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1Abstract—Hyperspectral images (HIs) are characterized by 

a higher spectral resolution than other images and have 
applications in various fields, to wit, medicine, agriculture, 
mining, among others. Segmentation can be obtained from the 
pixel classification and it is a powerful tool for object 
identification. Notwithstanding, the problems of the curse of 
dimensionality and the demand for computational resources 
occur due to the number of bands. Techniques that reduce 
dimensionality, such as genetic algorithms, are promising, but 
they cannot assure a balance between conflicting objectives 
such as improving classification and reducing the number of 
bands. Multiobjective band selection can be applied to search 
for tradeoff solutions that have this balance. Therefore, in this 
manuscript, we propose a novel method called Incorporated 
Decision-Marker-based multiobjective band selection 
(IDMMoBS) that tries to find tradeoff solutions using spectral 
and spatial information. In the experiments, the IDMMoBS 
reduced the number of bands between 85.4% and 85.8% of the 
total and it outperformed the majority of other methods 
compared in this criterion. For the pixel classification, the 
IDMMoBS presented better results than all compared cases 
taking into account all evaluated metrics using SVM classifier. 
Accordingly, the IDMMoBS is suitable for band selection. 
 

Index Terms—remote sensing, hyperspectral imaging, image 
segmentation, image classification, evolutionary computation. 

I. INTRODUCTION 

Hyperspectral images (HIs) are concerned with the 
measurement, analysis, and interpretation of spectra 
acquired from a given scene (or specific object) at a short, 
medium or long distance by an airborne or satellite sensor 
[1]. These images are characterized by their spatial and 
spectral resolutions (number of spectral bands) and contain 
information of materials beyond the visible spectrum range 
[2]. The advantage of using HIs is due to their unique bands 
that facilitate the discrimination of different materials [2-3]. 
Each pixel has a signature consisting of a large number of 
bands representing the wavelength and different reflectance 
values. This spectral signature varies according to the type 
of the object, allowing tasks of identification and analysis. 
HIs are useful in many applications, to wit, medical 
imaging, agriculture, among others [4]. 

Land cover classification is one of the different tasks in 

Remote Sensing (RS), modeled as part of a supervised 
process based on previous Ground Truth (GT), which is 
concerned with the identification of different land cover 
objects [1]. This identification is possible through the pixel 
classification and segmentation of HIs. The segmentation is 
the process of subdivision of the image into its constituent 
regions. For pixel classification and subsequent 
segmentation, algorithms with peculiar statistical properties 
such as Support Vector Machines (SVM), Gaussian 
Maximum Likelihood Classifier (GMLC) and Random 
Forest (RF) are required [5-7]. These algorithms can be used 
directly for segmentation or can be complemented using 
image processing techniques. 

 
This study was financed in part by the Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. 

HIs have a high dimensionality of data due to the number 
of bands [8], and because of this some challenges are 
common, such as: 

i) Hughes's phenomenon/curse of dimensionality, 
described by the existence of high dimensionality for a low 
number of samples. This problem is common in HIs because 
of the cost and difficulty of elaborating GTs, and it can 
result in poor classification accuracy [9]; 

ii) information redundancy caused by the high correlation 
between neighboring bands;  

iii) computation complexity for classifiers based on 
conventional statistics [10]; 

iv) the high cost of HIs sensors [11]; and 
v) difficulty in data transmission and storage. Modern 

data capturing devices, such as Drones, cannot have many 
computational resources to meet the demand for HIs 
processing. 

Thereof, HIs classification and segmentation are often 
preceded by dimensionality reduction techniques which are 
categorized as feature selection or feature extraction [12].  

Feature extraction performs a feature space 
transformation for a new space with a smaller dimension, 
and some examples of this category are principal component 
analysis (PCA) [13] and independent component analysis 
(ICA) [14]. Feature selection is a routine of selecting a 
subset of the original features, resulting in a smaller number 
of features where the original representation of the variables 
is not changed. Therefore, feature selection is preferred 
when the original meaning of the features is demanded [15]. 

For HIs, there is an interest in maintaining the original 
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meaning of the information of bands. Thus, feature selection 
is often applied and for this purpose, it is called band 
selection. The advantage of this routine is the possibility of 
identifying bands that characterize objects more efficiently 
than feature extraction, in this light, avoiding problems like 
the curse of dimensionality. With fewer identified bands, it 
is also possible to construct specific and cheaper sensors, 
which require less computational resources for 
classification, transmission, and storage of obtained data. 

