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Abstract—Updating power system networks without 

changing the existing network facilities is done by modifying 
the consumer’s energy demand curve using the Demand 
Response (DR) program. The increase in energy consumption, 
its environmental impact and limits in generation illustrates 
the importance of energy savings and alternate usage as 
Demand side management (DSM). Clustering methods provide 
proper planning and management of loads during the DR 
program. DR congestion of residential electrical loads 
scheduling is effectively managed by clustering of all the load 
curves in the smart residential area. The purpose of clustering 
the consumers is to understand the different energy behaviour 
better and identify the typical seasonal consumption patterns 
for the residential consumers, thereby creating a smart control 
strategy for the DR program. This work mainly focuses on 
applying load clustering method to reshape the load curve in 
the residential area during summer. The optimal scheduling of 
loads using this proposed method provide peak load 
management, Peak to Average Ratio (PAR) reduction, and the 
minimization of electricity cost of the consumer. The proposed 
seasonal clustering-based scheduling framework is solved using 
CPLEX solver. 
 

Index Terms—clustering algorithms, energy management, 
load management, meter reading, smart grids. 

I. INTRODUCTION 

An efficient energy management system needs to achieve 
the reliable operation of the power system. A smart grid 
(SG) is a system that interconnects the power system 
operation with information, communication, and control 
systems to improve the power system efficiency and 
reliability. Advanced smart technologies are used in SG to 
make the grid smart in two-way communication to exchange 
electricity data information between retailers and customers. 

Residential Clustering techniques [1-3] are used to 
categorize daily load profiles from a large sample of 
customers over an entire year. Consumption schedule 
patterns result from clustering related to the behavioural 
changes of customers. The segregation can be used in 
different future studies, designing and managing loads 
during peak times [4]. In most research works, [5-8] 
clustering load profile is implemented and not well 
organized the clustering applications to DR analysis. The 
clustering-based residential demand side management aims 
to achieve peak load reduction and minimize the electricity 
bill considering consumer comfort [9] and [10]. Various 
clustering techniques are proposed in the previous papers for 
customers' electrical load segregation. In [11], the electrical 
consumption data of all residents' consumer and load curves 
are considered for the analysis. Adaptive K-means algorithm 
and hierarchical clustering are used for the load 
segmentation. High electrical consumption customers are 

the significant impact of creating peaks during peak hours. 
The K-means is the simplest, most straightforward method 
for handling and clustering large datasets efficiently. The 
limitation of this work is the consideration of an Electric 
Water heater (EWH) as the significant impact of peak load 
creation. This load alone is considered a shiftable load. In 
[12], a cumulative-based cluster approach is discussed for 
the analysis. They have analysed for a limited period over a 
day (evening peak period).  

A probabilistic-based embedded clustering approach is 
discussed in [13]. The uncertainties of baseline demand at 
the residential level are analysed. The impact of the 
proposed method on cost-saving is not discussed. In [14], a 
two-stage K-means clustering algorithm is proposed to 
group the comfort sensitivity index by considering air 
conditioners as a shiftable load during the peak demand 
period. Spectral clustering is discussed for the load curve 
segmentation in [15]. The matrix perturbation method is 
used to find the K value in the proposed algorithm. In [16], a 
centroid-based clustering approach based on K-means is 
discussed to optimize biddings. This approach only applies 
to small-term economic strategies. A risk-based stochastic 
optimization with a clustering approach is used to perform 
DR applications in[17]. DR performance time duration is the 
main limitation of this work. In [18], a scenario-based Latin 
hypercube sampling algorithm is proposed by considering 
the pumped storage unit as a critical load during Off-peak 
hours. Also, the K-means clustering approach is used to 
minimize the number of scenarios. Epsilon constraint 
approach is proposed for solving the Pareto front decision-
making method [19]. The minimizations of cost, the 
deviation between supply and demand, loss of load 
expectation are achieved in this approach. In [20], time drift 
issues are solved by Dynamic Time Warping (DTW) in load 
shape clustering. However, the computation time of DTW 
for the large dataset is more. By considering the 
aforementioned issues the clustering based optimal 
scheduling using DR strategies has been proposed in this 
work. 

