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1Abstract—Power flow (PF) is in one of the most studied 

non-linear problems related to power systems which heavily 
affects security issues such as generation cost, voltage stability 
and active power loss. In this paper, a simple and new 
approach based on artificial neural network (ANN) and 
differential search (DSA) algorithm has been proposed and 
applied for one of the most complex problems in power 
systems, Power Flow (PF) problem. By using the proposed DSA 
implemented ANN method, IEEE 9-bus, IEEE 30-bus and 
IEEE 118-bus test system parameters are obtained without 
running iterative convergence methods such as Gauss-Siedel or 
Newton-Raphson. By comparing with several most used non-
linear iterative methods, the results obtained using the classical 
training method and proposed DSA implemented hybrid 
training methods are presented and discussed. Obtained results 
in this work show that the ANN based power flow method can 
be implemented to solve non-linear static and dynamical 
problems concerning power systems successfully. 
 

Index Terms—heuristic algorithms, iterative methods, 
neural networks, optimization, power system analysis 
computing. 

I. INTRODUCTION 

In general, power flow (PF) is defined as a non convex, 
non-linear and multi-dimensional problem depending on 
power system data. PF becomes more complicated due to 
system constraints whereas satisfying the system 
parameters. Power system operating is a challenging task 
where modern electrical systems must be able to fulfill for 
the continually changing load demand while providing high 
quality energy [1]. In addition to this, in order to optimize 
power system output such as generation fuel cost 
minimization or voltage profile improvement, which are 
user-defined optimizations cost functions; optimal power 
flow is used and applied. Since a power system is modeled 
as set of constants and derivative variables, linear methods 
cannot easily converge to a solution ensuring desired and 
minimum deviation. Due to increasing energy demand and 
expanding distribution networks, the control and 
stabilization of power systems become difficult because of 
unscheduled power outages and voltage drops. The main 
objective of PF is converging to best system parameters 
such as active and reactive power generation, injected 
reactive power values, load tap changer ratios and busbar 
voltages while compensating the system constraints in order 
to secure system stability and prevent system faults. PF 
solution determines the best control and parameter variables 

for the most efficient power system planning and operation 
[2]. 

 
1This work was supported by Mersin University Scientific Research 

Council: Project 2018-1-TP3-2868. 

In literature, various PF algorithms based on different 
classical numerical methods are used and studied. Following 
the first successful implementation of these methods is 
reduced gradient method, proposed by Carpentier [3] as 
some other methods are also used with their advantages and 
disadvantages. Linear programming (LP) have been 
implemented and used in [4, 5] by virtue of ability to 
converge fast and better results compared to other methods 
whereas quadratic programming (QP) [6] is also used in 
order to determine system parameters. In addition to this, 
Newton-Raphson iterative method [7, 8] is also used in 
power flow and optimal power flow problems. Sequential 
unconstrained minimization technique (SUMT) [9] and 
interior point method [10] are also used to solve power flow 
problems. In order to use numerical methods, it is required 
to determine and define an initial point for considered 
solution set which needs to be close to global minimum 
point due to possible of being stuck on local minimums or 
not being able to converge in different constraints. In last 
decades, thanks to the development of computing and data 
processing technologies, using new methods such as neural 
networks; deep learning; heuristic methods and clustering 
based optimization techniques in order to solve power flow 
has grown, rapidly. Some of these methods can be applied to 
system without having trained whereas some other methods 
should be trained with sample data in order to determine 
system parameters which are mostly constants and 
coefficients. 

Artificial neural network (ANN) is a nature-inspired 
method consists of artificial neurons which process input 
data with suitable coefficients as representation of 
mathematical weights and constants. ANNs can be defined 
as layers of exponential functions set which are designed to 
connect each other whose aim is acquiring system output 
without simulating the system or calculating actual system 
variables by weighting the input with desired coefficients 
and employing various bias functions. In most studies, ANN 
is used to determine most satisfying system parameters for a 
given power system. ANNs have been studied as a new 
approach for data processing with an algorithmic procedure 
for solving a problem due to being capable of producing an 
output if an appropriate data is provided about the problem 
and are referred to as learning or adaptive models [11].  In 
order to train an ANN, there are various methods and 
algorithms which use different approaches and functions. 
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These functions can be numeric, iterative or heuristic 
depending on complexity of system and topology of the 
network. Thus, in some studies nature-inspired heuristic 
optimization algorithms which use random iterative rules are 
also applied as a training function in order to optimize the 
network for ensuring stability and convergence.  

