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1Abstract—In the real environment, modulation recognition 

has low classification recognition rate under low SNR and is 
affected by many factors such as symbol rate, frequency offset 
and adjacent channel crosstalk. Based on the combination of 
high-order cumulants and instantaneous features, this paper 
firstly analyzes the performance of modulation signal 
recognition in Gaussian environment. Then through the 
experimental verification, symbol rate, frequency offset, 
adjacent channel crosstalk has an impact on the accuracy of 
modulation recognition. The experimental results show that the 
ratio of symbol rate and sampling rate has a significant impact 
on the recognition results, while frequency offset and adjacent 
channel crosstalk have little impact on the recognition rate. 
 

Index Terms—pattern recognition, digital modulation, 
higher order statistics, multiple signal classification, machine 
learning. 

I. INTRODUCTION 

Wireless signal recognition mainly includes modulation 
recognition and wireless technology recognition, which has 
broad application prospects in military and civil fields, 
including signal reconnaissance and interception, anti-
interference and equipment recognition [1]. At present, the 
modulation recognition algorithms of communication 
signals are divided into decision theory recognition method 
based on likelihood function and statistical pattern 
recognition method based on feature extraction [2]. Because 
modulation classification mainly distinguishes signal 
modulation types in the case of unknown modulation 
parameters, there are many research results of modulation 
recognition based on feature extraction. 

Since the Gaussian white noise is higher than the second-
order cumulant constant to zero [3], the modulation 
recognition method based on the high-order cumulant [4]-
[6] has good anti-noise performance, and has received 
extensive attention in the field of modulation recognition. 
Literature [7]-[12] uses high-order cumulants to distinguish 
common digitally modulated signals. In [7], the fourth-order 
statistic (HOS) is applied to blind channel estimation and 
pattern recognition. In the case of known channel 
information, the QPSK recognition rate is about 90%, and 
the 64QAM recognition rate is about 80%. Literature [8] 
uses four-order, eighth-order cumulants to distinguish 
between MASK, MPSK, and MQAM signals. Literature [9]-
[10] uses two to eight-order cumulants to identify multiple 
digitally modulated signals such as MASK, MPSK, MQAM, 
and MAPSK with Gaussian noise only. Among them, the 
literature [10] verified the correctness and rationality of the 

characteristic parameters through simulation experiments 
without considering the carrier phase deviation. In 

 
 

[11], the 
high-order cumulants and instantaneous parameters are 
combined to extract four characteristic parameters. The 
decision tree decision method is used to realize the noise-
only 2ASK, 4ASK, BPSK, QPSK, 2FSK, 4FSK, 16QAM 
seven-type signals. Modulation recognition, when the SNR 
is 5dB, the recognition rate of each signal reaches 95%. In 
[12], based on high-order cumulant and depth learning, 11 
kinds of modulated signals such as MASK, MPSK, MFSK, 
MQAM and OFDM are classified and recognized. In the 
Gaussian white noise environment, when the SNR is -1dB, 
the correct recognition rate is 72%. When the SNR is 20 dB, 
the correct recognition rate reaches 100%. Literature [13] is 
based on the instantaneous characteristics of digitally 
modulated signals and the second, third and fourth-order 
cumulants, combined with artificial neural networks, in the 
presence of additive white Gaussian noise with a signal-to-
noise ratio of 8 dB, MASK, MPSK, MQAM signals The 
recognition rate is over 95%. 

In the above published literature, modulation recognition 
is carried out in the additive white Gaussian noise 
environment. In the actual communication, blind signal 
processing needs to complete carrier frequency estimation, 
modulation type recognition, symbol rate estimation, 
symbol synchronization, etc. In reference [14] , based on the 
sixth order cumulant and depth learning algorithm, the 
influence of frequency offset and multipath effect on 
modulation recognition is considered. When SNR = -2dB, 
the recognition rate of 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 
2PSK and 4PSK are all 100%. When the frequency offset is 
10ppm, the recognition result of some specific modulation 
types is very little affected, while the multi-path effect will 
not reduce the recognition ability. In this paper, based on the 
statistical pattern recognition method of feature extraction, 
the instantaneous feature [15] and high-order cumulant are 
selected to extract the feature parameters to realize the 
hybrid modulation recognition algorithm, and the decision 
tree and neural network [16]-[17] classifier are constructed 
for simulation verification. Firstly, 10 kinds of modulation 
signals, such as MFSK, MPSK, MQAM, are identified 
under Gaussian condition, and the effectiveness of the 
algorithm is verified. Then, the influences of the ratio of 
symbol rate and sampling rate, frequency offset, crosstalk of 
adjacent channels on the accuracy of modulation recognition 
are analyzed. 

