8 

ResLSTM 13.9 12.7 11.3 11.4 ba
bb

le
 

LSTM-FCN 12.8 11.9 11.1 11.0 
DD 21.7 20.1 18.2 18.2 

TSNR 21.5 19.8 18.1 18.0 
HRNR 17.4 16.8 15.9 15.7 

ResLSTM 14.6 13.3 13.1 13.1 st
re

et
 

LSTM-FCN 13.6 12.9 12.1 12.0 
DD 22.6 22.3 20.9 21.1 

TSNR 22.5 21.7 21.1 21.0 
HRNR 21.7 20.6 20.1 20.1 

ResLSTM 20.6 20.1 18.6 18.3 

F
16

 

LSTM-FCN 18.9 18.1 17.4 17.2 
DD 25.8 24.3 22.6 22.5 

TSNR 24.7 23.4 21.9 21.4 
HRNR 22.3 21.6 20.8 20.8 

ResLSTM 20.9 20.1 19.8 19.9 fa
ct

or
y 

LSTM-FCN 20.1 19.1 18.6 18.2 
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G. MMSE-STSA Estimator 

The STOI and PESQ scores for the minimum mean-
square error short-time spectral amplitude (MMSE-STSA) 
estimator using each of the a priori SNR estimators are 
shown in Table III and Table IV respectively. The STOI and 
PESQ evaluate the enhanced speech from two different 
perspectives, i.e., speech intelligibility and quality. The 
enhanced speech from the MMSE-STSA using the LSTM-
FCM framework achieves the highest STOI and PESQ 
scores for both the real-world non-stationary and coloured 
noise sources. It can be seen that an average STOI score of 
the MMSE-STSA using the LSTM-FCN framework has 
improved by 15% for the DD approach, 11% for the TSNR 
technique, 10%, for the HRNR technique, and 5% for the 
ResLSTM framework. An average PESQ score of the 
MMSE-STSA using the LSTM-FCN framework has also 
improved by 10% for the DD approach, 9.7% for the TSNR 
technique, 9%, for the HRNR technique, and 4% for the 
ResLSTM framework.  

 
TABLE III. THE STOI SCORE FOR MMSE-STSA ESTIMATOR USING EACH 

OF THE A PRIORI SNR ESTIMATORS 
SNR level(dB) 

Noise type ),(ˆ kn  
-5 0 5 10 

DD 0.6 0.75 0.8 0.9 
TSNR 0.63 0.8 0.85 0.92 
HRNR 0.62 0.82 0.85 0.93 

ResLSTM 0.67 0.84 0.9 0.96 ba
bb

le
 

LSTM-FCN 0.7 0.89 0.92 0.98 
DD 0.58 0.69 0.79 0.86 

TSNR 0.6 0.68 0.81 0.88 
HRNR 0.63 0.7 0.85 0.9 

ResLSTM 0.64 0.74 0.89 0.95 st
re

et
 

LSTM-FCN 0.66 0.78 0.91 0.98 
DD 0.6 0.74 0.81 0.9 

TSNR 0.65 0.76 0.84 0.88 
HRNR 0.58 0.74 0.86 0.87 

ResLSTM 0.64 0.72 0.86 0.95 

F
16

 

LSTM-FCN 0.69 0.79 0.91 0.96 
DD 0.55 0.69 0.79 0.83 

TSNR 0.61 0.72 0.82 0.82 
HRNR 0.63 0.75 0.85 0.86 

ResLSTM 0.67 0.79 0.86 0.94 fa
ct

or
y 

LSTM-FCN 0.69 0.82 0.9 0.96 
 

TABLE IV. THE PESQ SCORE FOR MMSE-STSA ESTIMATOR USING EACH 

OF THE A PRIORI SNR ESTIMATORS 
SNR level(dB) 

Noise type ),(ˆ kn  
-5 0 5 10 

DD 75.2 85.7 90.1 95.4 
TSNR 76.5 84.9 91.3 95.4 
HRNR 78.6 85.9 92.1 95.3 

ResLSTM 80.5 86.9 93.6 96.8 ba
bb

le
 

LSTM-FCN 84.4 90.6 94.6 97.2 
DD 73.8 78.5 85.6 90.1 

TSNR 72.6 77.9 84.2 91.1 
HRNR 72.5 76.6 85.9 91.1 

ResLSTM 76.3 81.1 86.3 93.6 st
re

et
 

LSTM-FCN 79.3 85.8 88.7 94.9 
DD 70.3 77.2 83.6 87.4 

TSNR 71.0 79.5 84.1 88.2 
HRNR 71.6 78.2 84.3 89.1 

ResLSTM 75.4 82.6 89.4 91.9 

F
16

 

LSTM-FCN 79.7 85.9 90.1 93.9 
DD 67.2 74.9 80.6 87.6 

TSNR 66.9 75.1 80.9 86.7 
HRNR 69.3 78.2 81.6 87.9 

ResLSTM 74.9 81.4 83.6 90.5 fa
ct

or
y 

LSTM-FCN 82.3 87.3 91.1 95.9 

 
 

It can be seen that there is a correlation between a priori 
SNR estimation accuracy and STOI and PESQ scores 
(speech enhancement performance). 

H. MMSE-LSA Estimator 

The STOI and PESQ scores for the minimum mean-
square error log-spectral amplitude (MMSE-LSA) estimator 
using each of the a priori SNR estimators are shown in 
Table V and Table VI respectively. Simulation results show 
that the MMSE-LSA using the LSTM-FCM framework 
outperforms DD, TSNR, and HRNR algorithms.  

