
Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

Quantum Steganography Using Two Hidden
Thresholds

Alexandru-Gabriel TUDORACHE, Vasile MANTA, Simona CARAIMAN
Department of Computer Science and Engineering,

 Gh. Asachi Technical University of Iasi, D. Mangeron 27A, 700050, Iasi, Romania
alexandru-gabriel.tudorache@academic.tuiasi.ro

1Abstract—This paper describes a novel steganography

algorithm that combines quantum computing with the least
significant bit technique (LSB). Using the quantum properties,
along with the Python programming language and the Qiskit
framework for the circuit simulation, a sub-image can be
hidden inside a usual image. For a gray image, this article
presents how the LSB of each of the first 16 pixels on the edges
can be used to hide two threshold values, that are then used to
filter out the image and reveal the secret message. The
speedup, compared to the classical version, is possible due to
the quantum representation of an image (NEQR is used in this
paper) and the efficiency of the novel multi-bit quantum
comparators.

Index Terms—data security, image communication, image

processing, image representation, quantum computing.

I. INTRODUCTION

The quantum representation and processing of
information is a great subject in the information technology
area. This has been especially highlighted by the latest
innovations, such as D-Wave, IBM Q System One (a 20-
qubit quantum computer) and Google’s quantum computer
(a 54-qubit Sycamore processor) – it has recently claimed
“quantum supremacy”, by performing a calculation in 200
seconds instead of 10,000 years, the time required on a
classical computer. Today we can not only simulate various
circuits on classical computers, but also run and measure the
results on real platforms, available through cloud services.

The whole quantum universe is based on the core concept
that the fundamental unit, named “qubit” (quantum bit), can
not only be 0 or 1 like the classical bit, but it can
simultaneously be in different states – this property is called
superposition. For each of these states, the qubit has a
certain probability associated with it. In the quantum world,
these states are 0 and 1 , and they are also known as “ket”

or “vector”. Any qubit  can be written as a superposition

of these states, as seen in formula (1) below:
0 1 , (1)    

with α and β complex numbers, which verify the

property:
2 2

1.   The probability for the qubit to be

in the 0 state is 2 and the probability for it to be in the

1 state is 2
.

Every quantum algorithm used to process data requires a
quantum circuit that implements certain operations. In the
quantum universe, these operations can be translated using

quantum gates; all of the quantum gates are described using
unitary transforms, so therefore they are reversible – this
implies that the number of inputs be equal to the number of
outputs. The gates required to implement the circuits
presented in this paper are briefly explained below; the
single qubit gates are as follows: the NOT gate (“X”), that
acts in a similar way to the classical not gate, (it is a linear
gate, the state

0 1a b is changed to 1 0 ,a b and the

Hadamard gate (“H”), which allows to set the basic states
into superposition, with equal probabilities, see formulas (2)
and (3):

 

1 1 1 11 1
0

1 1 0 12 2

1 01 1
0 1

0 12 2

H
      

,

               
    

            

 (2)

 

1 1 0 11 1
1

1 1 1 12 2

1 01 1
0 1

0 12 2

H
      

.

                
    

             (3)
The gates that act on multiple qubits, used in this paper,

are:
i. the CNOT gate (controlled-NOT), which can be seen as
the equivalent of the classical XOR gate. Its input qubits
are called the control qubit and the target qubit; the 0

state for the control qubit means that the target qubit
remains unchanged; the 1 state for the control qubit

reverses the state of the target qubit. If we name the two
qubits c (the control qubit) and t (the target qubit), then

the action of the gate can be summarized as
()ct c c t  .

ii. the CCNOT (Toffoli) gate, that is an extension of the
CNOT gate; it has 2 control qubits (1c and 2c) and 1

target qubit (t). The target qubit will be set by

calculating the XOR value between t and the logic
product of the control qubits, see formula (4):

1 2(t t c c  ) (4)

One of the most important aspects for having better
performance regarding a quantum algorithm, compared to
its classical counterpart, comes down to being able to utilize
the quantum properties such as superposition and quantum
entanglement. When referring to quantum steganography,
the way the image is represented is crucial to bringing that

 79
1582-7445 © 2021 AECE

Digital Object Identifier 10.4316/AECE.2021.04009

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

performance edge. Several proposals have been made over
the years, and a paper that contains a survey on the
possibilities for image representations was published by F.
Yan et al. in 2016 [1]. Some of the most notable techniques
used to represent images in their quantum form are:

i. FRQI (flexible representation for quantum images),
proposed by P.Q. Le et al. in paper [2], contains
information about color and position, integrating them
into a quantum state; the image is defined as the sum of
tensor products of color and position vectors; the color
vector is defined as in formula (5):

cos 0 sin 1 ,i i ic    (5)

where, θ is the vector of angles which encodes the color
component;

ii. NEQR (novel enhanced quantum representation),
proposed by Y. Zhang et al. in paper [3], contains
information about the grayscale value and the position of
each qubit; unlike FRQI, where the color information is
referred to using the probability amplitude, in NEQR it is
stored in the multi-qubit computational basis of the
superposition state;

iii. NCQI (novel quantum representation of color digital
images), proposed by J. Sang et al. in paper [4], can be
seen as an extension of NEQR, since it encapsulates the
same idea, but for RGB images; the color component for
each pixel is defined by the superposition of the 3 groups
of qubits, one for the representation of each channel, as
shown in formula (6):