       65
Digital Object Identifier 10.4316/AECE.2019.04008 

1582-7445 © 2019 AECE 

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 08:15:15 (UTC) by 3.230.128.106. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 4, 2019 

II. CHARACTERISTIC PARAMETERS AND ALGORITHM 

ANALYSIS 

In modulation recognition based on statistical pattern, 
feature extraction is an important part and the basis of the 
subsequent classification decision. In the existing research, 
modulation recognition technology based on instantaneous 
information has a low recognition rate in the case of low 
SNR, while modulation recognition technology based on 
high-order cumulant has a bad effect on intra class 
classification of signals, and some signals cannot be 
completely distinguished. In order to solve the problem of 
single feature, this paper uses the method of high-order 
cumulant and instantaneous feature to realize modulation 
recognition and classification. 
A. Definition of Higher Order Cumulants 

The k-high order cumulant of the signal is [18]: 
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 tX  is a zero-mean complex stationary stochastic 

process whose p  order mixing moment is defined as [19]: 

   p q q
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Where represents a complex conjugate,  p represents 

an order  p q , and q  is the number of sequences to 

which the conjugate is taken. The cumulative amount of 
signal order can be defined as: 
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Assume that the transmitted symbols are independently 
and identically distributed, and the signal energy is E . 
According to the calculation method of the higher-order 
cumulant theoretical value in [20], the theoretical values of 
the cumulative quantities of MFSK, MPSK, and MQAM are 
shown in Table I: 

TABLE I. THEORETICAL VALUE OF EACH ORDER OF DIFFERENT 

MODULATION MODES 

Modulated 
signal 41C

 42C
 63C

 80C
 

MSK 0 2E  
34E  0 

2FSK 0 2E  
34E  

0 

4FSK 0 2E  
34E  

0 

BPSK 22E  
22E  

313E  
4272E  

QPSK 0 2E  
34E  

434E  

8PSK 0 2E  
34E  

4E  

8QAM 20.89E  
2E   

35.33E  
454.15E  

16QAM 0 20.68E  
32.08E  

413.98E  

32QAM 0 20.69E  
32.11E  

41.99E  

64QAM 0 20.62E  
31.80E  

411.50E  

B. Feature Parameter Extraction 
In order to eliminate the influence of the average power E 

of the signal, according to the difference of the cumulative 
quantities of the different modulation modes in Table I, the 
following three characteristic parameters are constructed: 

41
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According to Table I, the theoretical values of each 

characteristic parameter can be obtained as shown in Table 
II: 

TABLE II. THEORETICAL VALUE OF EACH CHARACTERISTIC PARAMETER 

Characteristic Parameters Modulation 
type 

1Fx 2Fx 3Fx
MSK 0 16 0 

2FSK 0 16 0 

4FSK 0 16 0 

BPSK 1 21.12 68 

QPSK 0 16 34 

8PSK 0 16 1 

8QAM 0.89 28.44 54.15 

16QAM 0 13.76 30.23 

32QAM 0 13.55 4.19 

64QAM 0 13.59 29.92 

It can be seen from Table II that the high-order cumulant 
cannot handle MFSK and MQAM signal class recognition 
well. This paper extracts the following four instantaneous 
characteristic parameters [21]-[22] to deal with intra-class 
signal identification. 

1. Zero-center normalized instantaneous amplitude on the 
non-weak signal segment. Logarithm of the second-order 
origin moment: 
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Where sN  is the number of points on the non-weak 

signal segment among all sampled data points, and  ( )cnA n
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is the instantaneous amplitude normalized by the center. 
2. Recursive zero-center normalized on the non-weak 

signal segment. Logarithm of the instantaneous magnitude 
absolute value of the origin moment: 
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Where ( )snA n  is the recursive normalized instantaneous 

magnitude. 
3. Zero-center normalized instantaneous frequency 

absolute value of the origin moment on the non-weak signal 
segment: 
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Where ( )cnf n  is the instantaneous frequency normalized 

to zero center. This parameter is mainly used to identify 
2FSK and 4FSK signals. 

4. The second order amplitude moment of the MQAM 
signal [23]: 

2
7 2,
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3
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  (15) 

4Fx , 5Fx , and 7Fx  resolve the intra-class identification 

of the MQAM signal, and 6Fx  separates the MFSK signal. 

