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1Abstract—Next generation networking architecture is 

required to be reliable, scalable, flexible, secure and has other 
advanced features. Traditional TCPIP networks are complex 
and cannot meet the requirements for high-quality network 
services. Software Defined Network (SDN) is an important 
technology that enables a completely new approach in how we 
develop and manage networks. SDN divides the data plane and 
control plane and promotes logical centralization of network 
control so that the controller can schedule the data in the 
network effectively through OpenFlow protocol. In this paper, 
we simulate the two SDN controllers of Ryu and POX, and 
compare their latency and throughput performance under 
Simple-Tree-Based (STB) and Fat-Tree-Based (FTB) network 
topologies. An SDN networking model has been designed using 
a Mininet emulator, and the code for custom STB/FTB 
topology is executed in Python script. Simulation outcomes 
indicate that in latency mode Ryu controller exhibited better 
results than POX controller, making it more suitable for small-
scale SDN deployments. From the throughput simulation, POX 
controller displayed better results than Ryu, showing that it is 
able to respond to requests more promptly under complex FTB 
traffic loads, but with more hardware resources utilization.  
 

Index Terms—network topology, next generation 
networking, tree data structures, software defined networking, 
soft switching. 

I. INTRODUCTION 

In contemporary distributed TCPIP architecture, network 
devices should communicate with each other through 
various communication protocols to negotiate the precise 
network behavior based on the configuration of every 
individual device. Network devices are “closed 
components” and neither flexible nor programmable by any 
means. According to basic TCP-IP networking principles, 
forwarding control and management planes all are tied up 
together in most of the network devices. The combination of 
these three planes in the same device chassis makes it quite 
complex and resistant to manage [1]. 

The concept of “programmable networks” has been 
proposed as a motivation to increase network evolution. The 
fundamental idea has evolved into what today is called 
Software Defined Network (SDN). SDN is having the 
ability to separate the data and control functions of core 
networking devices and consolidates all the control in a 
single node called the network controller. SDN architecture 
allows centrally controlling capabilities and provides a 
global view of a whole underlying physical network, and 
allows to dramatically simplifying network management [2]. 
This centralized entity provides programmable control of the 
whole network and enables real-time control of all the 

underlying devices. The control layer is comprised of the 
logically centralized “network intelligence” software, 
manages flow control, and has a global view of the network. 
Controller is the core part of the SDN network and it gives 
the instructions to the switches and other network devices in 
the physical layer through Southbound Interface (SBI). SBI 
helps the controller to provision physical and virtual 
network devices intelligently. OpenFlow is the most 
commonly used standardized SBI Application Programming 
Interface (API) and follows the basic SDN principle of 
separation between the control and data planes [3]. In 
present-day SDN networks, Ethernet switches are replacing 
by OpenFlow switches due to their less flexibility. Each 
OpenFlow switch dynamically maintains a flow table, which 
consists of flow rules that determine the handling of network 
packets. Communication between the control and the 
application layer is established by using Northbound 
Interface (NBI) API [4]. SDN devices use numerous 
approaches to controller-based networking that should 
provide the desired abstractions, from centralized control 
and management plane interactions to decoupling 
approaches and proprietary device APIs.  

 
1 

Although the fundamental function of a SDN controller is 
flow management, several different metrics can be used for 
its performance analysis. Two of the most important 
questions frequently asked are how fast can a SDN 
controller respond to requests sent by the OpenFlow switch 
(latency), and how many sent and received flow messages 
can a controller handle per second (throughput).  

In this paper we make a performance analysis of Ryu and 
POX controller, considering latency and throughput as the 
key metrics. Both Ryu and POX controllers are runnable on 
Python. The reason to select these two controllers is the 
availability of controller source code and implementation. 
We have compared controllers using Mininet emulator, 
along with a detailed analysis of their performance in 
different custom network topologies, such as Simple-Tree-
Based (STB) and more complex Fat-Tree-Based (FTB) 
topology. We have also extended the latency comparison to 
traditional IP network topology, where the network topology 
is modified so that there is no central controller device. 

