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1Abstract—This paper describes a novel steganography 

algorithm that combines quantum computing with the least 
significant bit technique (LSB). Using the quantum properties, 
along with the Python programming language and the Qiskit 
framework for the circuit simulation, a sub-image can be 
hidden inside a usual image. For a gray image, this article 
presents how the LSB of each of the first 16 pixels on the edges 
can be used to hide two threshold values, that are then used to 
filter out the image and reveal the secret message. The 
speedup, compared to the classical version, is possible due to 
the quantum representation of an image (NEQR is used in this 
paper) and the efficiency of the novel multi-bit quantum 
comparators. 

 
Index Terms—data security, image communication, image 

processing, image representation, quantum computing. 

I. INTRODUCTION 

The quantum representation and processing of 
information is a great subject in the information technology 
area. This has been especially highlighted by the latest 
innovations, such as D-Wave, IBM Q System One (a 20-
qubit quantum computer) and Google’s quantum computer 
(a 54-qubit Sycamore processor) – it has recently claimed 
“quantum supremacy”, by performing a calculation in 200 
seconds instead of 10,000 years, the time required on a 
classical computer. Today we can not only simulate various 
circuits on classical computers, but also run and measure the 
results on real platforms, available through cloud services. 

The whole quantum universe is based on the core concept 
that the fundamental unit, named “qubit” (quantum bit), can 
not only be 0 or 1 like the classical bit, but it can 
simultaneously be in different states – this property is called 
superposition. For each of these states, the qubit has a 
certain probability associated with it. In the quantum world, 
these states are 0  and 1 , and they are also known as “ket” 

or “vector”. Any qubit   can be written as a superposition 

of these states, as seen in formula (1) below: 
0 1 ,    (1)    

with α and β complex numbers, which verify the 

property:
2 2

1.    The probability for the qubit to be 

in the 0 state is 2 and the probability for it to be in the 

1 state is 2
.  

Every quantum algorithm used to process data requires a 
quantum circuit that implements certain operations. In the 
quantum universe, these operations can be translated using 

quantum gates; all of the quantum gates are described using 
unitary transforms, so therefore they are reversible – this 
implies that the number of inputs be equal to the number of 
outputs. The gates required to implement the circuits 
presented in this paper are briefly explained below; the 
single qubit gates are as follows: the NOT gate (“X”), that 
acts in a similar way to the classical not gate, (it is a linear 
gate, the state 

 
 

0 1a b  is changed to 1 0 ,a b  and the 

Hadamard gate (“H”), which allows to set the basic states 
into superposition, with equal probabilities, see formulas (2) 
and (3): 
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                
    

               (3) 
The gates that act on multiple qubits, used in this paper, 

are: 
i. the CNOT gate (controlled-NOT), which can be seen as 
the equivalent of the classical XOR gate. Its input qubits 
are called the control qubit and the target qubit; the 0  

state for the control qubit means that the target qubit 
remains unchanged; the 1 state for the control qubit 

reverses the state of the target qubit. If we name the two 
qubits c (the control qubit) and t (the target qubit), then 

the action of the gate can be summarized as 
( )ct c c t  . 

ii. the CCNOT (Toffoli) gate, that is an extension of the 
CNOT gate; it has 2 control qubits ( 1c and 2c ) and 1 

target qubit ( t ). The target qubit will be set by 

calculating the XOR value between t and the logic 
product of the control qubits, see formula (4): 

1 2(t t c c   )    (4) 

One of the most important aspects for having better 
performance regarding a quantum algorithm, compared to 
its classical counterpart, comes down to being able to utilize 
the quantum properties such as superposition and quantum 
entanglement. When referring to quantum steganography, 
the way the image is represented is crucial to bringing that 
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performance edge. Several proposals have been made over 
the years, and a paper that contains a survey on the 
possibilities for image representations was published by F. 
Yan et al. in 2016 [1]. Some of the most notable techniques 
used to represent images in their quantum form are: 

i. FRQI (flexible representation for quantum images), 
proposed by P.Q. Le et al. in paper [2], contains 
information about color and position, integrating them 
into a quantum state; the image is defined as the sum of 
tensor products of color and position vectors; the color 
vector is defined as in formula (5): 