C. Classifier Design 
Machine learning can find the relationship between the 

feature parameters adaptively, and adjust them constantly, 
then get the optimal classification method. In this paper, the 
decision tree and neural network classifier, which are 
common and easy to implement in engineering, are selected 
for modulation signal classification and recognition. 

The neural network can simulate the biological nervous 
system to judge the input object, and has good adaptability 
[24]. Common neural network classifiers mainly include BP 
neural network, radial basis neural network, adaptive 
resonant neural network and wavelet neural network. The 
neural network has a good ability to learn and store 
information, which helps to improve recognition 
performance in pattern recognition. In this paper, a 3-layer 
backpropagation BP neural network is selected. The 7 nodes 
of the input layer correspond to 7 characteristic parameters, 
and the 10 nodes of the output layer correspond to 10 signal 
modulation types, and the number of hidden layer nodes is 
20. 

Decision tree is a classification algorithm for supervised 
learning, also called decision tree. The algorithm 
implementation includes two stages of learning and 
prediction [25]-[26]. The main idea is to simplify the 
decomposition of complex problems, and to enter the next 
layer by comparing the thresholds of each layer. The 
algorithm is simple, and can make feasible and effective 
results for large data sources in a relatively short time. 
Before using the decision tree classifier, you need to set the 
relevant parameters of the decision tree, mainly including 
the maximum number of categories, the depth of the 
decision tree, the minimum number of samples of nodes, 
etc. in this paper, the specific parameters of the decision tree 

classifier are set, as shown in Table III: 
TABLE III. DECISION TREE CLASSIFIER SPECIFIC PARAMETERS 

Parameter name Parameter meaning Value 

Max Categories 
The largest category of decision tree node 

splitting 
4 

Max Depth Possible maximum depth of the decision tree 10 
Min Sample 

Count 
The smallest sample size of the decision tree 

node 
5 

Truncate Pruned 
Tree 

If set to true, the trimmed branch will be 
completely removed. 

True 

Regression 
Accuracy 

Stop condition of regression decision tree 
training 

0 

D. Decision tree learning process 
The implementation of decision tree algorithm includes 

two stages: learning and prediction. Fig.1 shows the learning 
process of decision tree, which is a recursive 
implementation process.  

 
Figure 1. Decision tree learning process 
 

It can be seen from Fig.1 that after importing the training 
data set, a node is generated first, and then whether the data 
in the training sample belongs to the same category is 
determined. If it belongs to the same category, the node is 
marked as this category. Otherwise, the judgment needs to 
be continued. Then judge the feature attribute set. If the 
attribute set is empty or has only one attribute, mark the 
class with the largest number of samples as the leaf node. 
Otherwise, select the best attribute in the attribute set to 
divide the class. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this paper, the modulation signal set is to be identified: 
{MSK, 2FSK, 4FSK, BPSK, QPSK, 8PSK, 8QAM, 
16QAM, 32QAM, 64QAM}. There are two sources of 
experimental data required: one is to generate a digital 
modulated signal set under the MATLAB platform. 
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Simulation conditions: Assuming training signal set baud 
rate 8000, verify signal set baud rate are 7000, 8000, 9000, 
11000, unit: baud. Samples Per Symbol is 8, Sample Rates 
calculated according to baud rate, Modulation Order, and 
Samples Per Symbol. The signal data length is 16384, the 
signal-to-noise ratio varies from 0dB to 29dB, and the step 
size is 1. The noise is A. The second is to generate signals 
through the Agilent E4432B RF digital signal generator and 
receive them after the actual channel. The carrier frequency 
of the signal is set to 500MHz, and the acquisition symbol 
rate is 24ksps and 65ksps respectively. The signal is 
processed by down-conversion in the receiving process to 
obtain the complex baseband signal. Because the actual 
acquisition signal and the simulation signal recognition 
results are basically the same, this paper only describes the 
experimental results analysis of the simulation signal. 
A. Simulation Research on Recognition Performance of 
Each Modulation Signal under AWGN 

The simulation experiment is carried out by using 
MATLAB software to verify the validity of the proposed 
method. The symbol rate of the signal set is 8000, which 
only contains Gaussian white noise. It can be seen from 
Fig.2 that the modulation recognition accuracy of the basic 
neural network classifier is 97.45% at SNR = 0 dB and the 
modulation recognition accuracy based on the decision tree 
classifier is 97.8%. At SNR > 4 dB, the correct rate of 
modulation recognition based on neural network classifier 
and decision tree classifier is 100%. In the literature [5], the 
correct recognition rate reaches 100% at SNR = 20dB. 