Karaboga et al. presented and proposed a new training 
method by using one of the most popular heuristic 
algorithms, artificial bee colony algorithm (ABC) in 
different studies for signal processing [12] and pattern 
classification [13]. In [14] ABC is also used in order to 
compare with back-propagation training algorithm that 
heuristic algorithm produce better results than classical 
training method. Genetic algorithm (GE) is used in order to 
train ANN for better training results in studies related to 
store forecasting [15] and ultrasonic gas flowmeter [16] 
where it is also seen that heuristic methods outputs better 
network parameters compared to other iterative training 
methods. In literature, there are also recent studies on 
training ANNs by using ant colony algorithm [AC] for 
different objective functions and complex systems [17, 18].  

Lately, with the increasing interest in heuristic and 
population based optimization techniques, a new and 
efficient algorithm based on brownian-like random-walking 
behavior, differential search algorithm (DSA) is presented 
[19]. The DSA uses migration behavior of super-organisms 
in order to achieve the best and optimal result in given 
problem.  

In literature, DSA is used in power system related 
problems [1, 20] as well as image processing studies such as 
multilevel color image tresholding [21] and edge detection 
[22] while also used in papers focused on optimizing fuzzy 
and PID controller parameters [23, 24]. Despite being used 
for various optimization problems, no other study in 
literature is reported for using DSA in order to train and 
optimize ANN coefficients. In this paper, a novel ANN 
based approach by using hybrid DSA training method is 
proposed with the purpose of solving PF problem. In order 
to test and show the efficiency of proposed method, IEEE 9-
bus, IEEE 30-bus and IEEE 118-bus test systems are used 
and studied. 

II. POWER FLOW 

Power flow problem, also known as load flow, is one of 
the most studied non-linear problems in power systems [20]. 
In order to achieve the best result, system variables are 
chosen initially whereas iterative method is applied to 
determine the best system parameters. The PF problem 
handled in this study aims at converging to the best results 
for single objective non-linear problem such as swing bus 
power. 
Power flow problem can be defined as:  
Solve: f(x,u)     
By using:  g(x,u)= 0 and h(x,u)<0 
f and g symbolizes the objective function and the load flow 
equations as h shows the parameter limit. 

    Gslack L G lx P V Q S   (1) 

The parameter x shows the variables of slack bus power 
generation, load bus voltages, reactive power generation and 
line load.  

    G G Cu P V Q T   (2) 

u indicates system matrix variables including generator 
power, voltage, injected reactive power and tap changer 
transformers ratio. 
Power related equations are also given by (3, 4), 

1

cos(θ δ δ ) 0
n

Gi Di i j ij ij i j
j

P P V V Y


            (3) 

1

sin(θ δ δ ) 0
n

Gi Di i j ij ij i j
j

Q Q V V Y


    

T

 (4) 

the bus admittance matrix elements are represented by 
|Yij| and θij with indicating n as the total bus number. 

A. System Constraints 

Voltage magnitudes, active and reactive power limits of 
system generators including slack bus are given by (5-7) 

  1, ,min max
Gi Gi Gi gV V V i N     (5) 

  1, ,min max
Gi Gi Gi gP P P i N     (6) 

  1, ,min max
Gi Gi Gi gQ Q Q i N     (7) 

Tap ratio settings regarding the transformers are given by, 

  1, ,min max
i i iT T T i N      (8) 

Upper and lower limit of injected reactive power is 
defined as,  

  1, ,min max
Ci Ci Ci QCQ Q Q i N     (9) 

Transmission line apparent power and loaded bus voltage 
values are also need to be within constraints given by the 
user, 

  1, ,min max
Li Li Li PQV V V i N     (10) 

 1, ,max
Li Li LS S i N     (11) 

III. ARTIFICIAL NEURAL NETWORK MODEL 

ANN, namely neural network (NN) is the mathematical 
model based on neural system of living organisms such as 
humans or animals. Despite having similar topologies for 
different problems, ANNs have a non-linear link between 
the input variables and output data which is created by using 
coefficients and bias factors depending on the system [25]. 
By using ANNs various real-world problems such as 
complex functional approximation problems, pattern 
classification, clustering and image processing can be solved 
and the output is determined accurately if the system is 
trained with sufficient data. [26]. An ANN consists of an 
input layer and an output layer basically. Also there are 
hidden layers between input and output layers which are 
used to estimate to desired output by determining hidden 
parameters according to non-linearity of problem in 
question.  

