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Abstract—Alzheimer's disease (AD) is an irreversible 

neurodegenerative disorder. Mild Cognitive Impairment 
(MCI) is a prodromal stage of AD and its identification is very 
crucial for early treatment. MCI to AD conversion is of 
imperative concern in current Alzheimer’s research. In this 
study, we have investigated the conversion from MCI to AD 
using different types of features. The impact of structural 
changes in entire brain tissues captured through MRI, genetics, 
neuropsychological assessment scores and their combination 
are investigated.  Computational cost can be significantly 
reduced by examining only the hippocampi region, atrophy of 
which is visible in the earliest stages of the disease. We 
proposed a CNN based deep learning approach for the 
prediction of conversion from MCI to AD using above 
mentioned features. Highest accuracy is achieved when left 
hippocampus is used as a region of interest (ROI). The 
proposed technique outperforms the other state of the art 
methods, while maintaining a low computational cost. The 
main contribution of the research lies in the fact that only a 
single slice based small region of MRI is used resulting in an 
outstanding performance. The accuracy, sensitivity and 
specificity achieved are 94%, 92% and 96% respectively. 
 

Index Terms—artificial neural networks, computer aided 
diagnosis, image analysis, image classification, pattern 
recognition. 

I. INTRODUCTION 

Alzheimer's disease (AD) is a neurodegenerative disorder 
characterized by continuous loss of brain tissues that leads 
to severe memory decline, other cognitive disabilities and 
ultimately death. AD is the 6th leading cause of death in 
United States. By 2018, it is estimated that 5.7 million 
people of all ages are living with AD in America. By the 
year 2025, the population of age 65 and older with AD is 
expected to reach 7.1 million – a rise of nearly 29% [1]. 

The progressive nature of brain atrophy in AD, demands 
for developing automated techniques in order to detect the 
cognitive decline at an early stage [2]. Mild Cognitive 
Impairment (MCI), a prodromal stage of AD, is 
characterized as the intermediary period between Cognitive 
Normal (CN) and the expected AD. No medical treatments 
have been established so far for AD. Hence, the 
development of neuropsychological rehabilitations has 
attracted tremendous consideration. These rehabilitation 
therapies can have a better control when the diagnosis of 
MCI is done at an initial stage [3]. A patient with MCI is at 
a greater risk of progression towards Alzheimer’s and other 

dementias. The research in the identification and detection 
of AD and MCI is now effectively moving towards the 
prediction of MCI conversion to AD. Fig. 1 shows sample 
MRIs of CN, MCI and AD patients. 

Modern multimodal neuroimaging techniques are 
receiving great attention in current dementia research. These 
modalities have enabled researchers to analyze and quantify 
brain structures and functions. Structural Magnetic 
Resonance Imaging (sMRI) [4], functional Magnetic 
Resonance Imaging (fMRI) [5], Positron Emission 
Tomography (PET) [6] and Single-Photon Emission 
Computed Tomography (SPECT) [7] have successfully 
instigated for early detection of brain tissue degeneration 
and the prediction of MCI progression towards AD. 

Laplace Eigen maps model is designed to improve the 
clinical trial of MCI to AD conversion [6]. A Computer-
Aided Diagnosis (CAD) system has been designed for the 
prediction of MCI conversion in one to three year time 
before medical interpretation is made [8]. PET and SPECT 
are common neuroimaging modalities that use nuclear 
medicine injected in patient’s body to track the disease. 
These procedures are time consuming, expensive and 
require latest technology. Moreover, the imaging tests that 
use nuclear medicine cannot be repeated frequently to 
monitor the progression of MCI to AD.  