It can be seen that an average STOI score of the MMSE-
STSA using the LSTM-FCN framework has improved by 
22% for the DD approach, 28% for the TSNR technique, 
18%, for the HRNR technique, and 8% for the ResLSTM 
framework. An average PESQ score of the MMSE-STSA 
using the LSTM-FCN framework has also improved by 15% 
for the DD approach, 10% for the TSNR technique, 11%, 
for the HRNR technique, and 5% for the ResLSTM 
framework.  

 
TABLE V. THE STOI SCORE FOR MMSE-LSA ESTIMATOR USING EACH OF 

THE A PRIORI SNR ESTIMATORS 
SNR level(dB) 

Noise type ),(ˆ kn  
-5 0 5 10 

DD 0.58 0.76 0.84 0.91 
TSNR 0.55 0.7 0.81 0.9 
HRNR 0.52 0.69 0.79 0.9 

ResLSTM 0.71 0.78 0.9 0.94 ba
bb

le
 

LSTM-FCN 0.75 0.85 0.93 0.97 
DD 0.6 0.68 0.77 0.89 

TSNR 0.62 0.7 0.79 0.86 
HRNR 0.62 0.69 0.81 0.91 

ResLSTM 0.65 0.75 0.87 0.94 st
re

et
 

LSTM-FCN 0.7 0.8 0.92 0.97 
DD 0.6 0.71 0.8 0.9 

TSNR 0.64 0.73 0.82 0.89 
HRNR 0.59 0.73 0.84 0.91 

ResLSTM 0.66 0.78 0.86 0.93 

F
16

 

LSTM-FCN 0.73 0.8 0.93 0.98 
DD 0.57 0.7 0.79 0.87 

TSNR 0.63 0.69 0.78 0.86 
HRNR 0.62 0.72 0.82 0.9 

ResLSTM 0.68 0.79 0.85 0.92 fa
ct

or
y 

LSTM-FCN 0.72 0.84 0.92 0.95 
 

TABLE VI. THE PESQ SCORE FOR MMSE-LSA ESTIMATOR USING EACH 

OF THE A PRIORI SNR ESTIMATORS 
SNR level(dB) 

Noise type ),(ˆ kn  
-5 0 5 10 

DD 74.2 81.4 89.7 96.1 
TSNR 75.1 84.5 88.9 95.9 
HRNR 76.2 85.2 90.1 95.7 

ResLSTM 79.6 88.1 92.6 96.7 ba
bb

le
 

LSTM-FCN 83.7 91 95.6 97.1 
DD 72.9 77.9 86.1 91.2 

TSNR 73.1 78.2 85.4 91.3 
HRNR 71.8 77.5 85.7 90.9 

ResLSTM 75.9 81.1 86.9 93.4 st
re

et
 

LSTM-FCN 78.6 86.2 89.2 94.5 
DD 70.1 76.3 84.1 88.4 

TSNR 69.9 77.1 83.6 88.1 
HRNR 71.2 75.4 84.2 89.2 

ResLSTM 76.3 81.9 88.6 90.1 

F
16

 

LSTM-FCN 80.1 86.3 91.1 92.8 
DD 71.3 75.3 80.2 89.1 

TSNR 68.6 75.8 81.4 90.2 
HRNR 67.8 74.6 82 88.3 

ResLSTM 75.3 80.7 84.3 93.4 fa
ct

or
y 

LSTM-FCN 84.1 88.4 92.5 96.3 
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I. Enhanced Speech Spectrograms 

To generate the noisy speech, babble noise at an SNR 
level of 5 dB is mixed with the clean speech. The noisy 
speech is then enhanced by each of the MMSE-STSA 
estimators. The clean and noisy speech magnitude 
spectrograms are shown in Fig. 6 (a) and (b), respectively. 
The enhanced speech magnitude spectrograms produced by 
the MMSE-STSA estimator using the DD approach, TSNR 
technique, HRNR technique, ResLSTM framework, and 
LSTM-FCN framework are shown in Fig. 7. It can be seen 
that the MMSE-STSA estimator using the LSTM-FCN 
framework produced enhanced speech with less residual 
noise than other estimators. The enhanced speech produced 
by the LSTM-FCN framework (Fig. 7 (e)) demonstrates 
significantly less musical noise and speech distortion than 
the ResLSTM framework (Fig. 7 (d)). To evaluate the 
performance of the proposed algorithm, same regions are 
highlighted in Fig. 7 (d) and (e). Clearly, it can be seen in 
Fig. 7 (d) that the ResLSTM framework heavily distorted 
these same regions. Also, the MMSE-STSA estimator using 
DD approach exhibits poor speech enhancement 
performance.  

 
(a) 

 
(b) 

Figure 6. Measuring geometry relationship between target and sensors 
platform 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7. The spectrograms of the enhanced speech (a) DD approach, 
(b)TSNR technique, (c) HRNR technique, (d) ResLSTM framework, and 
(e) LSTM-FCN framework 

VI. CONCLUSION 

In this paper, a deep MMSE-based speech enhancement 
problem is investigated. The performance of an MMSE-
based speech enhancement approach depends on the 
accuracy of the used a priori SNR estimator. An LSTM-
FCN deep neural network is utilized to estimate the a priori 
SNR. The proposed approach makes no assumptions about 
the characteristics of the noise. Moreover, it can estimate 
sudden changes in the a priori SNR level. The proposed 
MMSE-based speech enhancement is evaluated for both 
real-world non-stationary and coloured noise sources. 
Experimental results indicate that the proposed speech 
enhancement approach has gained better performance than 
DD approach, TSNR technique, HRNR technique, and 
ResLSTM framework. In future work, we will research on 
how to optimize the LSTM-FCN model architecture and 
hyperparameters such as epochs, learning rate, optimizer, 
and loss function. In addition, if the a priori SNR changes 
during speech presence, this change can only be detected 
with a delay. This may be investigated in future work to 
achieve a better improvement in speech enhancement 
performance. 
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