cos 0 sin 1 ,i i ic       (5) 

where, θ is the vector of angles which encodes the color 
component; 

ii. NEQR (novel enhanced quantum representation), 
proposed by Y. Zhang et al. in paper [3], contains 
information about the grayscale value and the position of 
each qubit; unlike FRQI, where the color information is 
referred to using the probability amplitude, in NEQR it is 
stored in the multi-qubit computational basis of the 
superposition state; 

iii. NCQI (novel quantum representation of color digital 
images), proposed by J. Sang et al. in paper [4], can be 
seen as an extension of NEQR, since it encapsulates the 
same idea, but for RGB images; the color component for 
each pixel is defined by the superposition of the 3 groups 
of qubits, one for the representation of each channel, as 
shown in formula (6): 

1 0 1 0 1 0( , ) ... ... ... ,q q qc y x R R G G B B     (6) 

where, q is the number of qubits for each color 
component; 

iv. QRCI (new quantum representation model of color 
digital images), proposed by L. Wang in paper [5] and 
inspired by NCQI, uses the bit-plane for each of the 3 
color components; an image can be defined with formula 
(7): 

32 1 2 1 2 1

2 3
0 0 0

1
,

2

n n

LYX LYX LYX
n

L Y X

I R G B LYX
  


  

   (7)  

where, LYX L Y X and L represents the bit-plane 

information (in the formula above the number of bit-
planes is 8, therefore 3 qubits are required) and YX the 

position information. 
Over the past years, researches have proposed multiple 

techniques in the field of quantum steganography. One of 
these is a novel watermarking protocol, using the NEQR 
representation, together with the Gray code transform and 
the least significant bit (LSB) steganography (see [6]). It 
uses the edges of the image, and the two LSBs. A 
watermarking algorithm that uses not only the LSBs, but 
also the Arnold scrambling, is proposed in paper [7]. The 
classical watermark image is first expanded, then scrambled 
using the Arnold transform (using the module of parallel 
adder modulo N), and finally embedded in the carrier image 
using the LSB method. The illustrated circuit from the 
simulation presents a lower time complexity. A similar 
concept, that relies on the LSB, combined with the bit-plane 
scrambling is described in paper [8]. The original image is 
modified using the bit-plane transformation, and then 

expanded to match the size of the cover image, using the 
secret key. These operations are followed by applying the 
Arnold scrambling, and the embedding procedure; hiding 
and extracting the message is done using two keys. 

Another steganography idea is based on an algorithm of 
modified exploiting modification direction (EMD, see paper 
[9]), where two images are used to store a secret message 
that is hidden inside a color image. The key is used in 
correlation with the three-color channels (R, G, B) – two of 
them are selected from the cover image. An improved EMD 
algorithm is presented in paper [10], where the new 
described concepts are those of expanding the modification 
range and the dynamically sharing between subgroups. 
Using these ideas, as well as embedding the secret message 
using bit-planes, allows this protocol to achieve a higher 
embedding rate; the authors of paper [10] also designed 
quantum circuits that illustrate how to implement this 
algorithm. 

In paper [11], a method that uses an inverted pattern 
approach is described. Here, as a final step in 
hiding/embedding the secret, the authors present a pixel 
adjustment process, that, depending on the quantum key, 
inverts (or keeps unmodified) every pixel from the quantum 
secret image. The key is stored in a variable number of 
LSBs from the cover image; the algorithm also has the 
property of extracting the hidden message using the inverse 
of the illustrated solution. 

In a different approach, the authors of paper [12] present a 
detection method using the LSB steganography in 
combination with the NEQR representation. This is based on 
the division of the quantum image in pixel blocks, followed 
by a classification of these blocks in 3 groups. A subsequent 
processing of these groups is used to indicate whether the 
image holds a hidden message. Another concept is presented 
in paper [13], where a novel coherence-based quantum 
steganalysis protocol is proposed. The geometric coherence 
and ½-affinity coherence are analyzed to calculate the 
probability of correct transmission, and two new 
performance metrics are introduced (steganographic 
detection rate and false alarm rate). They are calculated in 
detail for a BB84-based quantum steganography protocol. 
LSBq for multi-wavelength quantum images have also been 
used to implement a quantum steganography algorithm, as 
shown in paper [14]. The hidden message is embedded 
using methods such as the modulo method and the Hilbert 
scrambling, and the proposed protocol is robust against 
attacks on the stego-image. 