ANNs can be designed depending on the problem 
including different number of input and output variables. 
But in order to work on multiple input and multiple output 
systems, the ANN should be designed similar to a surjective 
function that there should be accurate output(s) regardless of 
variation of input values. The number of layers, neurons per 
layers, training algorithms and validation values should be 
chosen appropriately considering network robustness and 
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training time should.  
In order to use ANN to estimate and determine a system 

output within desired performance, the network should be 
trained with sufficient samples known as training dataset 
depending on the number of system parameters, complexity 
and non-linearity of the system. Since the aim of this study 
is obtaining a simple robust multilayer feed-forward ANN 
model, a core topology is used and applied which is shown 
in Figure 1. ANN training algorithm determines the decision 
point updates the coefficients of the network. There are 
many training algorithms used in literature. [26]. In feed-
forward ANN model a node receives a signal from the 
previous layer and multiplies the mathematical signal with a 
coefficient. The optimization goal is to minimize the 
objective function by optimizing the network weights. In 
this study mean square error (MSE) is chosen as the output 
error function in order to determine and converge to the best 
network weights.  

 
Figure 1. ANN Topology 

A. Implementation of Differential search algorithm (DSA) 

Usually, in literature Levenberg-Marquardt (LM) [27] 
optimization algorithm is used and employed to train an 
ANN with the purpose of determining suitable coefficient 
values for hidden layers. LM algorithm is one of the most 
used and robust optimization method which can be applied 
to any mathematical modeled system in order to optimize 
while using so little resources and converging to an 
acceptable result.  

Nature-inspired heuristic methods are also studied in 
literature that some of popular algorithms are used to train 
ANNs with the aim of obtaining better results. Compared to 
the LM algorithm, heuristic algorithms require high 
computation ability and more simulation time to converge 
best optimal network weights. But the heuristic trained 
network outputs are much closer to an ideal result which 
makes the heuristic training methods indispensable. 

Differential search (DSA) algorithm is a newly proposed 
optimization method that simulates the movement behavior 
of migrating organisms or super-organisms. Pseudo 
organisms created in DSA imitate the living and migrating 
organism’s behavior in order to find and access the best 
nutrient sources. This feature helps the organism to walk 
and move high quality and high variation of nutrient 
sources. In this algorithm, pseudo-superorganisms migrate 
to local and global minimums of studied problem.  

DSA is similar to other heuristic methods that use 

randomized initial parameters and system constraints. The 
pseudo-superorganisms represent the possible solution sets 
for ANN weights and bias factors which affect networks 
input and output connection.  

In this paper, DSA is applied to ANN with the mostly 
used optimization algorithm, LM where these separate 
algorithms optimize network weights for the best system 
output. Flowchart of the training sequence is given in Figure 
2. 

 
Figure 2. Training process of ANN  

IV. TEST RESULTS AND DISCUSSION 

In order verify the efficiency of the proposed hybrid DSA 
implemented ANN method, three of the most used test 
systems in literature are chosen which are IEEE 9-bus, IEEE 
30-bus and IEEE 118-bus power systems. ANN topology 
given in Figure 1 is used with parameters and options given 
in Table I. Being a powerful and robust load flow tool, 
MATPOWER (MP) [28] add-on for MATLAB is used to 
train and validate the efficiency of proposed methodology. 

  
TABLE I. NETWORK PARAMETERS 

Network  Parameters Description 

Type Feed-forward back 

propagation 

- 

Input Data Pgen, Vgen, Pload, 

Qinj 

Power generation, 

generation bus voltages, 

load demand and injected 

reactive power 

Output Data Pslack, Gencost, 

Ploss, Vdev 

Slack bus power, total 

generation cost, total active 

power loss, voltage 

deviation of load buses 

Training 

Function 

Hybrid  Hybrid training method by 

using LM & DSA 

Adaptation 

Learning 

Function 

Gradient descent with 

momentum weight 

and bias learning 

- 

Performance 

Function 

MSE Mean-square error 
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Number of 

Layers 

2 - 

Number of 

Neurons per 

Layer 

5, 10, 15 Different number of 

neurons are used and 

trained 

Transfer 

Function 

Tan-Sig Hyperbolic tangent 

sigmoid function 

 

A. IEEE 9-bus Test System 

IEEE 9-bus system consists of 3 generators and 3 active-
reactive loads that the system is studied and tested for 
various situations in the literature. System data are given by 
Table II and III, minimum and maximum bus voltages are 
considered between 0.9 and 1.1 p.u whereas generator 
constraints are also given in literature [29, 30]. The total 
demand is 315 MW for active power and 115 MVAR for 
reactive power. System load, generator and branch data with 
MP power flow output are given in Table II and Table III 
for standard parameters studied in the literature.  