Figure 1. Sample brain MRIs of CN, MCI and AD patients 
 

Recently, researches have revealed that up to 20% of 
population above 65 years of age might have MCI [8]. 
Numerous machine learning techniques like Support Vector 
Machine (SVM) [9, 10], Naïve Bayes [11], Multilayer 
Perceptron [12] and Decision Trees [4] are being used for 
the efficient classification of AD, MCI and CN. A number 
of different features and modalities have been investigated 
for prediction of MCI and AD. An ensemble of classifiers 
based approach for AD prediction has been proposed using 
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structural features from MRI [4]. Another approach using 
ensemble of classifiers for prediction of AD based on fusion 
of volumetric, textural and hemodynamic features from 
fMRI has been used effectively [13]. The prediction of 
conversion from MCI to AD using MRI and structural 
features has also been investigated [14]. Researchers have 
proposed short term prediction of MCI to AD conversion 
using longitudinal studies of brain MRIs [9]. As 
hippocampus is known to be effected in the earliest stage of 
Alzheimer’s, a vast number of researchers have focused to 
segment it from MRI and perform volumetric studies on it 
[15-17]. A CAD technique has been proposed performing 
grey matter atrophy classification for AD detection [18]. 

Another prognostic model has been designed for the 
prediction of conversion form MCI to AD and the prediction 
of most probable progression window using conformal 
prediction (CP) approach is done [11, 19]. A number of 
studies determined the effectiveness of combined use of 
sMRI and cognitive methods to observe and track MCI and 
its progression [15, 20]. Clinicians and researchers mostly 
use Mini-Mental State Examination (MMSE), Clinical 
Dementia Rating (CDR), Alzheimer’s Disease Assessment 
Scale-Cognitive Subscale (ADAS-Cog) and other clinical 
assessments to measure the cognitive dysfunction of brain at 
different stages of dementia [9, 19]. MMSE helps diagnose 
dementia, its progression and severity [21]. CDR is used to 
characterize multiple aspects of intellectual and functional 
abilities that help quantify the severity of AD and dementia 
[18]. The consequences of these tests being used 
individually result in inappropriate classification of 
dementia stage [22]. The ability of MMSE to distinguish 
subjects with MCI from CN aging is not highly reliable 
[23].The genetic aspects cannot be ignored as it plays a vital 
role in the onset and progression of AD. Apolipoprotein E 
(APOE) with allele ‘ε4’ has been consistently associated 
with this disease. APOE- ε4 is the strongest risk factor and 
key predictor of the development of AD, specifically in MCI 
subjects [24].  

Machine learning techniques are being used for MCI and 
AD detection but majority of the work is concerned with 
classification instead of prediction. Although multimodal 
neuroimaging techniques are being used for accurate 
classification but these techniques are computationally and 
economically very expensive. AD classification from 
handcrafted features is not reproducible and reliable. With 
advancements in technology and increase in CPU power, 
artificial neural networks (ANN) started to be used more 
efficiently and effectively [25]. ANNs have been widely 
used for decision making in medical applications [26]. 
Various modeling approaches have been introduced in 
literature for diverse application e.g. modeling derived from 
Bayesian filtering [27] and surrogate model based 
optimization of traffic lights [28]. Another modeling 
approach based on ANN is deep learning .The use of deep 
learning, which learns the features itself by analysis of data, 
has overcome the limitations of other modeling approaches. 

In this study, we present a Convolutional Neural Network 
(CNN) based approach for the prediction of conversion from 
MCI to AD using Volume of Interest (VOI) of left 
hippocampus. MRI scans have been pre-processed, 
segmented and the area of left hippocampus has been 

extracted using ROI mask mapping technique. The 
prediction of MCI convertors (MCIc) and MCI non-
convertors (MCInc) is performed using CNN. For 
comparison, we have also extracted handcrafted features 
from same MRI scans. Volumes of Grey Matter (GM), 
White Matter (WM) and Cerebrospinal Fluid (CSF) are the 
best known features to classify AD [4, 8]. We have also 
used MMSE and CDR scores as features for classification 
using traditional machine learning algorithms. The proposed 
approach is computationally and economically inexpensive 
and provides promising results.  

Rest of the paper is organized as follows: section 2 
provides statistics of data used in this work and the 
methodology to design CNN network. The results and 
discussions of the proposed technique are presented in 
section 3. The paper ends with conclusion and future work 
in section 4. 