There is a great diversity of methods for band selection. 
Some examples are a clustering-based method developed 
using each channel map as a data point [16], sparse 
representation methods used to select the band subset [17-
18], and structure-aware measures for band informativeness 
and independence [19]. A traditional clustering-based 
method for band selection is Ward’s Linkage Strategy using 
Mutual Information (WaLuMi). The WaLuMi groups the 
bands according to the mutual information and then it 
selects a representative band from each group. This was one 
of the first clustering-based algorithms in the literature and it 
has shown good results even when compared to recent 
methods [20]. In [21], the Maximum information and 
minimum redundancy with clonal selection algorithm 
(MIMR-CSA) defines a criterion that maximizes the amount 
of information for the selected band combination while 
removing redundant information. The authors compare the 
classification capacity, and the proposed method presented 
better results than others in the literature. 

Methods based on evolutionary algorithms have shown 
satisfactory results for hyperspectral band selection. Some 
examples are the Firefly algorithms [22-23], Genetic 
Algorithms (GAs) [24-25] and Particle Swarm [26-27]. A 
hybrid method of Wrapper and Filter approaches called 
Information Gain–Grey Wolf Optimization (IG-GWO) has 
been proposed, where Information Gain and Gray Wolf 
Optimizer were combined. IG is an important metric that 
can measure how much information the features could 
contribute to the classification. This method was compared 
with five other state-of-the-art methods and it showed better 
accuracy results [26]. All these optimization algorithms 
establish a single objective function, and for band selection 
application, some measure of segmentation is conducted 
individually or combined with the reduction of the number 
of bands in a single objective function.  Particularly in [25], 
a supervised/Wrapper method for band selection based on 
GA with Support-Vector Machines (GA-SVM) was 
proposed combining two metrics in fitness function. The 
GA-SVM uses a weighted sum strategy between accuracy 
and the inverse of the number of bands to try to find 
solutions with a balance between these metrics and shows 
good overall accuracy results. However, the difficulty of this 
method and the others is to find balanced tradeoff solutions, 
for example, solutions that simultaneously have a 
satisfactory classification performance with a reduced 
number of bands.  

The need for reducing the number of bands and improve 
classification performance makes the band selection 
problem be characterized as a multiobjective problem since 
both objectives can be conflicting. For this, multiobjective 
optimization band selection (MOBS) can be applied [4].  

MOBS are usually based on evolutionary algorithms and 

use the Pareto Frontier that can contain more than one 
optimal solution. Pareto Frontier (tradeoff) solutions cannot 
be considered better among each other and therefore cannot 
be sorted, but these solutions are better than others in the 
search space.  

Different unsupervised MOBS, which can also be 
categorized as filter methods, can be found in the literature. 
Non-dominated Sorting Genetic Algorithm 2 (NSGA2) was 
proposed to find solutions that optimize cumulative texture 
and spectral information of a band combination using a 
minimum number of bands [12]. Another method is the 
Tchebycheff Decomposition Strategy (TDS) for the 
multiobjective evolutionary algorithm based on 
decomposition (MOEA/D). This method was studied to 
optimize the number of bands and entropy contained in the 
selected band subsets [4].  

A state-of-the-art method called incorporated rank-based 
multiobjective band selection (IRMoBS) using TDS was 
proposed to optimize three objectives, band number, 
variance and information entropy [29]. Three band selection 
methods [17-19], are compared with IRMoBS which 
presented better classification using SVM, extreme learning 
machine (ELM) or K-Nearest Neighborhood (KNN) in the 
pixels of HIs with selected bands. 

If the GT is available, supervised/Wrapper methods can 
be used to fit a classification model based on a priori 
knowledge; thereby, it is expected to obtain better results in 
band selection. Wrapper methods usually require a high 
computational cost but they present better results than filter 
methods because they incorporate the classifier into the 
selection process [30]. This type of method, together with 
multiobjective algorithms, can be an alternative for the band 
selection problem. Nonetheless, there were little studied in 
the literature. 

Another feature little explored in the literature is the use 
of spatial information with band selection algorithms. A 
study of the application of filters for spatial information is 
on HIs is performed in [31]. In this study the authors show 
that even simple filtering can greatly improve the 
performance of classifiers in HIs. Therefore, spatial filtering 
can be introduced to improve the classification accuracy of 
HIs. 