Various concepts for quantum key distribution protocols, 
quantum communication and secret sharing, that could be 
used to further develop the field of quantum steganography, 
are presented in detail in papers [15–19]. An interesting idea 
might also be to combine one of the quantum image 
representations with a quantum E-payment protocol, such as 
the one presented in paper [20]. Information on the 
historical evolution of steganography can be found in [21], 
while [22–33] present an overview of steganography 
techniques, as well as some of its current applications, 
representing a source of inspiration in the quantum universe. 

In our paper, the chosen image representation technique is 
NEQR, described in detail in Section III. Section II presents 
the Qiskit framework, while Section IV illustrates the 
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proposed algorithm and Section V describes the quantum 
circuits and the simulation results. 

II. THE QUANTUM FRAMEWORK 

The programming language that was used to implement, 
simulate and measure the results for the representation of 
images is Python, using the Qiskit framework, developed by 
IBM. A quick overview of this framework and its 
possibilities will be shown in this section. According to the 
official IBM website, Qiskit is “an open-source quantum 
computing software development framework for leveraging 
today’s quantum processors in research, education and 
business”. It offers support for both the execution and 
simulation of code written for quantum applications and 
algorithms. 

It is made up of 4 major components. Qiskit Terra 
contains a set of tools for writing quantum programs at the 
circuit level; it uses different optimizations for the available 
physical quantum processor and manages the execution of 
the experiments. Qiskit Aer is the high-performance 
simulator component – it contains optimized C++ simulator 
backends for the circuits compiled using Qiskit Terra, along 
with tools needed to analyze various noise models. Qiskit 
Aqua contains a set of quantum algorithms that can be used 
in different applications. Qiskit Ignis is a framework focused 
on the study of noise in quantum systems. 

The results presented in the following sections are 
obtained using the Aer simulator component, running on the 
local machine, with a number of program executions 
(“shots”) of 1024. 

III. QUANTUM IMAGE REPRESENTATION 

Multiple ways of representing an image using the 
quantum properties have been proposed over the years, and 
the one chosen in this paper is the novel enhanced quantum 
representation of digital images – NEQR, as proposed in 
paper [3]. This is justified by the more precise control of the 
color information, as well as the fact that the recovery of the 
image can be done using a finite number of quantum 
measurements (for each pixel). The NEQR uses a 
combination of entangled qubits, used to store the color and 
position information. Assuming a grayscale range of 0 to  
2q-1 (q bits required to represent the image), the gray value 
for each pixel (Y,X) can be written as 

where represents the gray value for 

the i-th bit. 

20 1 ... q
YX YX YXC C C C 1,q

YX
 i

YXC

A 2nx2n image can be expressed using the following 
general formula, as presented in [3], see formula (8) below: 

2 1 2 1
1
0

0 0

1
.

2

n n

q i
YXin

Y X

I C YX
 




 

    (8) 

The first step in a quantum algorithm involving the 
processing of an image requires us to design the quantum 
circuit that represents the image in the NEQR form. Let’s 
take the case of a grayscale image, where the gray level 
ranges from 0 to 255, and 8 classical bits are necessary for 
every value. We will need 8 qubits for the gray level, along 
with a number of qubits required for the binary 
representation of the total number of pixels – the position 
qubits. We will also require auxiliary qubits, that entangle 

with the position qubits; if certain conditions are validated (a 
set of conditions for every pixel position), then the 
connection between the last auxiliary qubit and the 
corresponding gray qubits sets their state. Every position 
qubit is first set up in superposition using the Hadamard 
gate, and then, for every position, if the corresponding bit 
for that position is 0, the inverse (NOT/X) gate is used (one 
combination will be generated during each phase of the 
circuit). Once all the position qubits are in the 1 state, we 

can use CNOT and CCNOT gates to entangle them with the 
auxiliary ones. An example is presented below, for the 
sample image in Figure 1, with the help of a Toffoli gate 
(see Figure 2). At the end of each cycle, the X gate is used 
again for each position qubit, if necessary, to restore the 
initial superposition state (after the Hadamard gate). 