The rest of this paper is organized as follows. Section II 
presents the SDN layered architecture and gives an 
overview of OpenFlow, Ryu and POX controller features. 
Research efforts and related literature are detailed in Section 
III. Section IV presents the simulation environment, 
research methodology and metrics. Section V shows the 
results of SDN controllers analysis. Concluding remarks and 
future research directions are given in Section VI.
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Figure 1. Overview of a typical layered SDN architecture (left) and SDN controller architecture (right) 

II. SDN BACKGROUND 

At first, this section provides an overview of the layered 
SDN architecture and OpenFlow switch. Furthermore, this 
section presents the generic architecture of SDN controllers 
and gives an overview of Ryu and POX controllers. 

A. SDN Layered Architecture  

The architecture of the SDN network can be divided into 
three planes: data plane, control plane, and application 
plane. SDN separates the control and data plane of a 
traditional network device. The control plane is 
implemented through one or more logically centralized 
controllers. Control functionality is removed from network 
devices, that will afterward become simple packet 
forwarding network nodes. The relationships between SDN 
modules can be seen in Fig. 1, which shows a basic 
overview of a typical SDN architecture.  

SDN Application consists of one Application Logic and 
one or more NBI Drivers. The SDN is programmable 
through software applications that interact with the 
underlying data plane devices. Higher-level logic can be 
implemented directly through these applications on top of 
controllers, which communicate through NBI Agents 
(REST, JSON, etc.) [5]. The SDN network comprises 
interconnected forwarding devices, which represent the data 
plane. The SDN Datapath is a logical network device that 
comprises a Control-to-Data-Plane Interface Agent (CDPI) 
and a set of one or more traffic forwarding engines and 
traffic processing functions. One or more Datapath may be 
contained in a single physical network device. The CDPI 
defined as an interface between controller and Datapath, 
provides event notification, statistic reporting, capabilities 
advertisement, and high-level control of all forwarding 
operations. CDPI interface is generally implemented using 
the OpenFlow protocol.  
OpenFlow is the most widely accepted and deployed SBI 
standard for SDN and represents a protocol that is used for 
the communication between the controller and forwarding 
devices to install the data processing rules. OpenFlow 
modifies the SDN network in the sense that data plane 
elements become simple devices that forward packets 

according to rules given by the controller. The main 
components of a controller-based OpenFlow network are 
OpenFlow switches. Each OpenFlow switch dynamically 
maintains a flow table, which consists of flow rules (entries) 
that determine the handling of packets. Flow entries consist 
of pattern fields (that matches on bits in the packet header), 
a list of actions (drop, flood, forward, modify or send the 
packet to the controller), a set of counters (to track the 
packets), and a priority field. Further, as long as the 
OpenFlow enabled switch communicates with an OpenFlow 
controller, there are a variety of possibilities for company 
vendors to implement a data plane in diverse ways. 

B. SDN Centralized Network Control 

Various open-source SDN controllers are currently being 
used for deploying network architecture, and these 
controllers are Pox, Ryu, FloodLight, ONOS, ODL, 
OpenDayLight, etc. [6]. Fig. 1 (right) shows the architecture 
of the SDN controller. The figure depicts the modules that 
provide the core functionality of the controller, both NBI 
and SBI, and a few applications that might use the 
controller. The SBI API is used to interface with the SDN 
devices. This API is OpenFlow in the case of a commercial 
Open SDN controller or some alternative in other SDN 
solutions. This means that in some product offerings both 
OpenFlow and alternatives coexist on the same controller. 
OF-Config and Open vSwitch Database Management 
Protocol (OVSDB) are both open protocols for the SBI, as 
described in [7-8]. There is a lack of a standard for the NBI, 
which has been implemented in several different forms. For 
example, the FloodLight and OpenDayLight controllers both 
use a Java and REST/RESTful API for applications running 
on separate machines, Ryu and POX use Python API, etc. 
[9]. Controllers coordinate network control activities by 
establishing communication channels between each other 
using an east-west API, mainly for scalability and resiliency. 

The core functions of the controller are topology and 
device discovery and tracking, flow management, device 
management, and statistics tracking. These are all 
implemented by a set of modules internal to the controller. 
All the controller functions are implemented via changeable 
modules, and the feature set of the controller may be 
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adjusted to specific requirements of SDN networks. The 
controller tracks the topology by learning of the existence of 
OpenFlow switches and other SDN devices and tracking the 
connectivity between them. Network traffic analysis can be 
performed in real-time using machine learning algorithms, 
databases, and other software tools.  