In this paper, a novel method based on MOEA/D is 
modeled for MOBS of HIs. The method is called 
incorporated decision-maker-based multiobjective band 
selection (IDMMoBS) and aims to deal with the 
dimensionality of HIs through the search for tradeoff 
solutions. The IDMMoBS is modeled as a Wrapper strategy 
and therefore the SVM classifier is used. The IDMMoBS 
incorporates a decision-maker (DM) to select only one 
solution from Pareto Frontier and a repair method based on 
WaLuMi [20] and IG/IG-GWO [26]. Another differential of 
this study is that the use of spatial information was 
considered. The DM, the repair technique and the use of 
spatial information are little explored in band selection, and 
this is quite innovative in this study. 

The main contributions of this manuscript are: 
i) A new Wrapper MOBS to search for tradeoff solutions 

since these types of methods have not been explored 
enough; 

ii) Use of DM and a repair method that are rarely 
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discussed in band selection methods; 
iii) Use of pixel neighborhood information in each band; 
iv) Comparisons with other supervised (GA-SVM [25]), 

semi-supervised (IG-GWO [26]) and unsupervised 
(WaLuMi [20], MIMR-CSA [21], IRMoBS [29]) state-of-
the-art methods; 

v) Comparisons with HIs with all bands; 
vi) Analysis of the classification of the pixels of HIs with 

bands selected by the different methods compared, being 
this classification performed by SVM; 

vii) Use of spatial information. 
The remainder of this text is organized as follows. Section 

II presents a detailed description of the proposed method. 
The experiments are conducted and the results reported in 
Section III. At last, in Section IV, the main contribution of 
this manuscript is summarized and future work direction is 
pointed. 

II. METHODOLOGY 

Multiobjective optimization is related to solutions with 
contradictory objectives to be optimized simultaneously 
searching for tradeoff solutions. Methods for multiobjective 
optimization are based on the Pareto Frontier and use the 
non-dominance relation to compare solutions [4][12][29]. 

A solution x  dominates a solution , if y x  is better than 

 in at least one objective and equal or better in all other 

objectives. The notation 

y

x   that dominates   is given by y

x y . Solutions that are not dominated by any other are 

Pareto-optimal solutions and constitute the Pareto Frontier. 
A Pareto-optimal solution to a multiobjective 

optimization problem could be an optimal solution of a 
scalar optimization problem where the objective is an 
aggregation of all the objectives to be optimized. Therefore, 
the approximation of the Pareto Frontier can be decomposed 
into a number of scalar objective optimization subproblems 
[32].  

There are several approaches for converting the Pareto 
Frontier approximation problem into scalar optimization 
subproblems; and one explored in unsupervised MOBS is 
the TDS [4, 29]. In this paper, the TDS is used in a 
supervised and Wrapper MOBS to compose the IDMMoBS. 

In IDMMoBS proposed herein, each band of a solution 
generated from a HI is represented by a binary code in a 
vector as shown in Fig. 1. The value 1 indicates the presence 
of the band equivalent to that position and 0 otherwise.  

 
Figure 1. Representation of the solution. 

 

Two objective functions, 1f  and 2f , that should be 

maximized, are designed for IDMMoBS. 1f  is based on the 

overall accuracy of each solution x  and it is shown in eq. 
(1).  

 1
1

1
ˆ( , ) (1*( ))

n

i i
i
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n 
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where  is the number of pixels,  represents each pixel, 
 is the original value of the class in the GT, and  is the 

predict value of the class. The choice for overall accuracy is 

because it is the most used metric in the studies found to 
evaluate the pixel classification in images with selected 
bands and it is directly related to the success rate of 
classification of pixels. 

n i

ip ˆ ip

For the reduction of bands, it is considered in 2f  the 

difference of 1  and the ratio between the number of bands 
of solution x  and the total number of bands possible, as 
shown in eq. (2). 
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where  is the size of the array of the solution ( )len x x  and 

 is the total of bands present in the solution ( )t x x  as shown 

in eq. (3). 
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The TDS used in the IDMMoBS aggregates the  

objectives, which in this case are 
m

1f  and 2f , into a single 

scalar objective function. This aggregation is performed 
through the difference in fitness values of 1f  and 2f  

between a solution x  and an ideal point . 

For maximizing values,  for -th 
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x  

is the ideal solution corresponding to the ideal point . 
In the subproblem evolution process, the single scalar 

objective function in eq. (4) of the neighboring solutions and 
new solutions generated by mutation and crossover 
operations are calculated to further determine which 
solutions could be updated. Solutions that have larger tdsg  

values are more likely to be replaced by others that are 
closer to the ideal solution [29]. 