1 0 1 0 1 0(,) ,q q qc y x R R G G B B   (6)

where, q is the number of qubits for each color
component;

iv. QRCI (new quantum representation model of color
digital images), proposed by L. Wang in paper [5] and
inspired by NCQI, uses the bit-plane for each of the 3
color components; an image can be defined with formula
(7):

32 1 2 1 2 1

2 3
0 0 0

1
,

2

n n

LYX LYX LYX
n

L Y X

I R G B LYX
  


  

  (7)

where, LYX L Y X and L represents the bit-plane

information (in the formula above the number of bit-
planes is 8, therefore 3 qubits are required) and YX the

position information.
Over the past years, researches have proposed multiple

techniques in the field of quantum steganography. One of
these is a novel watermarking protocol, using the NEQR
representation, together with the Gray code transform and
the least significant bit (LSB) steganography (see [6]). It
uses the edges of the image, and the two LSBs. A
watermarking algorithm that uses not only the LSBs, but
also the Arnold scrambling, is proposed in paper [7]. The
classical watermark image is first expanded, then scrambled
using the Arnold transform (using the module of parallel
adder modulo N), and finally embedded in the carrier image
using the LSB method. The illustrated circuit from the
simulation presents a lower time complexity. A similar
concept, that relies on the LSB, combined with the bit-plane
scrambling is described in paper [8]. The original image is
modified using the bit-plane transformation, and then

expanded to match the size of the cover image, using the
secret key. These operations are followed by applying the
Arnold scrambling, and the embedding procedure; hiding
and extracting the message is done using two keys.

Another steganography idea is based on an algorithm of
modified exploiting modification direction (EMD, see paper
[9]), where two images are used to store a secret message
that is hidden inside a color image. The key is used in
correlation with the three-color channels (R, G, B) – two of
them are selected from the cover image. An improved EMD
algorithm is presented in paper [10], where the new
described concepts are those of expanding the modification
range and the dynamically sharing between subgroups.
Using these ideas, as well as embedding the secret message
using bit-planes, allows this protocol to achieve a higher
embedding rate; the authors of paper [10] also designed
quantum circuits that illustrate how to implement this
algorithm.

In paper [11], a method that uses an inverted pattern
approach is described. Here, as a final step in
hiding/embedding the secret, the authors present a pixel
adjustment process, that, depending on the quantum key,
inverts (or keeps unmodified) every pixel from the quantum
secret image. The key is stored in a variable number of
LSBs from the cover image; the algorithm also has the
property of extracting the hidden message using the inverse
of the illustrated solution.

In a different approach, the authors of paper [12] present a
detection method using the LSB steganography in
combination with the NEQR representation. This is based on
the division of the quantum image in pixel blocks, followed
by a classification of these blocks in 3 groups. A subsequent
processing of these groups is used to indicate whether the
image holds a hidden message. Another concept is presented
in paper [13], where a novel coherence-based quantum
steganalysis protocol is proposed. The geometric coherence
and ½-affinity coherence are analyzed to calculate the
probability of correct transmission, and two new
performance metrics are introduced (steganographic
detection rate and false alarm rate). They are calculated in
detail for a BB84-based quantum steganography protocol.
LSBq for multi-wavelength quantum images have also been
used to implement a quantum steganography algorithm, as
shown in paper [14]. The hidden message is embedded
using methods such as the modulo method and the Hilbert
scrambling, and the proposed protocol is robust against
attacks on the stego-image.

Various concepts for quantum key distribution protocols,
quantum communication and secret sharing, that could be
used to further develop the field of quantum steganography,
are presented in detail in papers [15–19]. An interesting idea
might also be to combine one of the quantum image
representations with a quantum E-payment protocol, such as
the one presented in paper [20]. Information on the
historical evolution of steganography can be found in [21],
while [22–33] present an overview of steganography
techniques, as well as some of its current applications,
representing a source of inspiration in the quantum universe.

In our paper, the chosen image representation technique is
NEQR, described in detail in Section III. Section II presents
the Qiskit framework, while Section IV illustrates the

 80

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

 81

proposed algorithm and Section V describes the quantum
circuits and the simulation results.