In order to obtain results for static dataset given in the 
literature or a randomized dataset, system parameters are 
processed by using iterative Netwon-Raphson and Gauss-
Siedel methods which are implemented in MP add-on.  

 
TABLE II. GENERATOR AND LOAD DATA OF IEEE 9-BUS SYSTEM 

Bus PD QD  PG QG VMIN VMAX 

 

VBUS 

1a - - 71.9574* 27.045* 0.9 1.1 1.040 

2b - - 163 6.6536* 0.9 1.1 1.025 

3b - - 85 -10.8597* 0.9 1.1 1.025 

4c - - - - 0.9 1.1 1.025* 

5c 90 30 - - 0.9 1.1 1.012* 

6c - - - - 0.9 1.1 1.032* 

7c 100 35 - - 0.9 1.1 1.015* 

8c - - - - 0.9 1.1 1.025* 

9c 125 50 - - 0.9 1.1 0.995* 
*Values are obtained by using MATPOWER (Newton) iterative power flow method 
a:sw bus, b: pv bus, c: pq bus 
 

TABLE III. BRANCH DATA OF IEEE 9-BUS SYSTEM 
From-

To 

PINJ 

(MW) 

QINJ 

(MVAr) 

PABS 

(MW) 

QABS 

(MVAr) 

PLOSS QLOSS 

1-4 71.6410 27.0459 -71.6410 -23.9231 0 3.12 

4-5 30.7036 1.0300 -30.5372 -16.5433 0.16 0.90 

5-6 -59.4627 -13.4566 60.8165 -18.0748 1.35 5.90 

3-6 85.0000 -10.8597 -85.0000 14.9553 0 4.10 

6-7 24.1834 3.1195 -24.0954 -24.2958 0.08 0.75 

7-8 -75.9045 -10.7041 76.3798 -0.7973 0.47 4.03 

8-2 -163.00 9.1781 163.0000 6.6536 0 15.83 

8-9 86.6201 -8.3808 -84.3201 -11.3127 2.30 11.57 

9-4 -40.6798 -38.6872 40.9373 22.8931 0.25 2.19 

 
In order to train the proposed ANN for IEEE 9-bus power 

system, training dataset including 1000 samples of system 
parameters is randomized. Training dataset also consists of 
output data which are obtained by using MP Newton-
Raphson based iterative power flow method on randomized 
system parameters. The input and output datasets are 
organized as [PLOAD PGEN VGEN] which consists of 8 
elements and [PSLACK] consists of 1 element, respectively. In 

first case, proposed hybrid ANN is trained by using 5-
neurons per layer for maximum epoch of 1000 by using LM 
and DS hybrid training method. The performance of ANN is 
obtained by 0.0970 which shows the current topology does 
not converge to a good result where MSE should be lower 
than 1e-3. Regression chart for the 5-neurons topology is 
given in Figure 3. If the regression chart is investigated, it is 
seen that the performance of test results are similar to 
validation results since training and test datasets are created 
randomly. For a scenario of working with real-world 
parameters or lower range of minimum and maximum limit 
values, 5-neurons topology may also output desired results 
with lower MSE. 

 
Figure 3. ANN regression chart for IEEE 9-bus test system by using 5-
neurons topology 

 
With the purpose of increasing network performance, 

number of neurons per layer is chosen as 10 and 15 where 
ANN performance for each topology is obtained as 0.01113 
and 0.00364, respectively. 

Training state charts for ANN performance are given in 
Figure 4.a and Figure 4.b. In addition to performance charts, 
random test data is given input and the results are shown in 
Table IV which shows that the 15-neurons topology 
converges to the best result compared to other topologies. 