A. IDMMoBS 

Prior to the execution of the IDMMoBS algorithm, a 
mean filter was applied to each spectral band to smooth out 
band noise and also allow the use of pixel spatial 
information. A mode filter was applied concurrently to the 
GT with classes of pixels used for training, where the same 
mask was used in both cases. To apply these filters, a 2x2 
mask was used that worked in accordance with the sample 
capture strategy presented in the experiments section. 

The IDMMoBS is shown in Algorithm 1, where in Step 1 
- Initialization, the population  is initialized from 

 (Step 1.1) and fitness is established. In this study 

the WaLuMi algorithm (based on Mutual Information) was 
used to generate groups and then randomly a band was 
selected from each group to generate solutions for the initial 
population . This procedure decreases the correlation 

P
OrigHI

P
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between bands and it is repeated until a number  of initial 
solutions are reached.  

N

1

In Step 1.2 the  is set to empty and in the Step 1.3 the 
weight vectors W  are established. In Step 1.3 are also 
computed the Euclidean distances between the weight 
vectors and then it is assign the  nearest solutions to 
each solution i  based on the weight vectors creating the 

neighborhood . In Step 1.4, the ideal point  is 

determined from the maximum fitness values 

EP

( )NG i

NS

*z

f  and  

present in the initial population.  
2f

In Step 2, the update is performed by a number of 
generations. In each generation the  selects a solution 
from the  for display. For each subproblem from 

NGEN
DM

EP 1i   to 
, in Step 2.1 - Reproduction and Repair, the 

neighborhood solutions are selected to generate new 

solutions  through crossover and mutation operators. 
After the crossover operation and before the mutation 
operation, a repair method is applied. The heuristic of the 
repair method is explained in the following sections. Then 
the fitness values of the new solutions  are established. 

N
( )NG i

NI

NI

The ideal point  is updated after comparing the 
objectives of the new solutions  with the  (Step 2.2). 
Then in Step 2.3, the objective values are computed based 
on eq. (4) for the neighborhood solutions . Among 

the neighborhood solutions, the ones whose objective values 

are larger than 

*z

NI *

( )i

z

NG

tdsg , that is, those that are more distant from 

the , are replaced by solution *z 'y NI . Then, in Step 2.4, 

the  is updated with non-dominated solutions.  EP
Finally, in Step 3 the  selects the solution according 

to the established heuristic from  and returns a trained 
classification model. 

DM
EP

 

Algorithm 1 IDMMoBS 

Input:  

NGEN (number of generations), 

N  (population size), 

NS  (neighborhood size),  

GT ,  

p (threshold of the amount of bands),  

OrigHI  (Pixels/samples with all bands),  

mr  (mutation rate) 

and  (crossover rate). cr

Output:  

Solution selected by the  and the trained 
classification model. 

DM

Step 1 – Initialization: 

Step 1.1 – Creates an initial population  generating 
solutions from Or  using strategy with WaLuMi. 

P
igHI

* Establish fitness values using (1) and the mean obtained 
from cross-validation and calculate the fitness for the 
number of bands using (2) of solutions in .  P

Step 1.2 – Creates an external population .  EP  

Step 1.3 – Set of weight vector . 1[ ,..., ]T
NW w w

For each 1...i N , 

 1( ) { ,..., }NSNG i i i ,  

  where  are the  closest weight vectors  1,...i iNw w S NS

  to . iw

Step 1.4 – Initialize . *z

Step 2 – Update: 

For 1,..., NGENngen   do (Stopping Criteria), 

    DM selects and output a solution of , EP

    For 1,..., ,i N  do, 

Step 2.1 – Reproduction and repair:  

For each ,  from : ai bi ( )NG i

Applies the crossover operator and generates new 
solutions  and  in . 'ay 'by NI

Repairs the solutions in . NI

Applies the mutation operator. 

* Establish fitness values of . NI

Step 2.2 – Update of  :  *z

For each 'y NI  , 

        For each 1,..., ( )j m objectives ,  

                 if *( ')j jf y z , then  

                    set   * ( ')j jz f y

Step 2.3 – Update of Neighboring Solutions:  

For each index ( )k NG i , 

  if * *( ' | , ) ( | , )tds tds
k k kg y w z g x w z  then 

              set 'kx y ,  1 1( ) ( ')kf x f y   

and 2 2( ) ( ')kf x f y .  