II. THE QUANTUM FRAMEWORK

The programming language that was used to implement,
simulate and measure the results for the representation of
images is Python, using the Qiskit framework, developed by
IBM. A quick overview of this framework and its
possibilities will be shown in this section. According to the
official IBM website, Qiskit is “an open-source quantum
computing software development framework for leveraging
today’s quantum processors in research, education and
business”. It offers support for both the execution and
simulation of code written for quantum applications and
algorithms.

It is made up of 4 major components. Qiskit Terra
contains a set of tools for writing quantum programs at the
circuit level; it uses different optimizations for the available
physical quantum processor and manages the execution of
the experiments. Qiskit Aer is the high-performance
simulator component – it contains optimized C++ simulator
backends for the circuits compiled using Qiskit Terra, along
with tools needed to analyze various noise models. Qiskit
Aqua contains a set of quantum algorithms that can be used
in different applications. Qiskit Ignis is a framework focused
on the study of noise in quantum systems.

The results presented in the following sections are
obtained using the Aer simulator component, running on the
local machine, with a number of program executions
(“shots”) of 1024.

III. QUANTUM IMAGE REPRESENTATION

Multiple ways of representing an image using the
quantum properties have been proposed over the years, and
the one chosen in this paper is the novel enhanced quantum
representation of digital images – NEQR, as proposed in
paper [3]. This is justified by the more precise control of the
color information, as well as the fact that the recovery of the
image can be done using a finite number of quantum
measurements (for each pixel). The NEQR uses a
combination of entangled qubits, used to store the color and
position information. Assuming a grayscale range of 0 to
2q-1 (q bits required to represent the image), the gray value
for each pixel (Y,X) can be written as

where represents the gray value for

the i-th bit.

20 1 ... q
YX YX YXC C C C 1,q

YX
 i

YXC

A 2nx2n image can be expressed using the following
general formula, as presented in [3], see formula (8) below:

2 1 2 1
1
0

0 0

1
.

2

n n

q i
YXin

Y X

I C YX
 




 

  (8)

The first step in a quantum algorithm involving the
processing of an image requires us to design the quantum
circuit that represents the image in the NEQR form. Let’s
take the case of a grayscale image, where the gray level
ranges from 0 to 255, and 8 classical bits are necessary for
every value. We will need 8 qubits for the gray level, along
with a number of qubits required for the binary
representation of the total number of pixels – the position
qubits. We will also require auxiliary qubits, that entangle

with the position qubits; if certain conditions are validated (a
set of conditions for every pixel position), then the
connection between the last auxiliary qubit and the
corresponding gray qubits sets their state. Every position
qubit is first set up in superposition using the Hadamard
gate, and then, for every position, if the corresponding bit
for that position is 0, the inverse (NOT/X) gate is used (one
combination will be generated during each phase of the
circuit). Once all the position qubits are in the 1 state, we

can use CNOT and CCNOT gates to entangle them with the
auxiliary ones. An example is presented below, for the
sample image in Figure 1, with the help of a Toffoli gate
(see Figure 2). At the end of each cycle, the X gate is used
again for each position qubit, if necessary, to restore the
initial superposition state (after the Hadamard gate).

Let’s analyze the following 2 x 2 image (Figure 1):

Figure 1. Sample 2x2 image

The gray levels for the image in Figure 1 are:

38 96
.

136 217

 
 
 

Using the general formula for the NEQR, this image
could be represented as in formulas (9) and (10):

1
(38 00 96 01

2
136 10 217 11)

I    

   


 (9)

1
(00100110 00 01100000 01

2
10001000 10 11011001 11)

I    

   


(10)

For a 2 x 2 image, 2 qubits are required to represent the
position (the qp register). The gray intensity is saved in the
q7q6q5q4q3q2q1q0 vector, one ancilla qubit is used, and the
classical registers used for measurements are crq and cra.

The NEQR part of the circuit for the first pixel, with gray
value 38, is presented in Figure 2.

By measuring the probabilities using the local simulator,
we can verify that the gray value qubits are set only when
the auxiliary qubit is in the 1 state, as shown in Figure 3.

The full NEQR circuit would contain the representation of
all 4 pixels, in a similar manner as the one presented; this is
the reason why the position qubits are set in superposition,
so that at a single shot, the system would collapse and only
one pixel value would be indicated, with its coordinates
(position qubits). By repeating the experiment, there would
theoretically be a 25% chance of obtaining each of the 4
pixel values. If we simulate only one part of the NEQR
circuit, for the first pixel, we expect the system to collapse
to the desired state (ancilla qubit to 1, and the gray qubits to
00100110 – the binary representation of 38) in only 25% of
cases, the other 75% keeping the state of the gray qubits
unmodified, as the position qubits indicate the other
coordinates.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

Figure 2. Quantum circuit for the first pixel. After the first set of NOT gates, the state of each position qubit we are looking for is 1 . The ancilla qubit will

be then set to state 1 , which in turn sets the 7 qubits (q7-q0) to the equivalent binary representation of value 38

The obtained values, 24.1% and 75.9%, are relatively close
to the ideal probabilities.