Mininet is freely available open-source software that 
emulates OpenFlow devices and SDN controllers. With 
Mininet is possible to create scalable (up to hundreds of 
nodes) networks by using Linux processes in network 
namespaces. Mininet API and orchestration modules are 
written in Python, with core emulation performed by 
compiled C code. Also, Mininet provides an easy way to 
experiment with various network topologies. It is possible to 
develop and test code on Mininet, and OpenFlow controller 
or switch can implement into a real system with no changes 
for performance evaluation and deployment [9]. 

Ryu controller is an open-source and component-based 
SDN framework implemented entirely in Python. Ryu uses 
OpenFlow protocol to associate with the switches to modify 
how the network will manage traffic flows and allows an 
event-driven programming paradigm in which the flow of 
the program is determined by events. The module called 
ryu.controller.ofp_event exports event classes that describe 
receptions of messages from connected switches. Ryu 
provides software components with well-defined APIs that 
make it simple to create control applications and SDN 
network management. In addition, Ryu supports various 
protocols for managing network infrastructure, such as 
OpenFlow, Netconf (RFC 6241), OF-config, etc. [10]. The 
purpose of these protocols is to gathered network 
intelligence by using a controller, performed analytics, and 
synchronized the new network rules. The controller uses 
NBI APIs such as REST/RESTful, REST/RPC user-defined 
APIs, etc. Ryu provides a set of specific components such as 
OpenStack/Quantum virtualization, Firewall, OFREST, etc. 
for SDN applications [11].  

POX is a component-based open-source controller 
implemented in Python. Additionally, a POX controller is 
capable of converting particular OpenFlow devices to 
operate as switches, firewalls, load balancers, etc. POX 
controller can have direct access and manipulation 
capability to the forwarding devices in presence of the 
OpenFlow protocol. POX relies on a specific model in 
which the whole SDN network devices, as well as activities, 
are recognized as separate components that can be isolated 
and utilized every time and place the need is. The location 
of POX is between network components on one side and the 
applications on the other side. Furthermore, POX is 
responsible for achieving any type of communication 
between applications and SDN devices. POX allows user to 
develop their components according to their need. The full 
POX documentation is available on GitHub at [12]. 

III. RELATED WORKS 

The very first SDN controller was made by Nicira 
Networks and is named NOX, which was developed along 
with the first version of the OpenFlow protocol [13]. Then, 
the POX controller is developed as a revised version of 
NOX with Python support. FloodLight controller [14] was 
developed with OpenStack plug-in which helps it in 

controlling a large number of network devices and 
resources. In paper [15], five controllers (Ryu, Pox, Trema, 
Floodlight, and OpenDayLight) are compared, and authors 
collect properties of each controller under specific 
evaluation: CDPI/REST API support, programming 
language, modularity, virtualization, etc. In [16], Floodlight 
and OpenDayLight are examined as far as delay and loss in 
various topologies and traffic loads. The results show that 
OpenDayLight has the best latency results under low traffic 
loads and for tree topologies. Floodlight exhibits the best 
packet loss results under high traffic volumes for tree 
topologies. In [17], authors have shown the performance 
comparison performed between the NOX, POX, Trema and 
Floodlight in reactive and proactive mode. The results 
showed that the best performance is achieved when the 
controller is operating in the proactive mode because 
forwarding rules are installed on the switch. Research in 
[18] gives a more extensive investigation of open-source 
controllers Ryu, POX, ONOS and ODL. Authors were 
limited to parameters such as throughput and latency using 
Cbench tool. In [19] authors use a qualitative comparison of 
different SDN controllers, along with a quantitative analysis 
of their performance in different network scenarios. 
Precisely, authors categorize and classify 34 controllers 
based on their capabilities and properties and discuss in-
depth capabilities of benchmarking tools used for SDN 
controllers. In [20], the authors have presented a basic list of 
tests that should be conducted to evaluate the performance 
of a controller. Authors in [21] presented a framework 
named HCprobe to compare seven controllers: Ryu, Beacon, 
Maestro, MUL, FloodLight, NOX and POX. To evaluate the 
efficiency of these controllers, the authors performed 
additional measurements like reliability, scalability and 
security along with throughput and latency. The results 
show that FloodLight, Beacon and MUL obtained minimum 
latency, while Beacon performed good results in the 
throughput test. In [22] authors use a comparison of 
performance metrics such as service delay, utilized 
bandwidth and received packets using network monitoring 
tools like IPERF and D-ITG to analyze the functionality of 
the POX controller for the SDN environment. The results of 
this research were the recommendation of using POX 
controller for the interaction with OpenFlow switches. 