 

 
a) 
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b) 

Figure 4. ANN performance for IEEE 9-bus test system a) 10-neurons 
topology b) 15-neurons topology 

 
TABLE IV. TEST RESULTS FOR IEEE 9-BUS POWER SYSTEM 

Variable Test-1 Test-2 Test-3 Test-4 Test-5 

PL1 143,202 193,360 68,834 119,832 137,271

PL2 124,427 124,386 14,863 165,520 36,507 

PL3 252,620 204,734 30,669 226,097 157,762

PG2 173,694 124,590 27,056 233,848 138,941

PG3 121,836 130,050 50,01 249,987 181,451

VG1 1,072 0,969 1,021 1,010 0,966 

VG2 0,951 1,078 1,012 1,014 1,017 

Input 

VG3 1,015 1,010 1,059 1,000 1,059 
Newton-
Raphson 

271,001 324,031 4,255 201,662 115,278

Gauss-Siedel 271,001 324,031 4,255 201,662 115,278

5-N Topology 269,471 323,963 6,237 201,882 113,978

10-N Topology 271,501 323,797 3,686 202,354 115,453

O
utput (P

Slack ) 

15-N Topology 270,989 324,044 4,282 201,63 115,260

 

B. IEEE 30-bus Test System 

One of the most used test systems, IEEE 30-bus system 
[31] has been used to show the efficiency of the proposed 
Hybrid ANN method.  

The system has six generators at bus 1, 2, 5, 8, 11, and 13 
and four transformers with off-nominal tap ratio at lines 6–
9, 6–10, 4–12, and 28–27. In addition, there are shunt VAR 
compensation devices connected to bus 10, 12, 15, 17, 20, 
21, 23, 24, and 29 that can be controlled within the 
constraints given in literature. Active and reactive power 
demands of the system are 283.4 MW and 126.2 MVAR, 
respectively.  

System busbar voltage magnitudes are considered 
between 0.95-1.1 for all buses. In order to train the hybrid 
ANN for IEEE 30-bus power system, training dataset 
including 1000 samples is used by MP Newton-Raphson 
based iterative power flow method.  

The input and output datasets are organized [PLOAD PGEN 
VGEN QINJ TLTC] and [PSLACK] respectively. The performance 
charts for different topologies and the regression chart for 
15-neurons topology are shown in Figure 5 and Figure 6, 
respectively. If charts are investigated, it is seen that the 15-
neurons topology for IEEE 30-bus test system converges to 
better performance whereas 5 and 10-neurons topologies for 
IEEE 9-bus test system give better results. 

 

 
a) 
 

 
b) 
 

 
c) 

Figure 5. ANN performance for IEEE 30-bus test system a) 5-neurons 
topology b) 10-neurons topology c) 15-neurons topology 

 
As the system get complex and have more dependent 

variables, ANN topology need more neurons per layer in 
order to converge the system in given constraints. Test data 
is used in order to show effectiveness of proposed hybrid 
ANN method, results are shown in Table V. 

 
TABLE V. TEST RESULTS FOR IEEE 30-BUS POWER SYSTEM 
Variable Test-1 Test-2 Test-3 Test-4 Test-5 

PG2 295.814 169.720 652.084 21.377 52.309 

PG3 43.544 167.526 30.394 419.346 435.836 

PG4 419.033 22.923 112.348 281.345 216.087 

PG5 149.082 282.356 47.651 24.623 156.822 

PG6 351.788 40.050 161.931 115.404 64.156 

VG1 1.0440 1.0939 1.0091 0.9403 0.9728 

VG2 1.0473 1.0362 1.0908 0.9162 1.0025 

Input 

VG3 0.9947 0.9932 0.9468 1. 0627 0.9674 
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VG4 0.9678 1.0051 1.0071 0.9190 1.0115 

VG5 0.9020 0.9230 0.9939 1.0748 0.9142 

VG6 0.9657 1.0350 0.9295 1.0825 1. 0412 
Newton-
Raphson 

295.814 169.720 652.084 21.377 52.309 

Gauss-
Siedel 

295.815 169.720 652.084 21.379 52.309 

5-N 
Topology 

298.421 171.472 650.418 20.893 53.993 

10-N 
Topology 

294.226 169.130 653.717 22.953 53.522 

O
utput  (P

Slack )* 

15-N 
Topology 

295.621 170.513 652.230 21.393 51.877 
*Power flow is run with different load demands within the constraints; 

load data could not be included in table due to being large in number. 
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Figure 6. ANN regression for IEEE 30-bus test system by using 15-neurons 
topology 

 

C. IEEE 118-bus Test System 

IEEE 118-bus system [32] has fifty-four generators and 
nine transformers with off-nominal tap ratio. There are also 
thirteen shunt VAR compensation devices connected 
different buses on the system given in literature constraints. 
System busbar voltage magnitudes are considered between 
0.95-1.1 p.u. for all buses whereas the tap settings and shunt 
VAR device limits are taken as 0.9-1.1 and 0-0.4 p.u., 
respectively.  