Figure 3. Measured results, after simulating the circuit in Figure 2

IV. ALGORITHM DESIGN

The current paper proposes to hide information inside an
image, using the LSBs from the representation of various
pixels; different patterns have been proposed over the years
– some use the edges, or perhaps a certain algorithm, like
skipping the odd or even bytes.

The proposed algorithm uses the following conventions:
the lower threshold, hidden in a grayscale image, is made up
of the LSB of each of the first 8 pixels, starting with the
edge in the left upper corner and going clockwise. The upper
threshold is made up of the LSBs from the following 8
pixels. If the image is not large enough (doesn’t have
enough pixels) to hide the thresholds on the edges, then the
next layer can be used; this also means that the image has
already been processed in a classical or quantum manner to
set the last bits of the first 16 pixels and the bits for the
actual message.

An n x m gray image can be written using a binary matrix
as follows in formula (11):

0,0 0, 1

1,0 1, 1

.
m

n n

I I

I

I I



 

 
 



  



If the LSB value of a pixel, located at the x row and y
column (Ix,y), is expressed as LSBx,y, then depending on the
size of the image, the threshold, with the MSB (most
significant bit) saved in the first pixel, can be written as
shown in formulas (12), (13), (14), (15), (16) and (17)
below:

i. for m equal or greater than 16 (the first row contains
enough pixels, so that their LSBs cover both of the
thresholds):

m





3

 (11)

0,0 0,1 0,2 0,

0,4 0,5 0,6 0,7 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (12)

where, represents the MSB of the threshold and 0,0LSB

0,8 0,9 0,10 0,11

0,12 0,13 0,14 0,15;

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (13)

ii. for m less than 16 and n equal to or greater than 16, for
example m=4 (the first row and the last column are
encoded with the values for the thresholds):

0,0 0,1 0,2 0,3

1,3 2,3 3,3 4,3 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (14)

5,3 6,3 7,3 8,3

9,3 10,3 11,3 12,3;

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (15)

iii. for both m and n less than 16, for example m=7 and
n=5:

0,0 0,1 0,2 0,3

0,4 0,5 0,6 1,6 ,
lowerTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (16)

2,6 3,6 4,6 4,5

4,4 4,3 4,2 4,1.

upperTh LSB LSB LSB LSB

LSB LSB LSB LSB




 (17)

If the image is too small and there are not enough pixels
on the edges (2n+2m-4<16), then the thresholds are
embedded in the next edge layer (clockwise, starting with
pixel I1,1).

After the threshold values have been calculated (they can
be extracted – which can be done in a classic manner, in
parallel, without any performance loss or in quantum, by
entangling the LSB qubits of the first 16 pixels to other

 82

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

qubits, especially chosen for the threshold values; they can
also be used directly in quantum, since with NEQR we
already have access to them), each group of 8 qubits in the
quantum image (the representation of a grayscale value)
should be compared to these values. One such design is the
8-bit half comparator proposed by Xia et al. in paper [34]
and will be treated as a black box in the 2 figures below;
except for the two 8 qubit values, one more auxiliary qubit
is needed (comp), that will be set to the 1 state if the second

value is greater than the first and 0 otherwise. Figure 4

presents these comparators:

Figure 4. Design of the two 8-bit comparators required for each pixel

In other words, in Figure 4 and the rest of this paper, the

representation convention in the design above is that the
comp qubit will be set to 1 if the value in the image is

within the boundaries of the thresholds.
The general diagram for each group of 8 qubits requires

an auxiliary qubit, pass, that will be set to 1 if both output

(comp) values of the comparators (comp1 and comp2) in the
figure below) will be in the 1 state – this is done by using a

Toffoli gate. After this operation, the value must be inverted
and connected to a reset block, that will either keep the state
of the image qubits, or set them to the 0 state (the output of

this block is called xyQ – this is the decrypted image). This

diagram is represented in Figure 5.
There are two ways to go forward depending on the

approach regarding the reset operation of a qubit:
1. The first method assumes that a hypothetical reset gate

(or a general gate that could set a qubit to a desired state,
0 or 1) will be implemented in the future, then basically

the reset control block connects the NOT(pass) state to the
ENABLE signal of a simple pass-or-reset block for each
qubit of the Qxy vector. The feasibility of using NEQR as a
way to represent an image, along with certain conditions for
traceability concerning the reset gate, are presented by
Mario Mastriani in [35] – this justifies the second method.