IV. PERFORMANCE ANALYSIS 

A.  Simulation Environment  

The simulation hardware and software specifications are 
shown in Table I. Controller performance analysis and 
network topology creation were performed in an 
environment of a Windows 10 (ver. 20H2). The hypervisor 
used is Oracle VirtualBox 6.1.16, and it is used to instantiate 
two Virtual Machines (VM), each for one type of controller. 
Secure Virtual Machine Mode option must be enabled in 
BIOS setup due to supporting AMD-V virtualization mode. 
Each VM is allocated 1 CPU and 6 GB of RAM.  All the 
simulations run on a Xubuntu Server 20.04.1. Each VM 
contains Mininet with implemented Ryu or POX controller. 
Each controller ran on an individual VM and connected to 
predefined STB or FTB topology. The listening port number 
assigned to Ryu and POX controller are 6653 and 6633. 
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TABLE I. SIMULATION HARDWARE AND SOFTWARE SPECIFICATIONS 

 PC VM 

Processor 
AMD Ryzen 5 3600, 

3.6 GHz (6-core) 
1 CPU,  
6-core Hardware 

RAM 16 GB DDR4 6 GB DDR4 

OS 
Windows 10  

(64-bit), ver. 20H2 
Xubuntu 

20.04.1 (64-bit) 

VirtualBox - 6.1.16, 
r140961 

Mininet - 2.3.0d6 
Ryu - 4.3.2 
Pox - 0.5.0 

Software 

Python 3.8.5 3.8.5 

 
Python 3 is used as a scripting language to write the 

custom network STB/FTB topology, instead of accepting of 
built-in Mininet topology model. The elements which are 
used to forward traffic from one host to another are switches 
that support the OpenFlow 1.3 protocol. After controller 
initialization, Mininet loads a Python script to instantiate the 
custom topology. Each OpenFlow switch is assigned a 
unique port for keeping track of network traffic. The 
Mininet will automatically assign MAC addresses that 
match the host’s names. This will increase stability and 
consistency during the simulation and simplify the 
programming logic in Ryu or POX controller.   

All the nodes have assigned a unique IP address from 
10.0.0.0/24 address range, and unique MAC address. The 
IP/MAC addresses are (10.0.0.1/00:00:00:00:00:01) for 
node h1, (10.0.0.2/00:00:00:00:00:02) for node h2, etc. To 
make switches connect to Ryu or POX controller, we have 
used 127.0.0.1 virtual loopback IP address. 

B. Custom STB/FTB Network Topologies  

In this paper, we have considered two custom topologies 
for simulation, one simple with a relatively small number of 
network nodes, and the second with a more complex 
topology. In a tree network topology, all the OpenFlow 
switches and hosts are connected with each other in a 
hierarchical form, as discussed in [23]. Tree-based topology 
was chosen for simplicity and to ensure that all switches are 
well-exercised.  

At first, we implemented a Simple Tree-Based (STB) 
topology over 4 switches (s1-s4), 8 hosts (h1-h8), and one 
Ryu or POX controller, as shown in Fig. 2 

 
Figure 2. Custom Simple-Tree-Based topology  

1:  from mininet.net import Mininet 
2:  from mininet.node import Controller, RemoteController 
3:  from mininet.cli import CLI 
4:  from mininet.log import setLogLevel, info 
6:  ryu_ip = '127.0.0.1' 
7:  ryu_port = 6653 
8:  def customTree():   
9:       net=Mininet (topo=None, build=False) 
10:     info ('Adding Ryu controller\n') 
11:     net.addController ('c0', controller=RemoteController, 
                      ip=ryu_ip, port=ryu_port) 
12:     info ('Adding hosts\n') 
13:     h1, h2, h3, h4, h5, h6, h7, h8=[net.addHost(h) for h in ('h1', 'h2',   