Step 2.4 – Update of :  EP

Remove all solutions dominated by 'y  from .   EP

Add 'y  to  if no solutions in  dominate EP EP 'y . 

Step 3 – Ending:  

DM selects and outputs a solution of and the trained 
classification model. 

EP

 

B. Support Vector Machines (SVM) 

SVM is based on the theory of statistical learning [34] 
with principles for finding an optimal hyperplane as a 
decision function in a large space [35][36]. In the case of 
classification problems with two distinct classes that can be 
linearly separable, given infinite possibilities for obtaining 
the separator function; the SVM selects the best one. This is 
the simplest scenario for classification by the SVM. The 
SVM considers the best separator, the one that minimizes 
the generalization error. Thus, the selected separator is the 
one with the largest margin between two classes. For 
nonlinear surfaces, the feature vector is mapped to a larger 
Euclidean feature space using a kernel function in the 
nonlinear SVM [37]. 
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The SVM algorithm is used to classify the pixels of each 
solution for later the average accuracy in eq. (1) be applied. 
During the execution of IDMMoBS, whenever some pixel 
classification is performed, 3-Fold cross-validation is 
applied. The pixels are alternately selected from the HI 
using the bands of the solution being classified and inserted 
into one of the folds (systematic sampling). Thus, it avoids 
that the pixels of the same class be allocated only in the 
same fold and also allows that the pixels of the same class of 
different regions in a HI be present in the different folds. 

SVM was chosen because it is one of the most commonly 
used algorithms for HIs and does not require assumption 
about data distribution (nonparametric). One of its 
disadvantages for use in conjunction with Wrapper strategy 
is its training time, but this cannot be a serious problem for 
the band selection process because it is performed prior to 
the use of bands in practical applications. Its main 
advantages are the high classification rate, and that this 
algorithm requires few training samples to operate which is 
important for HIs applications [38]. 

 

C. Repair strategy and Centroid-based DM 

In [30] it is discussed that the repair method is to make 
the solutions feasible. For the band selection problem a 
maximum band threshold may be desired and therefore for 
this problem a set of feasible solutions may be desired. 
Therefore, in this study the following heuristic is used: 

i) Based on [20], this strategy applies WaLuMi to group 
the highly correlated bands using Mutual Information of 
each solution;  

ii) based on [26], selected the band with the highest 
information gain (IG) of each group;  

iii) sort the set of bands according to the IG;  
iv) and select the p bands with the highest IG. 
This heuristic limits the search for solutions with 

balanced objectives, but only when they have less than  

bands.  acts as a threshold amount of bands. To avoid the 

high computational cost, the IG of each band can be 
calculated before the band selection process and the mutual 
information between the bands has already been calculated 
to initialize the population in the WaLuMi.  

p

p

Even with the  threshold, many solutions can emerge at 

the Pareto Frontier and so a centroid-based decision-maker 
(DM) is designed. This DM is based in the method proposed 
in [33] that is based on centroid and a threshold, and it is 
adapted to the IDMMoBS. 

p

 

 
Figure 2. Representation of the DM. 

In [33], the centroid is calculated from the 1f  and 2f  of 

the Pareto-optimal solutions and acts as a threshold to create 
a region of balanced solutions (balanced region). Fig. 2 
shows an example of balanced region (in the dashed region) 
where the centroid is the largest circle in the lower left 
corner of the balanced region and the ideal point  is the 
circle without filling. A-E are solutions of the decision space 
that constitute the Pareto Frontier. 

*z

Having the centroid calculated different rules can be 
established for decision making which solution to choose. In 
this paper we use the following:  

1) If there are solutions in the balanced region then the 
solution in that region closest to the ideal point  is 
selected;  

*z

2) If there is no solution in the balanced region, then the 
solution in the Pareto Front with value greater than the 
centroid of one of the functions that presents the best value 
for another solution is selected.  

3) otherwise, the solution of all Pareto-optimal solutions 
closest to the centroid is selected.  

Through this strategy it is possible to select only one 
solution of the Pareto Frontier. 

III. EXPERIMENTS AND RESULTS 

A. Experimental setup 

Three different HIs/datasets were used to evaluate the 
IDMMoBS and compare with other methods. The images 
used were Indian Pines, Salinas, and Pavia University and 
information about them are shown in Table I. 