II. MATERIALS AND METHODS 

Dataset: In this research, T1-weighted MRI volumes of 
the brain obtained from ADNI database (adni.loni.usc.edu) 
are used. T1-weighted MRI volumes present better contrast 
of white and grey matter as compared to T2-weighted MRI. 
A total of 200 MRI scans have been downloaded from 
ADNI with NIFTI file format including MRIs of MCI and 
AD subjects in the age range of 56-90 years. Out of these, 
100 subjects are categorized as MCIc based on MMSE and 
CDR scores. A sample of 100 subjects who remained stable 
(MCInc) are also included in the research. APOE genotype 
data is collected for the same subjects provided by the 
ADNI database. Subject attributes are shown in Table I. 

 
TABLE I. DEMOGRAPHICS OF SUBJECTS INVOLVED 

Group MCIc MCInc 

Number of subjects (n) 100 100 

Male 52 70 

Female 48 30 

Age (mean ± S.D) 76.36 ± 6.6 76.17 ± 7.6 

Age Range 56-91 56-90 

MMSE (mean ± S.D) 24 ± 1.84 26.52 ± 1.77 

CDR (mean ± S.D) 0.69 ± 0.25 0.5 ± 0 

 
Proposed Approach: The proposed approach is a 

longitudinal study for prediction of conversion from MCI to 
AD. It involves the classification of left hippocampus 
segmented images extracted from brain MRIs using CNN. 
For comparison with deep learning techniques, volumetric 
features are also extracted from preprocessed MRI and 
classification is performed using traditional machine 
learning methods. The traditional techniques are enriched 
with variety of features including the most well-known 
image features, neuropsychological scores and genetic data 
with a target to achieve best possible results. The purpose of 
comparison is to validate the effectiveness of CNN in the 
domain of Alzheimer’s research. The proposed approach 
comprises of preprocessing, segmentation, feature set 
construction and classification. The MRIs obtained from 
ADNI are preprocessed images that have gone through 
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various types of corrections. Preprocessing performed on 
these scans include Gradwarp, B1 non-uniformity correction 
and N3 bias field correction as shown in Fig. 2. 

Gradwarp is an automatic correction of MRI geometry 
misinterpretation due to stochastic gradient descent. It is 
important to perform gradient non-linearity correction for 
decreasing faults in longitudinal behavior response 
procedures. If it is ignored, gradient non-linearity (GNL) 
manifests as image geometric distortion [29, 30]. 

B1 non-uniformity correction technique applies the B1 
calibration scans to correct the image contrast non-
uniformities. N3 reduces intensity contrast due to the 
magnetic consequence at 3T. This technique is applied to all 
images to reduce residual intensity inhomogeneity [31]. 

Brain Surface Extraction (BSE) and Bias Field Correction 
(BFC) have been applied to preprocessed and corrected 
images. Second phase segments the image into different 
regions and extracts the most useful features from 
segmented image using Partial Volume Classifier (PVC). 
Deep learning methods are effective when dataset size is 
large, resulting in greater training time as compared to 
conventional methods. Scaling down the images, in order to 
reduce its size and ultimately the computational time, results 
in information loss. The effected region in the brain during 
early development of AD is hippocampi, which is a proven 
biomarker of AD progression. Therefore, we extracted left 
hippocampus as ROI and used it for classification. It has 
been observed that the left hippocampus is more vulnerable 
than right one to AD pathology [32] and it is affected in 
early stages of dementia [33, 34]. In the last phase, 
classification between MCIc and MCInc has been done 
using CNN. A detailed methodology of the proposed 
approach is shown in Fig. 3. 