'h3', 'h4', 'h5', 'h6', 'h7', 'h8')] 
14:     info ('Adding switches\n') 
15:     s1, s2, s3, s4=[net.addSwitch(s) for s in ('s1', 's2', 's3', 's4')] 
16:     info ('Adding switch links\n') 
17:     for sa, sb in [ (s1, s2), (s2, s3), (s1, s4)]: 
                 net.addLink( sa, sb,) 
18:     for h, s in [ (h1, s1), (h2, s2), (h3, s3), (h4, s1), (h5, s3), (h6,     

s4),  (h7, s4), (h8, s4) ]: net.addLink( h, s ) 
19:     info ('*** Starting Mininet network ***\n') 
20:     net.start() 
21:     info ('*** Running Mininet CLI ***\n') 
22:     CLI(net) 
23:     info ('*** Stop Mininet network ***') 
24:     net.stop() 
25:     if __name__ == '__main__': 
26:     setLogLevel('info') 
27:     customTree() 
28: exit(0) 

Figure 3. Python script for STB topology with Ryu controller 

 
Fig. 3 shows a Python script for creating custom STB 

topology. Mininet (line 1) is the main class to create a 
network. Ryu controller IP address and port number are 
defined in lines 6 and 7. Methods addController(), 
addLink(), addHost() and addSwitch() add a controller, link, 
host and switch to a topology and returns their names (lines 
11-18). Since the low number of network nodes in STB, we 
use a simple for loop to add all the nodes to the network and 
connect them to each other. Host h1 is denoted as a server, 
and h8 as a client. We organize all the STB source code in a 
single file stb-topology-dc.py  

As a second custom network, we implemented Fat-Tree-
Based (FTB) topology over the 32 hosts (h1-h32), 12 
switches (s1-s12) and one Ryu/POX controller. Each switch 
has four ports to connect with hosts. Typical tree-network 
topologies consist of either two or three level trees of 
switches or routers [23]. In this paper, all FTB switches are 
interconnected to each other, forming three-level 
architecture: core, aggregation and edge switches. The 
graphical representation of FTB topology is shown in Fig. 4. 
The K variable stands for the number of ports in each 
OpenFlow switch and the Fig. 4 is an example of a K=4 fat-
tree topology, where each edge switch connected to hosts 
and aggregation layer switches via 4 ports. 

 
Figure 4. Custom Fat-Tree-Based topology (K=4) 
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1: from mininet.topo import Topo 
2: class FatTree (Topo): 
3: def __init__(self, half_ports = 2, **opts): 
4:      Topo.__init__(self, **opts) 
5:      agrsw = [] 
6:      hnum = 0 
7:      snum =0 
8:      for i in range (half_ports): 
9:           snum += 1 
10:         agrsw.append (self.addSwitch ('s%s' % snum)) 
11:    for i in range (half_ports*2): 
12:         snum += 1 
13:         sw=self.addSwitch  ('s%s' % snum))    
14:         for j in range (half_ports): 
15:              self.addLink(sw, agrsw[j]) 
16:         for j in range (half_ports): 
17:              hnum += 1 
18:              host = self.addHost('h%s' % hnum) 
19:              self.addLink(sw, host) 
20: topos={' ftb-topology-dc': FatTree} 

Figure 5. Python script for FTB topology 

 
Using Python scripting, this FTB topology was created 

which comprises 3 layers, as shown in Fig. 5.  Due to the 
complexity of FTB, we used a high-level API with topology 
template abstraction. Topo is the base class for Mininet 
topologies, which provides the ability to create reusable and 
parametrized topology templates (line 1). Line 2 represents 
class definition. There are multiple ways that this class may 
be used, but one simple way is to specify the class as the 
default host and link classes and constructors to Mininet. In 
the script, __init__is the reserved method and represents the 
constructor for a class (line 3). The self variable represents 
the instance of the class and binds the attributes with the 
given arguments. Methods self.addSwitch(), self.addLink() 
and self.addHost() import switches and hosts into topology 
and connect them (lines 10-19). We organize the FTB 
topology source code as a ftb-topology-dc.py  

Due to a huge number of links in the FTB topology, 
“broadcast storms” are frequent and intensive. This 
undesirable network traffic circling endlessly in the 
network, due to the destination address in an unknown 
network. Spanning-Tree Protocol (STP) is a link 
management protocol that provides path redundancy while 
preventing undesirable loops in the network [24]. STP 
ensures only one stable path exists between any two nodes. 
Both Ryu and POX have a built-in Python script for which 
the STP function is achieved using OpenFlow, and we used 
ryu.app.simple_switch_stp_13.py script for the Ryu 
controller and openflow.spanning_tree for the POX 
controller. 