The default total active power demand of the system is 
4242 MW as given by the literature. System is also used in 
order to verify and show effectiveness of proposed hybrid 
ANN method in power flow problems where training 
datasets are organized as [PLOAD PGEN VGEN QINJ 
TLTC] and [PSLACK].  

Due to the complexity and large number of parameters 
ANN performance was able to converge to the best result of 
201e-3 which is not a satisfying value. Training results for 
5, 10 and 15 neurons topologies are given by Figure 7. In 
order to improve the network response and show efficiency 
of proposed method, 30-neurons topology is used; 
performance and regression charts are shown in Figure 8 
and Figure 9, respectively. 

 

 
a) 
 

 
b) 
 

 
c) 
 

Figure 7. ANN performance for IEEE 118-bus test system a) 5-neurons 
topology b) 10-neurons topology c) 15-neurons topology 
 

 
Figure 8. ANN performance for IEEE 118-bus test system by using 30-
neurons topology 
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Figure 9. ANN regression for IEEE 118-bus test system by using 30-
neurons topology 
 

If Figure 8 is investigated, it is seen that the best result is 
achieved for the epoch close to 1000, which shows that 30-
neurons topology may also give better results compared to 
5, 10 and 15-neurons topologies with higher of epoch 
number.  

 
As seen by the results, increasing neurons per layer boosts 

the network performance. On the other hand, in order to 
compute and obtain the best network parameters by running 
simulations consumes great amount of time since a heuristic 
based hybrid approach is used and applied to the system. 
The overall data of simulation process for 9, 30 and 118-bus 
test systems is given by Table IV. Simulations for each 
number of neurons and power systems are run 100 times in 
order to determine average training time where the time 
difference, performance for test systems and neurons per 
layers can be seen clearly. 

 
TABLE VI. TRAINING PROCESS DETAILS FOR HYBRID-ANN METHOD 

Levenberg-
Marquardt Training 

Hybrid ANN 
Training 

Sys. 
Number 

of 
Neurons Best 

Perform. 
Training 

Time* 
Best 

Perform. 
Training 

Time* 
5-N 2.31 3.92 97e-3 13.1 

10-N 1.98 8.12 11.3e-3 32.7 
9- 

Bus 
15-N 0.671 13.3 3.64e-3 42.1 
5-N 6.81 24.8 0.496 62.4 

10-N 3.22 52.5 0.132 101.5 
30- 
Bus 

15-N 0.946 91.4 1.02e-3 144.9 
5-N 149.2 382.2 3.341 819.7 

10-N 81.5 927.4 0.747 3023.4 
15-N 59.9 1484.5 0.201 5074.1 

118- 
Bus 

30-N 1.33 8e3 0.5e-3 18e3 
*Average training time in seconds. 

V. CONCLUSION 

In this work, the power flow problem is successfully 
solved by using the hybrid trained ANN. The proposed 
hybrid training algorithm is studied on different ANN 
topologies in order to converge to the actual output with the 
best result while considering computation time and 
randomized training dataset number. This work is focused 
on achieving the power flow of IEEE 9, IEEE 30 and IEEE 
118 bus test systems whose initial parameters are 

randomized in respect of constraints. The obtained results 
are compared with the widely used iterative methods, 
Newton-Raphson and Gauss-Siedel methods, whose 
efficiency and output accuracy are well known. It is seen 
that the proposed hybrid ANN approach can be used in 
order to solve complex and dynamic power flow problems. 
In addition to this, after training the network successfully, 
power flow problems can easily be solved without need of 
any specific software by using determined ANN parameters. 
Thus, the proposed ANN method can be used in order to 
achieve dynamic power flow optimization, control and fault 
prediction without requiring long duration simulations and 
high processing load.  
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