1. Preprocessing: Brain Surface Extraction (BSE) is a 
preprocessing phase in which non-brain tissues i.e., skull 
and scalp are eliminated from the MR images. Skull 
stripping is done using a combination of anisotropic 
diffusion filtering, edge detection and a series of 
mathematical morphological operators [35-37]. Parameters 
in this process are set as: automated iterations = 5, diffusion 
iterations = 3, diffusion constant = 25, edge contrast = 0.64 
and erosion size = 1. MR images are also processed to trim 
spinal cord in BSE in order to get brain only structures. 

The obtained image from BSE is processed for Bias Field 
Correction (BFC) [37]. This is the evaluation of local gain 
alterations by investigation of local ROIs which are spread 
all over the MRI scan. Within each ROI, a partial volume 
measurement model is fitted to the histogram of the ROI. 
One module in this model is gain alteration, thus the fitting 
method produced an approximation of the gain alterations 
for the ROI. A tri-cubic B-spline is then equipped to the 

robust set of local approximations to produce a correction 
field for the whole brain volume, which is then eliminated 
from the image to produce non-uniformity corrected image. 
Parameters applied for non-uniformity correction are: 
histogram radius = 12, sample spacing = 16, control point 
spacing = 64, spline stiffness = 0.0001 and cuboid shape is 
selected for ROI. 

2. Segmentation and Feature Set Construction: 
Segmentation is performed with the help of PVC. The 
partial volume measurement model is used in this 
classification under the hypothesis that the gain is uniform, 
and is combined with a spatial prior 0.1 that models the 
largely contiguous nature of brain tissue types. PVC 
provides labels of multiple classes of tissues including GM, 
WM and CSF volumes along with their corresponding 
combinations [37]. 

Hippocampus is extracted from MRI for classification of 
subjects using CNN. Hippocampus is primarily associated 
with memory; particularly the long-term memory. It is also 
linked with spatial memory that enables navigation. The 
healthy function of the hippocampus can be affected by AD 
in its very preliminary stages. Left hippocampus is affected 
in initial phase of the disease as compared to right 
hippocampus [33, 34]. The extraction of left hippocampus is 
done using ROI mask mapping technique [4] as shown in 
Fig. 4. 

Two cognitive assessment scores i.e. MMSE and CDR 
have also been incorporated in this research. These cognitive 
biomarkers play important role in the classification of AD, 
MCI and CN along with the prediction of conversion from 
MCI to AD. The ADNI Biomarker Core provides genetic 
information of contributing subjects, which are determined 
from subject’s blood test at the time of baseline scans. The 
APOE gene is an individual categorical variable of an 
individual which is strongly associated with the risk of AD 
development. It comes in one of the six possible 
combinations i.e. (ε2, ε2), (ε2, ε3), (ε2, ε4), (ε3, ε3), (ε3, ε4) 
and (ε4, ε4). The subjects with ε4 have higher risk of AD 
development. The genetic information makes it possible to 
predict the conversion well before time.  

3. Classification: The ROIs extracted from MRIs 
have been classified using CNN. The extraction of features, 
from MRI volumes, is computationally expensive and 
creates very large datasets for training of classifiers. The 
advantage of using CNN is better training than a typical 
neural network and this leads to noise reduction and 
improved performance of classification task. The CNN uses 
deep learning approach to perform image classification [38]. 
CNNs have been widely proven to be an effective class of 
networks for many applications including image and video 
recognition.  

 

Figure 2. Gradwarp, B1 and N3 Corrections on a sample MR image 
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Figure 3. Methodology of the proposed approach 

The CNN designed for this work comprises of seven 
layers as shown in Fig. 5. Each layer demonstrates some 
operators as convolution and subsampling. The convolution 
operators calculate the outcome of neurons to be 
reconnected to local regions in the input, by computing a dot 
product between their weights and a small region to link it to 
the input image. 

The proposed CNN extracts most discriminative features 
from the image to classify it. The inputs are the 
hippocampus images extracted from the MR images for both 
MCI and AD classes. The resolution of the input images is 

150×150×1, representing height, width and number of 
channels.  