II. CLUSTERING FRAMEWORK 

In this section, a clustering-based scheduling framework 
for the electricity consumption in a smart resident is 
proposed based on the ToU pricing scheme. Clustering of 
the residential DR load scheduling process is represented as 
a flow chart and is depicted in Fig.1. The residential usage 
data from each smart meter readings are used to cluster 
energy consumption behavioral demand [21]. Electricity 
Consumption profiles of all the residents are collected 
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through an advanced metering infrastructure (AMI) system 
[22-23]. The pre-data processing provides cleaning the data 
and filling the missing data. In this paper, data processing is 
done for electricity consumption of seasonal variation for 
one year.  After averaging and normalization of residential 
load profile, the k- means clustering is performed and is 
explained briefly in the following sections. 

 

 
Figure 1. The flow chart of Residential load profile Clustering 

  
The purpose of clustering the consumers is to understand 

the different energy behaviour better and identify the typical 
seasonal consumption patterns for the residential consumers 
and create a smart control strategy for the DR program [24-
26]. Understanding such changes in a customer’s seasonal 
behaviour can aid network operators in the longer-term 
planning of the power system networks based on the load 
monitoring system [27]. 

A. The Dataset Used for Residential Customer Aggregation 

The dataset used in this approach is provided by National 
Renewable Energy Laboratory (NREL). The daily load 
curves of 200 residential customers of Midwest region of the 
United States as per RECS data set from January 1, 2018, to 
December 31, 2018, are used to aggregate the customers 
into the group. The electricity consumption of each 
consumer was recorded at 10 minutes intervals.  

Seasons play a vital role in determining electricity 
consumption patterns. For example, in summer, residents 
with Air conditioners (AC) would consume a significantly 
higher amount of electricity at night compared to nights in 
winter. Due to seasonal variations, different peak demands 
occur to varying time-periods of the day.  

This seasonal variation regarding the data is categorized 
into four seasons as. Summer: March, April, May, Autumn: 
September, October, November, Winter: December, 
January, February, Spring: June, July, August. 

B.  K Means Algorithm 

The K-means algorithm is used for clustering time-series 
data. The objective of this approach is to obtain maximal 

intra-cluster and minimal inter-cluster similarity. Since the 
data is unlabeled, there is numerous method to group or 
cluster these data points into C = {C1, C2…Cn} clusters. 
Each approach has its own rule for finding the similarity 
among these data points (dp). K-means is a generic method 
of clustering based on minimizing Euclidian distance (ED) 
between the data points using equation (1). 

2min ( , )Ci C iED C dp                              (1) 

  
1

i dp
i dp S

dp

C
S 

  idp                                 (2) 

The pseudo-code of this approach is shown in algorithm1. 
The trickiest step for this algorithm is to obtain the optimal 
number of clusters (K). The Elbow method is used in this 
approach, and it computes the Within cluster Sum of 
Squares (WSS). It is the sum of square of distances between 
the centroid and all the data points. It measures the 
clustering compactness that must be as small as possible. 

The optimal number of clusters can be obtained as:  
 First, compute K means clustering algorithm for 

different values of K (2<K<20); 
 For each K, calculate WSS; 
 Draw the graph for WSS vs K. 
The knee point in the graph is an indicator of the number 

of clusters. 
 

Algorithm 1:Pseudo code for K means clustering 
 
Step1 

 
: 

 
Start the process by 
Get the data from the dataset. 
Determine the data point centroid randomly for 
the K samples 

Step2 : Compute (1) and find the closest centroids to each 
data point. 

Step3 : Assign each data into the nearest centroid. 
Step4 : Evaluate the mean of each cluster and find new 

centroid Ci (2) 
Step5 : Update the centers and Repeat the process until no 

changes occur. 
Step6 : Calculate WSS for all the clusters. 