Let’s analyze the following 2 x 2 image (Figure 1): 

 
Figure 1. Sample 2x2 image 

 
The gray levels for the image in Figure 1 are: 

38 96
.

136 217

 
 
 

 

Using the general formula for the NEQR, this image 
could be represented as in formulas (9) and (10): 

1
( 38 00 96 01

2
136 10 217 11 )

I    

   


  (9) 

1
( 00100110 00 01100000 01

2
10001000 10 11011001 11 )

I    

   


(10) 

For a 2 x 2 image, 2 qubits are required to represent the 
position (the qp register). The gray intensity is saved in the 
q7q6q5q4q3q2q1q0 vector, one ancilla qubit is used, and the 
classical registers used for measurements are crq and cra. 

The NEQR part of the circuit for the first pixel, with gray 
value 38, is presented in Figure 2. 

By measuring the probabilities using the local simulator, 
we can verify that the gray value qubits are set only when 
the auxiliary qubit is in the 1 state, as shown in Figure 3. 

The full NEQR circuit would contain the representation of 
all 4 pixels, in a similar manner as the one presented; this is 
the reason why the position qubits are set in superposition, 
so that at a single shot, the system would collapse and only 
one pixel value would be indicated, with its coordinates 
(position qubits). By repeating the experiment, there would 
theoretically be a 25% chance of obtaining each of the 4 
pixel values. If we simulate only one part of the NEQR 
circuit, for the first pixel, we expect the system to collapse 
to the desired state (ancilla qubit to 1, and the gray qubits to 
00100110 – the binary representation of 38) in only 25% of 
cases, the other 75% keeping the state of the gray qubits 
unmodified, as the position qubits indicate the other 
coordinates.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 21, Number 4, 2021 

 
Figure 2. Quantum circuit for the first pixel. After the first set of NOT gates, the state of each position qubit we are looking for is 1 . The ancilla qubit will 

be then set to state 1 , which in turn sets the 7 qubits (q7-q0) to the equivalent binary representation of value 38 

 

The obtained values, 24.1% and 75.9%, are relatively close 
to the ideal probabilities. 

 
Figure 3. Measured results, after simulating the circuit in Figure 2 

IV. ALGORITHM DESIGN 

The current paper proposes to hide information inside an 
image, using the LSBs from the representation of various 
pixels; different patterns have been proposed over the years 
– some use the edges, or perhaps a certain algorithm, like 
skipping the odd or even bytes. 

The proposed algorithm uses the following conventions: 
the lower threshold, hidden in a grayscale image, is made up 
of the LSB of each of the first 8 pixels, starting with the 
edge in the left upper corner and going clockwise. The upper 
threshold is made up of the LSBs from the following 8 
pixels. If the image is not large enough (doesn’t have 
enough pixels) to hide the thresholds on the edges, then the 
next layer can be used; this also means that the image has 
already been processed in a classical or quantum manner to 
set the last bits of the first 16 pixels and the bits for the 
actual message. 

An n x m gray image can be written using a binary matrix 
as follows in formula (11): 

0,0 0, 1

1,0 1, 1

.
m

n n

I I

I

I I



 

 
 



  



If the LSB value of a pixel, located at the x row and y 
column (Ix,y), is expressed as LSBx,y, then depending on the 
size of the image, the threshold, with the MSB (most 
significant bit) saved in the first pixel, can be written as 
shown in formulas (12), (13), (14), (15), (16) and (17) 
below: 

i. for m equal or greater than 16 (the first row contains 
enough pixels, so that their LSBs cover both of the 
thresholds): 

m





3

  (11) 

0,0 0,1 0,2 0,

0,4 0,5 0,6 0,7 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




  (12) 

where, represents the MSB of the threshold and 0,0LSB

0,8 0,9 0,10 0,11

0,12 0,13 0,14 0,15;

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (13)  

ii. for m less than 16 and n equal to or greater than 16, for 
example m=4 (the first row and the last column are 
encoded with the values for the thresholds): 

0,0 0,1 0,2 0,3

1,3 2,3 3,3 4,3 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




  (14) 

5,3 6,3 7,3 8,3

9,3 10,3 11,3 12,3;

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (15) 

iii. for both m and n less than 16, for example m=7 and 
n=5: 

0,0 0,1 0,2 0,3

0,4 0,5 0,6 1,6 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




  (16) 

2,6 3,6 4,6 4,5

4,4 4,3 4,2 4,1.