In convolutional layer, we have applied 32 filters each of 
size 5×5, showing neurons that connects to the same region 
of the output. The main function of this layer is to detect 
local combinations of features from preceding layer that 
automatically map their presence to a feature map. As a 
result of convolution, the image is divided into a number of 
perceptrons. For a N×N square neuron layer, a m×m filter w 
is used. The output of convolutional layer is of size (N-m+1) 
× (N-m+1). 
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Figure 4. Proposed approach for left hippocampus ROI extraction 

To compute the pre-nonlinearity input to the unit Xl
ij in 

the layer, we summed up the contributions from previous 
layer cells as shown in equation (1). 

1 1
1

( )( )
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k k
p p
ij ab i a j b

a b

y x z
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
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 

   (1) 

The nonlinearity of convolutional layer is shown in 
equation (2). 

(p
ij ijz y )p

p
i

   (2) 

The convolutional layer is followed by a nonlinear 
activation Rectified Linear Units (ReLU) layer. These units 
are a specific implementation that associates non-linearity 
and rectification in CNNs. A ReLU is a piecewise linear 
function as defined in equation (3). 

( ) ( 1)max(0, )p
iz z    (3) 

The pooling layer p is responsible for reducing the spatial 
size of activation maps. The pooling size is 2×2 with max 
pooling operator, resulting in faster convergence and better 
performance. Stride size is also set to 2, so pools do not 
overlap. The hyper parameters used here are spatial extent 
of the filter f(p) and the stride s(p). It takes an input volume 
of size n1

(p-1)×n2
(p-1)×n3

(p-1) and results in an output volume of 
size n1

(p)×n2
(p)×n3

(p) where the values of n1
(p), n2

(p) and n3
(p) 

are computed as shown in equation (4), (5) and (6) 
respectively. 

( ) ( 1)
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tically, a 
fully connected layer is defined as in equa

 (6) 

The next layer in our proposed CNN is fully-connected 

layer in which the neurons are connected to all the neurons 
in the preceding layer. The fully-connected layer is usually 
used to project all the features across the image to identify 
larger patterns. The fully connected layers in a CNN are 
particularly multi-layer perceptrons (MLP) that maps the 
n1

(p-1)×n2
(p-1)×n3

(p-1) activation volume. Here, these activation 
volumes are gained from the combination of preceding 
layers into a class probability distribution. Theore

tion (7). 
( ) ( )( )p p
i iz f w   (7) 

where 

p
  (8) 

outcome of 
the previous layer and is defined in equati

( 1)
1

( ) ( ) ( 1)
,
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p p

i i jw x z


 
1

i
i

The fully-connected layer is followed by softmax layer. 
The softmax activation function standardizes the 

on (9). 
exp( )

( )
exp( )

i
i

i
i

The outcome of softmax layer contains positive numbers, 
which are used as classification probabilities by the next 
layer. The final layer is the classification layer. It uses the 
probabilities provided by the softmax layer for each input in 
order to allocate it to one of the mutually exclusive classes. 
It also computes the loss through the loss function (cross

w
softmax z

w



  (9) 

 

 
research and are presented in equations (10), (11) and (12). 

entropy), evaluated on the outcome value of softmax layer. 
Accuracy, sensitivity and specificity are used as 

performance evaluation measures for our proposed approach 
in order to compare it with existing approaches. These 
performance evaluation measures have been used widely in
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Figure 5. Basic structure of CNN architecture designed for the classification of MR images 

( )

(

TP TN
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TP FP FN TN



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 (10) 

( )
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TP FN



  (11) 

( )

TN
Specificity

TN FP



  (12) 

Here,  
TP is True Positives i.e. number of subjects with AD that 
are correctly classified as MCIc,  
TN is True Negatives i.e. number of subjects with MCI that 
are correctly classified as MCInc,  
FN is False Negatives i.e. number of subjects with AD that 
are incorrectly classified as MCInc,  
FP is False Positives i.e. number of subjects with MCI that 
are incorrectly classified as MCIc. 