 
 
This proposed method considered different seasonal 

(summer, winter, autumn and spring) data frames of the 
Midwest region of the United States as per the RECS data 
set from January 1, 2018, to December 31, 2018. After 
running the K means clustering algorithm for different 
values of K (2<K<20), obtain the knee point for all the 
seasons.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Elbow method for finding K value: a) Summer b) Winter c) 
Autumn d) Spring 

 
From the Fig. 2 (a), it is identified that the knee point is 3 

for summer. It represents the number of clusters (K) are 3 
for the given dataset. The same value 3 is identified as knee 
point for the remaining season winter, autumn and spring 
are shown in Fig. 2 (b-d). So it is considered as the optimal 
number of clusters for all the seasons. This is the simplest 
way to obtain the value of K and is used to segregate the 
consumer’s energy daily usage pattern. Higher values of K 
may create overfitting. 

III. WITH AND WITHOUT CLUSTERING 

 In this paper, as the proposed approach deals with 200 
residents, the load curve for each day is 200. We have 
calculated normalized average electricity consumption for 

each season (summer, winter, autumn and spring) for the 
analysis which is illustrated in Fig. 3 (a-d). Then K-means 
algorithm is used to cluster the 200 daily load curves into 3 
clusters. The daily load curves of each group are normalized 
to get normalized average electricity consumption. For 365 
days, 1095 average load curves are generated in total. 

 
 (a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 3. Average electricity consumption curve without clustering: a) 
Summer, b) Winter, c) Autumn, d) Spring  

 
The result of clustering is illustrated as shown in Fig. 4. It 

represents the normalized average electricity consumption 
of different clusters, namely C1, C2, and C3, for all the 
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seasons. The characteristics of seasonal variations are 
summarized as follows. From the graph, it is observed that 
peak power consumption occurs during evening time due to 
lighting and the availability of consumers using more 
appliances after return from work and less consumption 
during midnight because of sleep. The gradual increase of 
consumption around 6.00 in the morning is due to getting 
ready for office or school. From Fig. 4(a), the normalized 
average electricity consumption of cluster C1 is almost high 
throughout the day except from 1:00 to 5:00. This clustering 
data is taken for the application of DR analysis and is 
explained in the next section. Similarly, C3 has a slightly 
higher consumption than C2. Cluster C3 has minimal 
consumption than C1 and C2 from 12:00 to 15:00 due to the 
residents' unavailability. The higher peak occurs in the 
evening due to the use of Air conditioner. From Fig. 4(b), 
clusters C1 and C3 have two electricity consumption peaks, 
and C2 shows a stable curve throughout the day.  

The steady curve is due to the usage of electric heaters by 
the consumer in C2. 

From Fig.4(c) and 4(d), it is observed that the normalized 
average load curves are almost identical. In autumn season 
C1 and spring season C2 shows the stable load curve from 
12:00 to 20:00 and other clusters showing two different 
peaks around 8:00 and 19:00.   

These results are specific to the particular dataset which is 
collected from NREL. The purpose of clustering the 
consumers is to understand the different energy behaviour 
better and identify the typical seasonal consumption 
behaviour for the residential consumers, hence controlling 
their demand for the DR program. Based on the obtained 
results, it is recognized that consumers in clusters C1 are 
consuming more energy during peak hours in summer. In 
this work, we consider cluster C1 for the application of DR 
program analysis. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Seasonal Normalized Average Electricity consumption curve with 
clustering: a) Summer, b)  Winter, c) Autumn, d) Spring 

IV. CLUSTERING BASED DR FRAMEWORK 

The consumers might have different energy usage 
behaviour and willingness to take part in the DR program. 
For example, some consumers may prefer the minimization 
of electricity cost, and some may give importance to their 
comfort in the energy usage without bothering the electricity 
cost. By considering the above parameters, a clustering-
based DSM scheduling program is proposed in this work. 

A. Problem Formulation 

Based on the seasonal clustering, we group the consumers 
into 3 clusters. The objective function is planned based on 
the benefit of utility and the consumers. High energy 
consumption customers are the significant impact of 
creating peaks during peak hours. So we have considered C1 
data from summer analysis for the DR application.  The 
scheduling optimization problem is planned by considering 
the following objective function and constraints. The 
minimization of the Clustering cost function is given in 
equation (3) 

1 2min CF w EC w DC                                          (3) 

where, w1 and w2 are the coefficients represent the degree of 
attention of customers' preference in cluster C on energy 
consumption cost and discomfort cost, respectively                  
w1 + w2=1. 