C. Methodology and Metrics 

After all experimental setup was prepared, we began the 
controller performance simulation. To perform the 
simulation of the Ryu controller, it is followed step-by-step 
procedure: 
(Step 1) The first step is to run the Ryu controller using the 
STP protocol. We provide Ryu terminal command:  
$ryu-manager ryu.app.simple_switch_stp_13.py  
(Step 2) The next step is to run the custom STB topology 
script with the following command:  
$sudo  ~/mininet/custom/stb-topology-dc.py 
This command starts the Mininet CLI prompt, performs the 
initialization procedure of hosts and switches and establishes 
links between them. In the second VM, FTB topology 

initialization involves running a ftb-topology-dc.py script. 
(Step 3) In this step, we define client and server nodes. As 
shown in Fig. 2 and Fig. 4, for STB h1 denotes server and 
h8 client, and for FTB h1 denotes server and h32 client. We 
have used xterm command for the server and client setup.  
(Step 4) For the performance analysis, we need to generate 
the traffic between client and server and log the events using 
the IPERF networking tool. On the server-side we enter the 
command: $iperf -s -p 6633 -i 1 > stb-ryu-result 
At the client-side, we need to provide server IP address, 
controller port number, and time of simulation (50 sec.) by 
the following command:  $iperf -c 10.0.0.1 -p 6633 -t 50  
(Step 5) The next step is parsing the log data file for 
obtaining specific simulation results. For parsing, we have 
used -grep, -awk and -tr commands 
(Step 6) We have used the Gnuplot tool to plot the graphs of 
obtained results. 

On the other VM, an identical procedure was performed 
for the POX controller. 

Latency metrics: This group of metrics deals with the 
time between packets sent to the controller and the response 
received at the OpenFlow switch. The latency between the 
controller and OpenFlow switch is of vital importance since 
it impacts the performance of the entire network. Also, this 
metric helps to understand the controller response time 
under an event like network path failure. Round-Trip-Time 
(RTT) evaluation is an important parameter because it 
identifies the communication delay between the controller 
and the switch. If the controller and switches are physically 
far apart, the increased RTT will contribute to increased 
latency. Similarly, the time complexity of packet processing 
at the controller affects the overall performance. A latency 
performance comparison between POX and Ryu controller 
is achieved by execution of ICMP connectivity test using 
ping (Echo request and reply message) command. A ping 
test is performed between end hosts h1-h8 (for STB) and h1-
h32 (for FTB). 

Throughput metrics: A SDN network performance is 
achieved from available throughput. Throughput is generally 
defined as a rate for processing flow requests by the 
controller. From the testing point of view, it is the number of 
packet_in messages sent and the corresponding packet_out 
messages received per second. Throughput measures the 
rate from OpenFlow switch to controller and back to switch 
and it is a major factor in determining the overall number of 
controllers required to handle traffic load on a network.  

We used the IPERF networking tool to test network 
performance between two hosts, server and client. A typical 
IPERF output contains a timestamped report of the amount 
of data transferred through the network.  

V. RESEARCH OBJECTIVES AND SIMULATION RESULTS 

The goal of this analysis is to attempt to measure the 
latency and throughput features of the Ryu and POX 
controller by implementing two different Mininet SDN 
topologies in a simulation environment. Our interest is to 
evaluate the situation where the number of OpenFlow 
switches and hosts changes from small to significantly large 
when we can prove that the number of SDN nodes cusses 
notable performance decrease, for all kinds of topologies.  

First, we observe the latency against ICMP packet size 
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and the number of switches and hosts in topologies. For the 
latency comparison, we selected simulation results proposed 
in [25], where custom traditional IP-based network topology 
consists of 32 hosts and four OpenFlow switches, and which 
is designed using NS2 network simulator. In this traditional 
IP network, each switch is an independent device and there 
is no central switch that acts as a SDN controller. An 
interesting observation is the Ryu controller provides lower 
latency than POX and switches in the traditional IP network. 

Considering SDN controller throughput, single-threaded 
controllers Ryu and POX show different results, especially 
in FTB topology where there are a larger number of 
OpenFlow switches and hosts, and where network traffic is 
more intensive. We concluded that throughput parameters 
can be limited by the hardware resources and capabilities of 
the controller itself. 