III. RESULTS AND DISCUSSION 

The CNN approach of deep learning is used to extract 
most relevant features from images and classify them. The 
segmented ROI images are smaller in size and, therefore, 
their classification is computationally less expensive. The 
entire dataset (200 images) is split into training (150 images) 
and test (50 images) set. The CNN model is trained on 150 

images from training dataset. The trained CNN model is 
then tested with 50 images from test set and accuracy is 
reported. A total of 15 epochs has been used in CNN model. 
Initial training accuracy is 35% (1st epoch), which converges 
to 99% in last epoch (15th epoch), resulting in an overall 
training accuracy of 99% and validation accuracy of 94%. 
The validation specificity is 96% and validation sensitivity 
is 92%.  

In order to validate the significance of this work, a 
number of traditional machine learning methods are also 
used to classify the handcrafted features of MRIs for the 
prediction of MCI conversion to AD. WEKA tool has been 
used to classify image features (volume of GM, WM, CSF), 
neuropsychological assessment scores (MMSE, CDR) and 
the genetic data (APOE) individually as well as collectively. 
The classifiers used include DL4J, MLP, SVM, J48 and 
Naïve Bayes.  

It is observed that volumetric image features presented 
higher accuracy as compared to neuropsychological 
assessment scores and genetic data. It is also evident that 
results obtained from the collection of different feature types 
are slightly better but still lower than the results achieved 
from volumetric image features. The accuracy, sensitivity 
and specificity of different feature sets are shown in Table 
II. 

 
TABLE II. RESULTS OF IMAGE FEATURES, MMSE + CDR, APOE AND COMBINED FEATURES PRESENTED IN PERCENTAGE 

DL4J MLP SVM J48 Naïve Bayes 

Feature Set 

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE 

GM+WM+CSF 86 83 88 84 82 85 86 83 88 75 70 80 86 83 88 

MMSE+CDR 76 73 78 74 72 75 76 73 78 70 61 79 76 73 78 

APOE 70 65 75 66 62 69 68 62 73 46 46 46 68 62 73 

All above 
features 

81 72 90 83 82 83 84 80 88 78 80 76 77 82 72 
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The task of this research is to investigate whether 
neuropsychological test scores and genetic data along with 
volumetric image features improve the classification 
accuracy. The answer is ‘No’ as is evident from the results. 
Moreover it is examined that whether ROI based image data 
using CNN produces better results as compared to 
volumetric image features. In this case the answer is ‘Yes’. 
The hippocampal image data, trained and tested on CNN, 
provides better classification results than volumetric image 
features. The hippocampus extracted from MR images are 
smaller in size and computationally less expensive and 
provides higher accuracy (94%) as compared to the 
accuracy obtained from volumetric image features (highest 
86%). CNN algorithms have higher AD prediction accuracy 
due to the fact that multiple hidden layers are present which 
lead the classifier for taking better decisions. 

Most of the literature investigates the classification or 
prediction of AD and NC subjects. Machine learning as well 
as deep learning techniques has been exploited effectively in 
this regard. The new research trends are now focusing on the 
pre-clinical stage of MCI. For early diagnosis of AD, timely 
prediction of MCI is vital in order to stop or at least slow 
down its progression. A number of longitudinal studies have 
been performed that predict the conversion of MCI to AD. 
Although a number of different modalities have been used, 
but for comparison purposes we only consider MRI.  

Among various machine learning algorithms, SVM has 
been used most widely for binary classification of 
neuroimaging data in AD diagnosis. Feature ranking and 
classification error is investigated for AD and NC 
classification, achieving an accuracy of 92.48% [21]. 
Similarly, an ensemble classification method for AD, MCI 
and NC is proposed [39]. The best accuracy resulted for the 
classification of AD and NC i.e. 98.83%. Classification of 
AD and MCI resulted in 91.66% accuracy, whereas, 90.83% 
accuracy is achieved for MCI and NC classification. 