2. If we assume that a reset gate cannot be implemented,
an alternative solution would be to stop the quantum
processing right after the NOT gate in Figure 5, by
measuring (and thus collapsing) the image qubits. The logic
for the reset control block can be continued in a classical
manner, with a AND gate between the measured
(NOT(pass)) value and the image bits (for a group of image
pixels this can be done in parallel on multiple threads, since
keeping or resetting the values for the image pixels are
independent processes).

If we want to hide a grayscale sub-image using the
proposed protocol, the following steps need to be taken:

Figure 5. General diagram of the threshold comparing process

first, we need to classically modify the edge pixels in the
cover image, in order for them to indicate the thresholds,
such that the pixels from the secret image have values in the
desired interval. Then, the sub-image is hidden inside the
cover object, either by replacing the target pixels belonging
to the secret, or by using a different value modification
technique for the pixels’ value, to better embed the hidden
sub-image; any method can be used, as long as the secret
does not stand out. The decryption implies the classical
recovery of the thresholds, the design of the quantum image
using the NEQR representation, followed by the addition of
the comparator blocks (see Figure 5). Two circuits, one for
each threshold (together with all the pixels and the
comparators) would be required for the entire process. Also,
in order to obtain the best results, it would help to select or
modify a sub-image such that its pixels’ gray range is as
small as possible.

Hiding an RGB sub-image can be done in two manners: if
we want to hide it inside an RGB image, then using a
different quantum representation technique (for color
images) is recommended, such as NCQI or QRCI. If we
want to hide an RGB image inside a grayscale image, then
we would require a different, more complex design; for
example, we can convert the RGB image to a grayscale
image, hide it as explained above, and then keep some
information (besides the thresholds) regarding the RGB
channels for some pixels of the secret on the edges – this
may not be optimal, since we would have to use a lot of
edge pixels, and could only work if the hidden RGB sub-
image is relatively small compared to the cover object. The
current paper focuses on cover objects and hidden messages
represented using grayscale images.

V. IMPLEMENTATION AND RESULTS

This section of the paper offers details regarding the
configuration used within the Qiskit framework, together
with the results obtained for the described algorithm.

After the quantum image representation, described in
detail in section III, the next obstacle was to create a
subcircuit capable of implementing a custom Toffoli gate,
required by the 8-bit half comparator (see Figure 6, from
paper [34]).

 83

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

 84

The custom Toffoli gate, named “ccx2”, implements a
subcircuit that performs the following operations: when
applied on three qubits, it leaves the first unchanged, it
inverts the second, applies a Toffoli gate with the first two
as control qubits and the third as the target qubit, and then
reverts the second to its original state using another “X”
gate. The following figures illustrate a test circuit for this
gate: two Hadamard gates for the control qubits and the
circuit itself – Figure 7 shows the decomposed circuit, and
Figure 8 its symbolic representation.

This circuit can be quickly verified by checking that qubit
q3 is set to 1 only when q1 is set to 1 and q2 to 0 , which

can be seen in Figure 9. The next step is to create a circuit
that contains the following qubits: the first group of 8 qubits
(plus one ancilla qubit and qubits for position, their number
depending on the image size) will be used to represent the
current pixel of an image, and the following groups will
represent the first 8 pixels for the lower threshold or the
following 8 for the upper threshold.

Figure 6. The 8-bit half comparator [34]

The current pixel, along with the threshold pixels are
represented using NEQR; in order to simplify the visual
representation of the circuit we can use a “multi-cX” gate
(“mcx” in Qiskit), that correlates only one ancilla qubit to
the position qubits (there are multiple techniques in which
the mcx gate can be implemented, but it can generally be
seen as an extension of the CNOT gate with a variable
number of control qubits).

Figure 7. The custom Toffoli gate (expanded view)

Figure 8. The custom Toffoli gate (compressed view)

Once all these qubits are in the desired states, the

comparator is added to the circuit (it uses 18 qubits – 2
groups of 8 for the current pixel and the threshold, along
with 2 auxiliary qubits, see Figure 6). In total, this circuit

requires a group of 8 gray level qubits, 6 position qubits and
1 auxiliary qubit for the NEQR representation, multiplied by
9, to which we add 2 auxiliary qubits for the comparator,
that is 137 qubits.

By zooming in on the first part of this circuit, we can see
the representation of the current pixel (in this particular case
it is the first pixel of the image), together with the
representation of the first two pixels, the last qubit of each
group being required for the lower threshold (Figure 10).