 
Figure 2. The relationship between correct recognition rate and SNR under 
Gaussian channel 
 

It can be seen from Fig.3 and Fig.4 that for noise-only 
MQAM, MFSK and BPSK signals, the recognition rate 
using the decision tree and the neural network classifier is 
100%. QPSK and 8PSK signals, when SNR = 0 dB, are 
identified by decision tree classifier, and the recognition 
rates are 91% and 86% respectively. With the neural 
network classifier, the recognition rates are 81% and 91% 
respectively. The signal-to-noise ratio increases and the 
recognition rate increases. When SNR > 3 dB, the 
recognition rate of QPSK and 8PSK signals reaches 100%. 
At low SNR, the recognition rate of each modulated signal 
is higher. However, the literature [2] can effectively identify 
all signals when the signal-to-noise ratio is greater than 
20dB; in [4], when the SNR=5dB, the recognition rate of 
each signal reaches 95%; in the literature [3], when the 

signal-to-noise ratio is greater than -3dB, the signal The 
recognition rate can reach more than 90%. Therefore, under 
the low SNR, the correct recognition rate of the method used 
in this paper is higher than that in the literature [2], [4], 
which is lower than the literature [3]; thus the low SNR of 
the proposed method in Gaussian channel environment is 
verified. It has a good recognition result. 

 
Figure 3. Correct recognition rate of each modulation signal based on 
decision tree 

 
Figure 4. Correct recognition rate of each modulated signal based on neural 
network 
 

B. The effect of Baud Rate on the correct rate of modulation 
recognition 

Consider the effect of the baud rate on the correct rate of 
modulation recognition. The training signal set baud rate is 
8000, and the verification signal set baud rate is 7000, 8000, 
9000, 11000, and the unit is: baud. It contains only Gaussian 
white noise. 

From Table IV, when SNR = 0dB, the baud rate is 8000, 
the baud rate is 8000, and the recognition rate is over 97%. 
When the baud rate is reduced to 7000, the recognition rate 
is reduced to about 78%, and the recognition rate is 
significantly reduced. When the baud rate is increased to 
9000 and 11000, the recognition rate is 98% and 97%, 
respectively. Compared with the baud rate of 8000, the 
result is almost unchanged. 

TABLE IV. RECOGNITION RESULTS AT DIFFERENT SYMBOL RATES 

Recognition rate(%) 
Classifier 

Baud rate 
(baud) 0dB 5dB 10dB 20dB 

Decision tree 7000 78.2 80 80 80 
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8000 97.8 100 100 100 

9000 98 100 100 100 

11000 97.25 100 100 100 

7000 79 80 80 80 

8000 97.45 100 100 100 

9000 98.05 100 100 100 
Neural Networks 

11000 97.45 100 100 100 

It can be seen from Fig. 5 and Fig. 6 that when the baud 
rate is reduced, the MSK and QPSK signal recognition rates 
are both 0; 8PSK signals, SNR = 0 dB, the recognition rates 
of the decision tree classifier and the neural network 
classifier are 82% and 90%, respectively. The signal 
recognition rate is still 100%. 

 
Figure 5. The verification set symbol rate is 7000, based on the decision 
tree's modulation recognition rate 

 
Figure 6. The verification set symbol rate is 7000, based on the neural 
network-based modulation recognition rate 
 

C. The effect of frequency offset on the correct rate of 
modulation recognition 

Simulation conditions: There is frequency offset and 
noise, the symbol rate is 8000, and the frequency offset is 
2.5%, 5% and 10% of the symbol rate, respectively.  

Fig. 7 is a spectrum diagram of a QPSK signal with 
frequency offset, where the frequency offset is 5% of the 
symbol rate.  

 
Figure 7. QPSK signal spectrum 
 

As can be seen from Table V, the frequency offset is 
added. Compared with the noise only, the correct 
recognition rate of the modulated signal is significantly 
reduced at a low SNR, and different frequency offsets have 
different effects on the correct recognition rate. 

TABLE V. RECOGNITION RESULTS AT DIFFERENT FREQUENCY OFFSETS 

Recognition rate(%) 
C

la
ss

if
ie

r Frequen
cy offset 
is X% of 

baud 
rate 

0dB 5dB 10dB 15dB 20dB 25dB 

0 97.8 1 1 1 1 1 

2.5 89.85 90.05 90.05 90 99.8 
99.9

5 

5 89.9 90.05 89.95 90.1 99.95 
99.9

5 

D
ec

is
io

n
 t

re
e 

10 90.15 90.05 90 90.5 97.75 99.9 

0 97.45 1 1 1 1 1 

2.5 92.2 97.1 99.25 1 1 1 

5 93.1 99.8 1 1 1 1 

N
eu

ra
l 

N
et

w
or

k
s 

10 99.15 1 1 99.85 99 
99.9

5 

As can be seen from Fig.8, in addition to the 8PSK signal, 
the recognition rate of other signals is 100%. As can be seen 
from Fig.9 and Fig.10, the recognition rate of the QPSK 
signal is also affected as the frequency offset increases, but 
the recognition rate of the QPSK signal is always better than 
the 8PSK signal. 