Recently, deep learning models, especially CNNs, have 
gained popularity in the domain of image classification. 
CNNs are effectively investigated for the classification of 
single modality and multi-modality neuroimaging data as 
well. Multi-CNN model for classification of AD and NC has 
been exploited for diagnosis of AD with an accuracy of 
87.15% [40]. Spectral CNN is used for classification of AD, 
MCI and NC [41]. Accuracies of 91.07%, 87.72% and 
85.45% have been reported for binary classification AD and 
NC, AD and MCI, and, MCI and NC, respectively. 
Considering multi-modality, MRI and PET scans, have been 
studied for binary as well as multi-class classification using 
stacked autoencoders [42]. For binary classification of AD 
and NC, the reported accuracy is 91.40%, whereas, for MCI 
and NC, it is 82.10%. For multi-class classification of AD, 
MCI and NC, the accuracy obtained is 53.79%. 

The focus of our research work is the classification of 
MCIc and MCInc because of its importance in early 
diagnosis of AD. This task is more complicated due to the 
fact that there exists least discriminating patterns in the 
brains of the two groups. For comparison with our research 
work, we have studied a number of research works that 
perform the classification of MCIc and MCInc.      

Traditional machine learning algorithms have been 
applied to predict conversion of MCI to AD. Beheshti et al. 

achieved an accuracy of 93.01% for classification of AD 
and NC, and 75% accuracy for the classification of static 
MCI and progressive MCI [8]. Lotjonen et al. showed that 
different groups of training and validating sets progress to a 
classification accuracy ranging between 53% and 77% for 
the prediction of MCI conversion [43]. Linear discriminant 
analysis (LDA) with MRI resulted in an accuracy of 73.95% 
for classification of MCIc and MCInc [15]. Similarly, an 
accuracy of 73.91% is reported when most widely used 
SVM is applied for predicting conversion of MCI to AD 
[44].  

Deep learning models are recently exploited for 
prediction of conversion from MCI to AD. Multitask deep 
learning framework is investigated in this regard using MRI 
and PET data [45]. CNN based MRI image analysis for 
MCIc and MCInc classification resulted in 79.90% accuracy 
[46]. Deep belief networks and SVM are combinely studied 
for a number of binary classification tasks using MRI and 
PET scans [47]. Among others, the accuracy of MCIc and 
MCInc turned out to be 78%. Sparse regression models and 
2D CNN are investigated for predicting the conversion of 
MCI to AD [48]. Their results reported an accuracy of 
74.82%.      

In this research, demographic data of the participants is 
not included as a feature for conversion prediction. 
However, this data might present integral information to 
improve the performance. Age has been proven as a risk 
factor of AD [49]. Older adult subjects are more probable to 
develop AD than younger ones, demonstrating that age is a 
significant forecaster of AD. However, normal aging has 
comparable shrinkage effects on brain’s specific regions as 
AD which would limit to find the disease related alterations 
for classification task. In recent studies [50, 51], the aging 
effect was dropped out before the classification so that the 
particular disease related modifications can be used to train 
and validate the classifiers.  

Latest approaches are now making use of pre-trained deep 
learning models known as transfer learning for 
neuroimaging data. These methods avoid the pipeline phases 
of feature extraction by using previously trained models. 
ResNet and VGGNet pre-trained models have been used for 
classification of AD and NC subjects using MRI, resulting 
in an accuracy of 88% [52].  

It is evident from the studied literature, that predicting 
conversion from MCI to AD, or in other words, 
classification of MCIc and MCInc, is the most challenging 
task. The proposed approach is novel in the sense that it is 
less computationally expensive by using only a single region 
of brain (hippocampus) from a single slice of MRI, yet 
producing better accuracy. The comparison of our proposed 
approach with a number of existing approaches is presented 
in Table III. 