Latency results: First, let’s analyze RTT latency 
performance between the proposed OpenFlow STB/FTB 
network and traditional IP network. We observe the latency 
against ICMP packet size, from 100B to 1400B. In each 
performance test, we send 10 ping packets with the 
following sizes: 100, 500, 1000, and 1400 Bytes. At first, we 
send ping command from host h1 to host h8 (for STB) and 
then we repeat ping from host h1 to host h32 (for FTB). 
These ping commands are cycled 10 times for each test. 
Then we calculated the average values of measured RTTs of 
the first packet of the flow per test. In an IP network, a ping 
test is performed between the farthest nodes, as well. These 
average values of the measured RTTs for all three 
topologies are tabulated in Table II and shown graphically in 
Fig. 6.  

 
TABLE II. AVERAGE RTT FOR THE FIRST PACKET OF THE FLOW BETWEEN 

FARTHEST NODES IN STB, FTB AND TRADITIONAL IP NETWORK 

STB topology FTB topology 
Traditional IP 

Network 
ICMP 
Packet 

Size 
(B) 

Ryu 
RTT(ms) 

POX 
RTT(ms) 

Ryu 
RTT(ms) 

POX 
RTT(ms) 

RTT  
(ms) 

100 1.86 10.7 10.8 26.1 7.2  
500 1.92 12.6 15.0 28.4 10.1 
1000 6.70 22.8 22.5 33.1 34.4 
1400 9.05 29.9 26.3 35.5 57.8 

 
It is clearly visible that the propagation delay between 

nodes in STB, FTB, and IP networks is very different. From 
Fig. 5, the average RTT for the first packet of the flow is the 
minimum for Ryu controller and 100 Byte ICMP packet size 
in STB topology (RTT=1.86 ms). For STB-POX and FTB-
Ryu topologies, RTT is almost same for the all ICM packet 
size. In the FTB topology, the average RTT is the minimum 
for the Ryu controller. Also, the difference between average 
RTT for POX controller in the FTB is greater among all 
other RTTs, except for the IP network. It is related to 
complex FTB topology and STP protocol, which is running 
to prevent broadcast loops. 

In this simulation environment, it is observed that the 
latency in the IP network is higher than that in FTB 
topology, especially for larger ICMP packets. The reason for 
this is that the larger ICM packet requires a longer 
processing time on a larger number of standalone 
switches/routers in the traditional IP network. The highest 
RTT value (RTT=57.8 ms) was measured for a complex IP 
network consisting of 32 hosts and 4 switches, and for the 

ICMP packet size of 1400B. We noticed that ICMP packet 
length impacts the performance of the controller. 

Figure 6. Average RTT for the first packet of the flow in STB/FTB 
topology and the traditional IP network 

 
From the obtained results, it is obviously shown that a 

FTB topology is taking more time for transmission of the 
packet to its destination node. The initial process of 
establishing network flow consumes time that introduces 
latency in the network. When the first packet sent by h1 
arrives at the OpenFlow switch, this switch does not know 
how to route it, encapsulates it, and forwards all the contents 
of the incoming packet to the controller, being responsible 
for managing the installation of the flow tables in each 
switch. On the other hand, the Ryu controller has the least 
RTTs, mostly because of the less complex algorithms 
involved in the controller. However, the consequence of a 
less complex algorithm is usually a smaller number of 
controller capabilities.  

The latency results are considered to be higher in a real 
SDN network, where in our simulation the communications 
between the switches and the controller are done through the 
loopback interface 127.0.0.1, where there is no delay while 
packets traversing the virtual ports, as compared to the real 
hardware ports. Note that the latency metric is intrinsically 
the inverse of the throughput metric. 

Throughput results: Let’s explain a throughput 
simulation, where the Ryu/POX controller is evaluated for 
the maximum amount of data it can process in a second 
between two SDN nodes. Fig. 6 shows the results obtained 
by performing transmission between client and server in the 
simple STB topology. To measure controller throughput, the 
IPERF test has been executed in 50 sec. on the client h8, and 
data have been collected every 1 sec. on the server h1.   