.Electricity consumption model 
The electricity consumption cost function of each 

consumer is calculated using equations (4) and (5). 
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Discomfort cost model 
The discomfort cost model for each consumer is 

expressed as below in equation (6). It is the measure of 
inconvenience faced by the customers between the 
permission given by the utility to operate the appliances for 
the operation of the requested appliance. 

2

.

.1 1 1
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r r h

e
r r hh a r

KA RA
DC P h
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                      (6) 

B. Operational Constraints 

The operational constraints of appliances are given in the 
following equations. During the DR program, the number of 
controllable appliances should be greater than zero as per 
equation (7).  

The variation between the consumption before and after 
scheduling ensures the consumer’s satisfaction. The 
appliance must operate ON-period and is given in equation 
(8). Where, are the starting and ending time of controllable 
appliances and the time duration for the working appliance 
as in equation (9) needed to finish the operation of 
controllable appliances in resident ‘r’.  Equation (10) defines 
the appliance's energy consumption limit. This formulation 
ensures that controllable appliance demand does not exceed 
the maximum capacity of utility at hour ‘h’. 
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Consumers can change their energy profile management 
by shifting their peak loads to OFF peak. This method 
improves the participation of the residential customers with 
non-shiftable loads in the DR program. 

V. SIMULATION RESULTS 

This model is planned as a mixed-integer nonlinear 
(MINLP) optimization problem. This MILNP problem from 
equation (2)-(10) is solved using CPLEX optimization 
solver using YALMIP and MATLAB interface. CPLEX 
efficiently solves the linear and nonlinear optimization 
problem with an objective function of cost and peak load 
minimization by considering user preferences.  

Table I show the responsive loads for shifting and non-
shiftable loads ratings and working duration of a single 
summer cluster. Various schemes and the parameter settings 
are given in Table II. Simulation results are discussed here 
for analyzing the performance of the proposed method for 
various considerable parameters.  

The electricity consumption curve of different schemes is 
presented in Fig. 5. The influence of the parameters of cost 
and comfort on the performance of the proposed method 
under different schemes is discussed in this section. For this 
analysis, the residential data of cluster1 during summer is 
considered. Thus consumers in C1 consume more energy 
when compared to other clusters in that season. Concerning 
the proposed method, there is a considerable reduction of 
the cluster's PAR and electricity consumption cost by 
shifting the peak load to OFF-peak periods. 

Simulation results show the impact of the parameters, 
cost, and comfort on the performance of the proposed 
method. Comparison between different schemes for the 
fundamental characteristics of energy consumption cost and 
PAR are shown in Table III. From that, it is implied that 
considerable reduction of PAR and energy consumption cost 
of the cluster for all the schemes.  

It is identified that in scheme 1, consumers are only 
bothered about the electricity consumption cost and without 
worrying about comfort. Therefore, it results in the lowest 
PAR and cost by the proper shifting of peak loads. Different 
size peaks occur at different periods of the day, depending 
on the season. In this approach, we considered only the 
summer clusters for the DR application. In the future, the 
same methodology can be applied to the remaining seasons. 

 
TABLE I. APPLIANCES RATINGS AND SHIFTING FLEXIBILITY FONTS 

Appliances 
Rated 
power 
(kW) 

Operating 
time 

Shifting 
Flexibility 

(Hrs.) 