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




  (17) 

If the image is too small and there are not enough pixels 
on the edges (2n+2m-4<16), then the thresholds are 
embedded in the next edge layer (clockwise, starting with 
pixel I1,1). 

After the threshold values have been calculated (they can 
be extracted – which can be done in a classic manner, in 
parallel, without any performance loss or in quantum, by 
entangling the LSB qubits of the first 16 pixels to other 
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qubits, especially chosen for the threshold values; they can 
also be used directly in quantum, since with NEQR we 
already have access to them), each group of 8 qubits in the 
quantum image (the representation of a grayscale value) 
should be compared to these values. One such design is the 
8-bit half comparator proposed by Xia et al. in paper [34] 
and will be treated as a black box in the 2 figures below; 
except for the two 8 qubit values, one more auxiliary qubit 
is needed (comp), that will be set to the 1 state if the second 

value is greater than the first and 0 otherwise. Figure 4 

presents these comparators: 

 
Figure 4. Design of the two 8-bit comparators required for each pixel 

 
In other words, in Figure 4 and the rest of this paper, the 

representation convention in the design above is that the 
comp qubit will be set to 1 if the value in the image is 

within the boundaries of the thresholds. 
The general diagram for each group of 8 qubits requires 

an auxiliary qubit, pass, that will be set to 1 if both output 

(comp) values of the comparators (comp1 and comp2) in the 
figure below) will be in the 1 state – this is done by using a 

Toffoli gate. After this operation, the value must be inverted 
and connected to a reset block, that will either keep the state 
of the image qubits, or set them to the 0 state (the output of 

this block is called xyQ – this is the decrypted image). This 

diagram is represented in Figure 5. 
There are two ways to go forward depending on the 

approach regarding the reset operation of a qubit: 
1. The first method assumes that a hypothetical reset gate 

(or a general gate that could set a qubit to a desired state, 
0 or 1 ) will be implemented in the future, then basically 

the reset control block connects the NOT(pass) state to the 
ENABLE signal of a simple pass-or-reset block for each 
qubit of the Qxy vector. The feasibility of using NEQR as a 
way to represent an image, along with certain conditions for 
traceability concerning the reset gate, are presented by 
Mario Mastriani in [35] – this justifies the second method. 

2. If we assume that a reset gate cannot be implemented, 
an alternative solution would be to stop the quantum 
processing right after the NOT gate in Figure 5, by 
measuring (and thus collapsing) the image qubits. The logic 
for the reset control block can be continued in a classical 
manner, with a AND gate between the measured 
(NOT(pass)) value and the image bits (for a group of image 
pixels this can be done in parallel on multiple threads, since 
keeping or resetting the values for the image pixels are 
independent processes). 

If we want to hide a grayscale sub-image using the 
proposed protocol, the following steps need to be taken: 

 
Figure 5. General diagram of the threshold comparing process 

 
first, we need to classically modify the edge pixels in the 
cover image, in order for them to indicate the thresholds, 
such that the pixels from the secret image have values in the 
desired interval. Then, the sub-image is hidden inside the 
cover object, either by replacing the target pixels belonging 
to the secret, or by using a different value modification 
technique for the pixels’ value, to better embed the hidden 
sub-image; any method can be used, as long as the secret 
does not stand out. The decryption implies the classical 
recovery of the thresholds, the design of the quantum image 
using the NEQR representation, followed by the addition of 
the comparator blocks (see Figure 5). Two circuits, one for 
each threshold (together with all the pixels and the 
comparators) would be required for the entire process. Also, 
in order to obtain the best results, it would help to select or 
modify a sub-image such that its pixels’ gray range is as 
small as possible. 