Figure 9. Measured results for the custom Toffoli gate

Obtaining the desired results can be done by simulating a

circuit that keeps the same core elements as the one above,
but only contains the minimum number of qubits required
for measurements. For example, for an 8x8 image, where 6
qubits for position are required, a circuit would require the
following 30 qubits:

i. 9 qubits are required for the lower threshold – 8 qubits
for the gray and an auxiliary one that can set the gray

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

level qubits to mirror the qubit states of the last qubit for
each pixel representation (of the first 8) from the full
circuit;

ii. 19 qubits are required for the current pixel – the NEQR
representation in this case implies the use of 8 qubits for
the gray levels, 6 for the position and 5 ancilla qubits;

iii. 2 ancilla qubits (aux1 and res1) are required by the
comparator.
The described configuration can be seen in the circuit

from Figure 11, for the value of the lower threshold of 128
and the value of the current pixel of 200.

The results obtained by simulating the circuit can be seen
in Figure 12. The measurements from this figure clearly
show that when the qubits are in the desired states (200 for
the current pixel and 128 for the lower threshold), the first
qubit from the measured results (res1, measured using the
classical register cl-res) is in state 1 , which means that the

comparator identified that the second number (value of
current pixel) is higher than the first (lower threshold). The
probabilities can be quickly verified by counting the number
of qubits set in superposition – in the presented case, these
are the 6 qubits used to represent the position, so the
theoretical probability of all of them being in state 0 , after

the Hadamard gate (and all of them in state 1 after the first

set of NOT gates) is 1/64=0.015625, relatively close to the
0.012 value from the simulated experiment.

In terms of gate costs, we can see that the circuit
presented in Figure 11 requires 13 NOT gates, 6 Hadamard
gates, 35 CNOT gates, 7 CCNOT gates and 13 subcircuits,
called “ccx2”, each of them containing one CCNOT gate
and two NOT gates, required for the comparator (so 20
CCNOT gates and 39 NOT gates in total).

Figure 10. NEQR representation for the current pixel and the threshold, along with the comparator (zoomed in from the full circuit with 137 qubits)

 85

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

Figure 11. Circuit containing the NEQR representation of the current pixel, the threshold qubits, along with the comparator

 86

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

Note that the number of NOT gates and CNOT gates,
required to set the qubits from qc7 to qc0, depends on the
pixel position and gray value. The worst-case scenario for
the circuit in Figure 11 occurs when both the threshold and
the current pixel have value 255, located in the upper left
corner of the image, equivalent to indexes 0 for both the row
and the column, which in turn would require the maximum
number of NOT gates. In this case, 47 CNOT gates would
be needed in total, while the numbers for all the other types
of gates above remain the same. A circuit like the one
described would have to be applied two times, extended to
all pixels in the image (once for the lower threshold and
once for the upper one).

Figure 12. Results obtained for the simulation of the circuit presented in
Figure 11

The memory usage for simulating the circuit in Figure 11

was 16,416.2 MB RAM, and the CPU was running at 100%
at 4.68 GHz. The simulation took 70.9 seconds. The
computer used for this test has an Intel i9-9900K processor
at a base speed of 3.60 GHz.

The main advantage of the presented quantum algorithm,
in comparison to a classical implementation, is the speedup.
In this context, the representation itself (NEQR), if
implemented on a quantum computer that is fast enough
(shots per second), will ensure the fact that the access to all
qubit states (pixel values) could be done much faster.
Another key element of the algorithm is the use of the
quantum comparators, which are configured as an extension
for NEQR in the proposed protocol; they stand out as being
highly efficient, using a relatively low number of quantum
operations and having a small quantum delay (see [34]). The
circuit in Figure 11 represents a part of one of only two
greater circuits (one for each threshold), that would contain
the encoding of each pixel; for larger images, the quantum
solution improves the classical one, which would have to
manually go over each pixel at a time and perform two
classical comparison operations. If a parallel-processing
solution is wanted on the classical devices, then special
hardware could be required, and/or multithreaded
programming. This quantum protocol presents a higher
degree of computing parallelism and usability, since it

builds on what is seen as one of the already analyzed
quantum image representation techniques, without needing
any additional effort for its efficiency.

VI. CONCLUSION

The current paper describes a way of hiding information
inside an image, with the help of a quantum framework, by
embedding not only a secret message in the image, but also
two auxiliary hidden thresholds used for its processing.
Among the presented ideas, an implementation of one
quantum representation (NEQR) for a grayscale image is
shown, using the Qiskit framework (and the Python
programming language), where two thresholds are hidden
by setting the LSB on the edges (this can be extended to an
RGB image). The general diagram of the proposed
algorithm involves the extraction of the required threshold
values using the design of the 8-bit half comparators
proposed by Xia et. al. A short analysis/discussion on the
control block for the reset operation is described, which
could further contribute to a faster algorithm, should an
operation for resetting a qubit be possible in the future. The
enhanced performance for the presented scheme is justified
by the quantum representation of the image, in combination
with the mentioned comparators, allowing for an efficient
quantum steganography approach.