 
Figure 8. Based on the decision tree, the frequency offset is 2.5% of the 
baud rate 
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Figure 9.Based on the decision tree, the frequency offset is 5% of the baud 
rate 

 
Figure 10. Based on the decision tree, the frequency offset is 10% of the 
baud rate 

As can be seen from Fig.11, Fig.12, and Fig.13, in 
addition to the QPSK and 8PSK signals, the recognition rate 
of other signals is 100%. And with the increase of frequency 
offset, the recognition rate of QPSK and 8PSK signals also 
increases. When the frequency offset is 10% of the symbol 
rate, the recognition rate of QPSK and 8PSK signals is more 
than 85%. 

 
Figure 11. Based on the neural network, the frequency offset is 2.5% of the 
baud rate 
 

In summary, the QPSK and 8PSK recognition rates are 
susceptible to frequency offset, and the MFSK and MQAM 
signal ratios are poorer than the frequency offset, which is 
related to the phase-carrying information of the MPSK 
signals. 

 
Figure 12. Based on the neural network, the frequency offset is 5% of the 
baud rate. 

 
Figure 13. Based on the neural network, the frequency offset is 10% of the 
baud rate. 
 

D. Influence of adjacent channel interference on the correct 
rate of modulation recognition 

The actual blind signal is simulated by adding frequency 
offset, adjacent channel signal and noise to the simulated 
signal. Fig.14 and Fig.14 shows the recognition rate of each 
modulated signal when the frequency offset is 5% of the 
symbol rate and the adjacent channel signal gain is 4. 

 
Figure 14. Based on the decision tree, there is "adjacent channel signal 
interference + frequency offset" and the modulation recognition rate of 
noise 

 70 

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 08:15:15 (UTC) by 3.230.128.106. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 4, 2019 

 
Figure 15. Based on the neural network, there is "adjacent channel signal 
interference + frequency offset" and the modulation recognition rate of 
noise 

 
Figure 16. Based on the decision tree, there are "adjacent channel signal 
interference + frequency offset" and noise modulation signal recognition 
rate 

 
Figure 17. Based on the neural network, there are "adjacent channel signal 
interference + frequency offset" and the recognition rate of each modulated 
signal of noise 
 

As can be seen from Fig.18 and Fig.19, when there is 
"adjacent channel signal crosstalk + frequency offset" and 
noise, when SNR = 0 dB, the QPSK recognition rate reaches 
80% or more, the 8PSK signal recognition rate reaches 75% 
or more, and the SNR increases as the SNR increases. The 
rate increases. At SNR > 5 dB, the QPSK recognition rate 
reaches 100%; in SNR > 7 dB, the 8PSK signal recognition 
rate reaches 100%. Compared with noise only, the 

recognition rate of QPSK and 8PSK signals is slightly lower 
at low SNR. 

IV. CONCLUSION 

In this paper, high-order cumulant and instantaneous 
feature are combined to extract feature parameters. Decision 
tree and neural network classifier are used to identify 
MFSK, MPSK and MQAM signals. The effects of noise, 
baud rate, frequency offset and adjacent channel crosstalk 
on the modulation recognition accuracy of MFSK, MPSK 
and MQAM signals are analyzed. The simulation results 
show that increasing the baud rate has little effect on the 
modulation recognition results, while decreasing the baud 
rate has great effect on the modulation recognition results. 
And the recognition algorithm used in this paper can achieve 
a high recognition rate under the conditions of noise only, 
frequency offset and noise, and the presence of "adjacent 
channel crosstalk + frequency offset" and noise, and the 
recognition rate has been improved when the signal-to-noise 
ratio is low. It is proved that it is feasible to select higher-
order cumulant and instantaneous feature to extract feature 
parameters under non ideal conditions, which provides 
reference for signal modulation type recognition in practical 
engineering. However, in the real environment, the 
modulation types are far more than these, and the signals are 
mostly co channel and multi signal aliasing, which is also a 
problem to be studied in the future. 
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