Hiding an RGB sub-image can be done in two manners: if 
we want to hide it inside an RGB image, then using a 
different quantum representation technique (for color 
images) is recommended, such as NCQI or QRCI. If we 
want to hide an RGB image inside a grayscale image, then 
we would require a different, more complex design; for 
example, we can convert the RGB image to a grayscale 
image, hide it as explained above, and then keep some 
information (besides the thresholds) regarding the RGB 
channels for some pixels of the secret on the edges – this 
may not be optimal, since we would have to use a lot of 
edge pixels, and could only work if the hidden RGB sub-
image is relatively small compared to the cover object. The 
current paper focuses on cover objects and hidden messages 
represented using grayscale images. 

V. IMPLEMENTATION AND RESULTS 

This section of the paper offers details regarding the 
configuration used within the Qiskit framework, together 
with the results obtained for the described algorithm. 

After the quantum image representation, described in 
detail in section III, the next obstacle was to create a 
subcircuit capable of implementing a custom Toffoli gate, 
required by the 8-bit half comparator (see Figure 6, from 
paper [34]).  
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The custom Toffoli gate, named “ccx2”, implements a 
subcircuit that performs the following operations: when 
applied on three qubits, it leaves the first unchanged, it 
inverts the second, applies a Toffoli gate with the first two 
as control qubits and the third as the target qubit, and then 
reverts the second to its original state using another “X” 
gate. The following figures illustrate a test circuit for this 
gate: two Hadamard gates for the control qubits and the 
circuit itself – Figure 7 shows the decomposed circuit, and 
Figure 8 its symbolic representation. 

This circuit can be quickly verified by checking that qubit 
q3 is set to 1 only when q1 is set to 1 and q2 to 0 , which 

can be seen in Figure 9. The next step is to create a circuit 
that contains the following qubits: the first group of 8 qubits 
(plus one ancilla qubit and qubits for position, their number 
depending on the image size) will be used to represent the 
current pixel of an image, and the following groups will 
represent the first 8 pixels for the lower threshold or the 
following 8 for the upper threshold. 

 
Figure 6. The 8-bit half comparator [34] 
 

The current pixel, along with the threshold pixels are 
represented using NEQR; in order to simplify the visual 
representation of the circuit we can use a “multi-cX” gate 
(“mcx” in Qiskit), that correlates only one ancilla qubit to 
the position qubits (there are multiple techniques in which 
the mcx gate can be implemented, but it can generally be 
seen as an extension of the CNOT gate with a variable 
number of control qubits). 

 
Figure 7. The custom Toffoli gate (expanded view) 

 
Figure 8. The custom Toffoli gate (compressed view) 

 
Once all these qubits are in the desired states, the 

comparator is added to the circuit (it uses 18 qubits – 2 
groups of 8 for the current pixel and the threshold, along 
with 2 auxiliary qubits, see Figure 6). In total, this circuit 

requires a group of 8 gray level qubits, 6 position qubits and 
1 auxiliary qubit for the NEQR representation, multiplied by 
9, to which we add 2 auxiliary qubits for the comparator, 
that is 137 qubits. 

By zooming in on the first part of this circuit, we can see 
the representation of the current pixel (in this particular case 
it is the first pixel of the image), together with the 
representation of the first two pixels, the last qubit of each 
group being required for the lower threshold (Figure 10). 

 
Figure 9. Measured results for the custom Toffoli gate 

 
Obtaining the desired results can be done by simulating a 

circuit that keeps the same core elements as the one above, 
but only contains the minimum number of qubits required 
for measurements. For example, for an 8x8 image, where 6 
qubits for position are required, a circuit would require the 
following 30 qubits: 

i. 9 qubits are required for the lower threshold – 8 qubits 
for the gray and an auxiliary one that can set the gray 
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level qubits to mirror the qubit states of the last qubit for 
each pixel representation (of the first 8) from the full 
circuit; 

ii. 19 qubits are required for the current pixel – the NEQR 
representation in this case implies the use of 8 qubits for 
the gray levels, 6 for the position and 5 ancilla qubits; 

iii. 2 ancilla qubits (aux1 and res1) are required by the 
comparator. 
The described configuration can be seen in the circuit 

from Figure 11, for the value of the lower threshold of 128 
and the value of the current pixel of 200. 