REFERENCES
[1] F. Yan, A. M. Iliyasu, S. E. Venegas-Andraca, “A survey of quantum

image representations,” Quantum Inf Process, vol. 15, no. 1, pp. 1–35,
Jan. 2016. doi:10.1007/s11128-015-1195-6

[2] P. Q. Le, F. Dong, K. Hirota, “A flexible representation of quantum
images for polynomial preparation, image compression, and
processing operations,” Quantum Inf Process, vol. 10, no. 1, pp. 63–
84, Feb. 2011. doi:10.1007/s11128-010-0177-y

[3] Y. Zhang, K. Lu, Y. Gao, M. Wang, “NEQR: a novel enhanced
quantum representation of digital images,” Quantum Inf Process, vol.
12, no. 8, pp. 2833–2860, Aug. 2013. doi:10.1007/s11128-013-0567-z

[4] J. Sang, S. Wang, Q. Li, “A novel quantum representation of color
digital images,” Quantum Inf Process, vol. 16, no. 2, p. 42, Feb. 2017.
doi:10.1007/s11128-016-1463-0

[5] L. Wang, Q. Ran, J. Ma, S. Yu, L. Tan, “QRCI: A new quantum
representation model of color digital images,” Optics
Communications, vol. 438, pp. 147–158, May 2019.
doi:10.1016/j.optcom.2019.01.015

[6] W. Hu, R.-G. Zhou, J. Luo, B. Liu, “LSBs-based quantum color
images watermarking algorithm in edge region,” Quantum Inf
Process, vol. 18, no. 1, p. 16, Jan. 2019. doi:10.1007/s11128-018-
2138-9

[7] R.-G. Zhou, W. Hu, P. Fan, “Quantum watermarking scheme through
Arnold scrambling and LSB steganography,” Quantum Inf Process,
vol. 16, no. 9, p. 212, Sep. 2017. doi:10.1007/s11128-017-1640-9

[8] R.-G. Zhou, J. Luo, X. Liu, C. Zhu, L. Wei, X. Zhang, “A Novel
Quantum Image Steganography Scheme Based on LSB,” Int J Theor
Phys, vol. 57, no. 6, pp. 1848–1863, Jun. 2018. doi:10.1007/s10773-
018-3710-x

[9] W.-W. Hu, R.-G. Zhou, X.-A. Liu, J. Luo, G.-F. Luo, “Quantum
image steganography algorithm based on modified exploiting
modification direction embedding,” Quantum Inf Process, vol. 19, no.
5, p. 137, May 2020. doi:10.1007/s11128-020-02641-5

[10] Z. Qu, H. Sun, M. Zheng, “An efficient quantum image
steganography protocol based on improved EMD algorithm,”
Quantum Inf Process, vol. 20, no. 2, p. 53, Feb. 2021.
doi:10.1007/s11128-021-02991-8

[11] G. Luo, R.-G. Zhou, W. Hu, “Efficient quantum steganography
scheme using inverted pattern approach,” Quantum Inf Process, vol.
18, no. 7, p. 222, Jul. 2019. doi:10.1007/s11128-019-2341-3

[12] J. Luo, R.-G. Zhou, W.-W. Hu, G.-F. Luo, G. Liu, “Detection of
steganography in quantum grayscale images,” Quantum Inf Process,
vol. 19, no. 5, p. 149, May 2020. doi:10.1007/s11128-020-02649-x

 87

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 4, 2021

 88

[13] Z. Qu, Y. Huang, M. Zheng, “A novel coherence-based quantum
steganalysis protocol,” Quantum Inf Process, vol. 19, no. 10, p. 362,
Oct. 2020. doi:10.1007/s11128-020-02868-2

[14] E. Şahin, İ. Yilmaz, “A novel quantum steganography algorithm
based on LSBq for multi-wavelength quantum images,” Quantum Inf
Process, vol. 17, no. 11, p. 319, Nov. 2018. doi:10.1007/s11128-018-
2092-6

[15] Y. Tian, J. Li, X.-B. Chen, C.-Q. Ye, H.-J. Li, “An efficient semi-
quantum secret sharing protocol of specific bits,” Quantum Inf
Process, vol. 20, no. 6, p. 217, Jun. 2021. doi:10.1007/s11128-021-
03157-2

[16] C. Navas-Merlo, J. C. Garcia-Escartin, “Detector blinding attacks on
counterfactual quantum key distribution,” Quantum Inf Process, vol.
20, no. 6, p. 196, Jun. 2021. doi:10.1007/s11128-021-03134-9

[17] J. Yang, Z. Li, J. Wu, H. Zhu, “One-round semi-quantum-honest key
agreement scheme in MSTSA structure without entanglement,”
Quantum Inf Process, vol. 20, no. 5, p. 188, May 2021.
doi:10.1007/s11128-021-03123-y