IV. CONCLUSION 

Timely diagnosis of Alzheimer’s disease is one of the 
challenging tasks in medical field. Early detection may 
prevent severe dementia or at least slow down its 
progression. Now a days, deep learning and in particular 
CNN, has shown state of the art performance in many 
computer vision fields including medical sciences.  In this 
research, a CNN framework is proposed for improved 
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prediction of MCI conversion to AD. Two experiments are 
performed on the MRI dataset obtained from ADNI. In the 
first experiment, entire 3D MRI images are pre-processed 
for brain surface extraction, skull stripping, non-uniformity 
correction and partial volume tissue classification.  The 
segmentation of pre-processed images results in volumes of 
GM, WM and CSF as features, which are used in 
combination with neuropsychological assessment scores i.e. 
MMSE and CDR as well as genetic data i.e. APOE ε4 to 
train and test a number of machine learning algorithms. It is 
observed that handcrafted volumetric image features alone 
outperform other features.  

In the second experiment, hippocampus is extracted from 
MRI images using ROI mask mapping technique. The CNN 
is trained on hippocampus segmented images. The outcomes 

of this experiment are quite promising as compared to the 
outcomes obtained through volumetric image feature set 
because the hidden layers of CNN lead the classifier for 
making better decisions. We achieved the prediction 
accuracy of 94%, which is better than state of the art 
techniques. From these results, it is concluded that 
hippocampus extracted images, which are smaller in size 
and computationally less expensive, provide better outcomes 
than the volumetric features from the entire MRI. The 
experimental results indicate that the CNN approach is an 
effective technique for the prediction of MCI conversion 
and early detection of AD. The proposed technique may be 
beneficial in the domain of medical sciences for assisting 
medical practitioners in making timely and accurate 
prognosis.  

 
TABLE III. COMPARISON OF PROPOSED APPROACH WITH EXISTING APPROACHES, N/A: NOT AVAILABLE 

Approach Image Modality Classifier Classification Group ACC (%) SEN (%) SPE (%) 

[8] MRI SVM 
AD vs NC 

MCIc vs MCInc 
93.01 
75.00 

89.13 
76.92 

96.80 
73.23 

[15] MRI LDA MCIc vs MCInc 73.95 74.14 73.77 

[21] MRI SVM AD vs NC 92.48 91.07 93.89 

[39] MRI SVM 
AD vs NC 
AD vs MCI 
MCI vs NC 

98.83 
91.66 
90.83 

100 
92 
88 

96 
89 
91 

[40] MRI 3D CNN AD vs NC 87.15 86.36 85.93 

[41] MRI Spectral CNN 
AD vs NC 
AD vs MCI 
MCI vs NC 

91.07 
87.72 
85.45 

88.24 
84.38 
92.86 

95.45 
92.00 
77.78 

[42] MRI , PET Stacked autoencoders 
AD vs NC 
MCI vs NC 

AD vs MCI vs NC 

91.40 
82.10 
53.79 

92.32 
60.00 
52.14 

90.42 
92.32 
86.98 

[44] MRI SVM MCIc vs MCInc 73.91 70.5 77.1 

[45] MRI, PET 
Multitask Deep 

Learning framework 
AD vs MCI 

MCIc vs MCInc 
70.1 
57.4 

n/a n/a 

[46] MRI CNN MCIc vs MCInc 79.9 84 74.8 

[47] MRI, PET 
Deep Belief Networks, 

SVM 

AD vs NC 
AD vs MCInc 
MCInc vs NC 
MCIc vs NC 

MCIc vs MCInc 

90 
84 
80 
83 
78 

86 
79 
60 
67 
61 

94 
89 
90 
95 
88 

[48] MRI 
Sparse regression 

models and 2D CNN 
AD vs NC 

MCIc vs MCInc 
91.02 
74.82 

92.72 
70.93 

89.94 
78.82 

[52] MRI 
3D CNN 

(ResNet, VGGNet) 
AD vs NC 88 n/a n/a 

[53] FDG PET CNN 
AD vs NC 

MCIc vs MCInc 
96.00 
84.2 

93.5 
81.00 

97.8 
87.00 

Proposed 
Approach 

MRI CNN MCIc vs MCInc 94 92 96 
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