Controllable Loads 
Water heater 3.1 6.00 A.M - 7.00 A.M 1-2 
Cloth dryer 1.4 11.00 A.M - 12.00 1-3 
Dish washer 1.32 13.00 P.M - 14.00 P.M 1-3 
Coffee maker 0.8 18.00 P.M - 19.00 P.M 1-2 

Toaster 1.1 9.00 P.M - 10.00 P.M 1-2 
Air 

conditioner 
1.14 

21.00 P.M - 2.00 A.M 
1-2 

Electric 
vehicle 

3.6 
21.00 P.M - 23.00P.M 

1-2 

Electric stove 0.2 12.00 - 13.00 P.M 1-2 

Oven 1.3 
8.00 A.M - 9.00 A.M 

18.00 P.M - 19.00 P.M 
1-2 

Hair Dryer 1.5 7.00 A.M - 8.00 A.M 1-2 
Iron 1.0 19.00 P.M - 20.00 P.M 3-5 

Vacuum 
Cleaner 

0.4 
11.00 A.M - 12.00 

1-3 

Pool pump 0.9 21.00 P.M - 22.00 P.M 1-2 
Washing 
machine 

0.85 
11.00 A.M - 12.00 

1-2 

Uncontrollable Loads 
Lighting 0.2 - - 

TV 0.08 - - 
Refrigerator 1.66 - - 

 
TABLE II. VARIOUS SCHEMES AND PARAMETER SETTINGS 

Parameter settings Scheme 
w1 w2 

Scheme 1 1 0 
Scheme 2 0.5 0.5 
Scheme 3 0 1 

 
(a) 
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(b) 

 
(c) 

Figure 5.  Normalized Energy consumption curve with and without DSM: 
a) schemes 1; b) schemes 2 and c) schemes 3 
 

The proposed method reduces the PAR by 29.44 % from 
1.0881 to 0.7678 and electricity consumption cost by 
20.78% from 7.2587$ to 5.7501$. Compared to without 
DSM, the proposed schemes perform better. 

 The scheme1 results are better for the parameter as they 
have for the cost reduction. Compare to scheme 2, and it 
reduces the PAR by 4.07% and cost by 5.38%. Compare to 
scheme 3, and it reduces the PAR by 16.11% and cost by 
9.47%.  

 
Figure 6.  Energy consumption Cost (EC) for various schemes  

 
The results show that PAR and consumer comfort are 

conducive to shifting the peak loads and reducing the 

consumer’s electricity consumption costs. 

 
Figure 7.  Percentage Average Comfort (PAC) for various schemes 

 
The electricity consumption costs (EC) of different 

schemes are presented in Fig. 6. High EC occurs in scheme 
3 because of their preference is given for comfort and not 
willing to shift their load during peak hours. 

 
TABLE III. REDUCTION OF PAR AND ENERGY CONSUMPTION COST FOR 

VARIOUS SCHEMES 

Approach PAR 
PAR 

reduction 
(%) 

Average 
EC 
($) 

EC 
Reduction 

(%) 

Without DSM 1.0881 0 7.2587 0 
Scheme 1 0.7678 29.4366 5.7501 20.7833 
Scheme 2 0.8004 26.4406 6.0772 16.2770 
Scheme 3 0.9153 15.8808 6.3518 12.4939 

 
Percentage Average Comfort (PAC) of different schemes 

are presented in Fig.7 and less comfort is identified in 
scheme 1 due to their compromise to shift the loads.TL is 
the time length for performing the DR schemes. The optimal 
scheduling of loads using this clustering-based optimization 
method benefit both utilities and consumers using peak load 
management, PAR reduction, and the minimization of 
electricity cost of the consumer. If their preference towards 
cost reduction means better go for scheme1. If their 
preference is on comfort means scheme3 and those who are 
bothered about cost as well as comfort can choose scheme 2. 
In this method, the consumer can adopt any proposed 
scheme based on either cost-oriented or comfort-oriented 
willingness. 

VI. CONCLUSION  

In this paper, clustering-based scheduling of smart 
residential areas was proposed to cluster the load profiles 
and efficiently schedule them to reduce PAR and electricity 
consumption cost of cluster. Also, the seasonal variations 
have been analyzed. It describes a seasonal clustering 
strategy that can be used in residential DSM programs.  

 This proposed method of load profiling identifies the 
peak period users during summer and applies the technique 
of DR for shifting the energy usage profile to manage the 
peak demand. The simulation results show that the 
performance of the proposed method for various 
considerable parameters and different schemes.  

The influence of the parameters of cost and comfort on 
the performance under different strategies is discussed. It 
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scheme based on either cost or comfort-oriented willingness. 
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