[18] R.-G. Zhou, X. Zhang, F. Li, “Three-party semi-quantum protocol for
deterministic secure quantum dialogue based on GHZ states,”
Quantum Inf Process, vol. 20, no. 4, p. 153, Apr. 2021.
doi:10.1007/s11128-021-03104-1

[19] C.-Y. Zhang, Z.-J. Zheng, “Entanglement-based quantum key
distribution with untrusted third party,” Quantum Inf Process, vol. 20,
no. 4, p. 146, Apr. 2021. doi:10.1007/s11128-021-03080-6

[20] X. Gou, R. Shi, W. Gao, M. Wu, “A novel quantum E-payment
protocol based on blockchain,” Quantum Inf Process, vol. 20, no. 5, p.
192, May 2021. doi:10.1007/s11128-021-03126-9

[21] D. Kahn, “The history of steganography,” in Information Hiding, vol.
1174, R. Anderson, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 1–5. doi:10.1007/3-540-61996-8_27

[22] P. R and I. R.J, “An overview of digital image steganography,”
IJCSES, vol. 4, no. 1, pp. 23–31, Feb. 2013.
doi:10.5121/ijcses.2013.4102

[23] B. A. Usha, H. S. Anupama, K. N. Sangeetha, I. Gonnagar, “Image
steganography using hybrid soft computing techniques–A survey,” in
2021 Third International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV), Tirunelveli,
India, Feb. 2021, pp. 1081–1085.
doi:10.1109/ICICV50876.2021.9388393

[24] M. Dahiya, R. Kumar, “A Literature Survey on various Image
Encryption & Steganography Techniques,” in 2018 First International
Conference on Secure Cyber Computing and Communication
(ICSCCC), Jalandhar, India, Dec. 2018, pp. 310–314.
doi:10.1109/ICSCCC.2018.8703368

[25] T. Jitha Raj, E. T. Sivadasan, “A survey paper on various reversible
data hiding techniques in encrypted images,” in 2015 IEEE
International Advance Computing Conference (IACC), Banglore,
India, Jun. 2015, pp. 1139–1143. doi:10.1109/IADCC.2015.7154881

[26] E. Zielińska, W. Mazurczyk, K. Szczypiorski, “Trends in
steganography,” Commun. ACM, vol. 57, no. 3, pp. 86–95, Mar.
2014. doi:10.1145/2566590.2566610

[27] R. J. Anderson, F. A. P. Petitcolas, “On the limits of steganography,”
IEEE J. Select. Areas Commun., vol. 16, no. 4, pp. 474–481, May
1998. doi:10.1109/49.668971

[28] P. Sallee, “Model-based steganography,” in Digital Watermarking,
vol. 2939, T. Kalker, I. Cox, and Y. M. Ro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 154–167. doi:10.1007/978-3-
540-24624-4_12

[29] S. Othman, A. Mohamed, A. Abouali, Z. Nossair, “Lossy
compression using adaptive polynomial image encoding,” Adv.
Electr. Comp. Eng., vol. 21, no. 1, pp. 91–98, 2021.
doi:10.4316/AECE.2021.01010

[30] M. Sharifzadeh, M. Aloraini, D. Schonfeld, “Adaptive batch size
image merging steganography and quantized gaussian image
steganography,” IEEE Trans.Inform.Forensic Secur., vol. 15, pp.
867–879, 2020. doi:10.1109/TIFS.2019.2929441

[31] A. Z. Aos, A. W. Naji, S. A. Hameed, F. Othman, B. B. Zaidan,
“Approved undetectable-antivirus steganography for multimedia
information in PE-File,” in 2009 International Association of
Computer Science and Information Technology - Spring Conference,
Singapore, Apr. 2009, pp. 437–441. doi:10.1109/IACSIT-
SC.2009.103

[32] A. Sengupta, M. Rathor, “Crypto-based dual-phase hardware
steganography for securing IP cores,” IEEE Lett. of the Comput. Soc.,
vol. 2, no. 4, pp. 32–35, Dec. 2019. doi:10.1109/LOCS.2019.2942289

[33] K. Tutuncu, B. Demirci, “Adaptive LSB steganography based on
chaos theory and random distortion,” Adv. Electr. Comp. Eng., vol.
18, no. 3, pp. 15–22, 2018. doi:10.4316/AECE.2018.03003

[34] H. Xia, H. Li, H. Zhang, Y. Liang, J. Xin, “Novel multi-bit quantum
comparators and their application in image binarization,” Quantum
Inf Process, vol. 18, no. 7, p. 229, Jul. 2019. doi:10.1007/s11128-019-
2334-2

[35] M. Mastriani, “Quantum image processing: the pros and cons of the
techniques for the internal representation of the image. A reply to: A
comment on ‘Quantum image processing?,’” Quantum Inf Process,
vol. 19, no. 5, p. 156, May 2020. doi:10.1007/s11128-020-02653-1

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 15:52:32 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