It should be noted that the latency metric, as directly 
reported previously, is the inverse of the throughput metric. 
It is calculated from the graph that the average throughput 
stays at 28.66 Gbps for Ryu, and 27.08 Gbps for the POX 
controller. According to the observation, the average 
throughput in the POX controller is 5.51% less than the Ryu 
controller. Fig. 7. also shows that the throughput variations 
moderately fluctuated within the duration of the simulation. 
Most of the time simulation was running well, but there are 
few instances of excessive variations in the throughput, 
primarily for the POX controller. 
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Figure 7. Throughput in the STB topology with Ryu and POX controller 

 
Dropping instances were observed frequently by the end 

of simulation time, leading to degraded performance of the 
simulation run. Additionally, for the POX controller, there 
was a large drop in throughput that occurred at 31 sec. of 
simulation, when it drops to a value of 15.9 Gbps. 

 
Figure 8. Throughput in the FTB topology with Ryu and POX controller 

 
Graph on Fig. 8, shows the results obtained by performing 

transmission between client and server in the FTB topology. 
As in the previous case, the simulation has executed in 50 
sec. on the h32, and data have been collected on the server 
h1. It is calculated from the graph that the average 
throughput stays at 17.02 Gbps for Ryu, and 24.97 Gbps for 
the POX controller. In this case, the average throughput in 
Ryu is 31.83% less than the POX controller. Within the 
duration of the simulation, the throughput variations are 
scientifically more uniform than previous STB case. There 
is only one dropping instance of throughput for the POX 
controller. This large drop now occurs again at 31 sec. of 
simulation, and the value of throughput was only 1.63 Gbps.  

For a more complex FTB topology, the Ryu controller 
shows 31.83% lower throughput than the POX. This result 
shows that Ryu lacks the appropriate STP algorithm 
implementation and will result in the packet broadcast storm 
problem when controlling a network with loops. When Ryu 
controls a STB network without a loop, throughput results 
are more uniform. This means that the Ryu controller can be 
more suitable for small and simple OpenFlow networks 
where there are a small number of switches. From the 
statistical analysis results, the continuous polling of data 

causes overhead on the controller. This is because having a 
large number of OpenFlow switches causes conflict at the 
data layer which demands high processing power.  

Because we cannot conclude with certainty why the 
Mininet emulator exhibited such large throughput drops, we 
decided to do the same simulations three more times to 
confirm whether this phenomenon is accidental or not, and 
the Mininet emulator always generates similar results. It 
appears that the hardware resource utilization, especially in 
FTB topology is too high in comparison to the scale of 
nodes support provided by the POX controller. In the 
benchmarking results of [26], the authors speculated that the 
POX controller might have a memory leak, which could be 
the reason for its dropping performance in the throughput 
test. 

VI. CONCLUSIONS AND FUTURE WORK 

Software Defined Networking improves the existing 
network design by introducing advanced control in a 
centralized way. The SDN controller is the fundamental 
element used for all operations of data plane management. 
The controller tracks the network topology by learning of 
the existence of SDN switches and end-user devices and 
tracking the connectivity between them. Further, the 
controller abstracts the details of the controller-to-device 
protocol, so that the applications above can communicate 
with those SDN devices without knowing the differences 
and features of those devices. Besides the responsibilities 
that the SDN controller possesses there are many challenges 
as well. 

This paper presents both a feature-based comparison and 
performance analysis of the most commonly used controller 
implementations Ryu and POX. We compare their 
throughput and latency performance under Simple-Tree-
Based, Fat-Tree-Based and traditional IP network 
topologies. We showed that the performance of a Ryu/POX 
controller depends on many different factors: controller 
hardware and control algorithm configuration, underlying 
network infrastructure, the number of OpenFlow switches, 
the number of hosts, the number of threads, etc. Overall, in 
most of the simulation tests, Ryu and POX controllers show 
higher throughput and lower latency when OpenFlow 
protocol is enabled, than results obtained in the traditional 
IP network. 

The obtained experimental results show that POX 
displayed better throughput results, showing that it is able to 
respond to requests more promptly under complex traffic 
SDN loads, where the number of OpenFlow switches is 
significantly large. However, in a latency viewpoint, Ryu 
exhibited better results, making it more suitable for delay-
sensitive SDN applications, as well as for less complex SDN 
networks. 

Future work can take place in several directions. Because 
Python controllers (Ryu and POX) do not support multi-
threading, one direction for future work can be performance 
analysis for the multi-threaded controllers such as 
FloodLight, ONOS, and ODL, and evaluation of difference 
in throughput scalability between these controllers.  
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