The results obtained by simulating the circuit can be seen 
in Figure 12. The measurements from this figure clearly 
show that when the qubits are in the desired states (200 for 
the current pixel and 128 for the lower threshold), the first 
qubit from the measured results (res1, measured using the 
classical register cl-res) is in state 1 , which means that the 

comparator identified that the second number (value of 
current pixel) is higher than the first (lower threshold). The 
probabilities can be quickly verified by counting the number 
of qubits set in superposition – in the presented case, these 
are the 6 qubits used to represent the position, so the 
theoretical probability of all of them being in state 0 , after 

the Hadamard gate (and all of them in state 1 after the first 

set of NOT gates) is 1/64=0.015625, relatively close to the 
0.012 value from the simulated experiment. 

In terms of gate costs, we can see that the circuit 
presented in Figure 11 requires 13 NOT gates, 6 Hadamard 
gates, 35 CNOT gates, 7 CCNOT gates and 13 subcircuits, 
called “ccx2”, each of them containing one CCNOT gate 
and two NOT gates, required for the comparator (so 20 
CCNOT gates and 39 NOT gates in total).

 
Figure 10. NEQR representation for the current pixel and the threshold, along with the comparator (zoomed in from the full circuit with 137 qubits) 
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Figure 11. Circuit containing the NEQR representation of the current pixel, the threshold qubits, along with the comparator 
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Note that the number of NOT gates and CNOT gates, 
required to set the qubits from qc7 to qc0, depends on the 
pixel position and gray value. The worst-case scenario for 
the circuit in Figure 11 occurs when both the threshold and 
the current pixel have value 255, located in the upper left 
corner of the image, equivalent to indexes 0 for both the row 
and the column, which in turn would require the maximum 
number of NOT gates. In this case, 47 CNOT gates would 
be needed in total, while the numbers for all the other types 
of gates above remain the same. A circuit like the one 
described would have to be applied two times, extended to 
all pixels in the image (once for the lower threshold and 
once for the upper one).  

 
Figure 12. Results obtained for the simulation of the circuit presented in 
Figure 11 

 
The memory usage for simulating the circuit in Figure 11 

was 16,416.2 MB RAM, and the CPU was running at 100% 
at 4.68 GHz. The simulation took 70.9 seconds. The 
computer used for this test has an Intel i9-9900K processor 
at a base speed of 3.60 GHz. 

The main advantage of the presented quantum algorithm, 
in comparison to a classical implementation, is the speedup. 
In this context, the representation itself (NEQR), if 
implemented on a quantum computer that is fast enough 
(shots per second), will ensure the fact that the access to all 
qubit states (pixel values) could be done much faster. 
Another key element of the algorithm is the use of the 
quantum comparators, which are configured as an extension 
for NEQR in the proposed protocol; they stand out as being 
highly efficient, using a relatively low number of quantum 
operations and having a small quantum delay (see [34]). The 
circuit in Figure 11 represents a part of one of only two 
greater circuits (one for each threshold), that would contain 
the encoding of each pixel; for larger images, the quantum 
solution improves the classical one, which would have to 
manually go over each pixel at a time and perform two 
classical comparison operations. If a parallel-processing 
solution is wanted on the classical devices, then special 
hardware could be required, and/or multithreaded 
programming. This quantum protocol presents a higher 
degree of computing parallelism and usability, since it 

builds on what is seen as one of the already analyzed 
quantum image representation techniques, without needing 
any additional effort for its efficiency. 

VI. CONCLUSION 

The current paper describes a way of hiding information 
inside an image, with the help of a quantum framework, by 
embedding not only a secret message in the image, but also 
two auxiliary hidden thresholds used for its processing. 
Among the presented ideas, an implementation of one 
quantum representation (NEQR) for a grayscale image is 
shown, using the Qiskit framework (and the Python 
programming language), where two thresholds are hidden 
by setting the LSB on the edges (this can be extended to an 
RGB image). The general diagram of the proposed 
algorithm involves the extraction of the required threshold 
values using the design of the 8-bit half comparators 
proposed by Xia et. al. A short analysis/discussion on the 
control block for the reset operation is described, which 
could further contribute to a faster algorithm, should an 
operation for resetting a qubit be possible in the future. The 
enhanced performance for the presented scheme is justified 
by the quantum representation of the image, in combination 
with the mentioned comparators, allowing for an efficient 
quantum steganography approach. 
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