 
TABLE I. INFORMATION ABOUT HIS 

Name Resolution # of pixels 
# of 

classes 
# of 

bands 
Indian Pines 145x145 21025 16 200 

Salinas 512x217 111104 16 204 
Pavia University 610x340 207400 9 103 

 
Indian Pines and Salinas datasets were collected by the 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
sensor. Examples of images Indian Pines and Salinas with 
their respective GTs are shown in Figs. 3 and 4.  

Originally the Indian Pines image had 220 bands and 
Salinas 224, but 20 water absorption bands were removed. 
The spatial resolution of these images is 20 m/pixel and the 
wavelength range from 0.4 to 2.5 µm. The classes of these 
images represent mainly crops characterizing themselves as 
agricultural areas. Both images have 16 classes represented 
by different colors in the GTs, and some Indian Pines 
classes represent Alfalfa, Corn, Grass, Oats, Soybean, 
Woods, among others. Salinas classes represent Broccoli, 
Corn, Fallow, Lettuce, Vineyard, among others. 

 

 
(a)                                       (b) 

Figure 3. (a) Indian Pines HI. (b) GT. 
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(a)                        (b) 

Figure 4. (a) Salinas HI. (b) GT. 

 
The Reflective Optics System Imaging Spectrometer 

(ROSIS) obtained Pavia University dataset (shown in Fig. 5) 
with a spatial resolution of 1.3 m/pixel and their classes 
represent urban areas, and it has 9 classes, some of them 
being Water, Trees, Asphalt, among others. 
 

 
                                         (a)                            (b) 
Figure 5. (a) Pavia University HI. (b) GT. 

 
Six different band selection methods/cases were used for 

comparison: 
i) GA-SVM [25]; 
ii) IRMoBS [29]; 
iii) WaLuMi [20]; 
iv-) MIMR-CSA [21]; 
v) IG-GWO [26]; 
vi) and HIs with all bands. 
To avoid the influence of the mean filter on the pixels 

used in IDMMoBS, always the lower right pixel was used as 
a sample (systematic sampling). For each band, the mean 
value was obtained from the previous three pixels using the 
2x2 mask. An example of the sampled pixels is shown in 
Fig. 6, where the black background pixel was used as a 
sample for IDMMoBS and the four pixels with the same 
number were used to calculate their mean value in each 
band. 

 

 
 

Figure 6. Example of pixels used as samples (with black background) in 
experiments with the IDMMoBS. 
 

For IDMMoBS, 20% of the sample pixels obtained by the 
previous method, that is, using black background pixel, were 
used for testing with 5-Fold Cross-Validation. For all other 
methods compared, 20% of all pixels of each HI were used 
for testing with 5-Fold Cross-Validation. An important 
observation is that the special information was considered 
only for IDMMoBS as part of the purpose of this paper, and 
this occurred both in the band selection process as well as in 
testing. For the other methods only the spectral information 
proposed in the original works was used. 

The experiments with the comparative methods were 
similar to those performed in [26], so the comparison of 
these methods was possible. Only for the GA-SVM and 
IRMoBS futher executions were necessary to adjust the HIs 
and amount of samples used. For the GA-SVM, the fitness 
function was set with 0.8 and 0.2 respectively for accuracy 
and the inverse of the number of bands. Other parameters of 
these two algorithms were the same as the original proposals 
in [25] and [29]. 

The IDMMoBS, IRMoBS and GA-SVM have been set to 
run for 500 generations with 100 solutions (subproblems) in 
the population. The SVM was applied for the calculation of 
the overall accuracy with 3-Fold Cross-Validation. These 
values were empirically selected based on the runtime of 
each generation on the tested hardware. The crossover rate 
and mutation were 50% and 5% respectively. Other 
parameters defined in the IDMMoBS were neighborhood 
size 20NS  , , the threshold of the amount of bands, with 

30 (Indian Pines and Salinas) or 20 (Pavia University) and 
the weights  and  were randomly defined for each i -th 

subproblem. In the experiments, 80% of each HI pixels 
different from 20% testing pixels were used in the process 
of band selection in IDMMoBS.  

p

1w 2w

After the band selection performed by each method, a 
classification was performed on the 20% testing pixels by 
the SVM using 5-Fold Cross-Validation to evaluate the final 
result. The optimal parameter C  of the RBF kernel was 
determined via 5-Fold Cross-Validation.  

In the GA-SVM, IRMoBS and IDMMoBS methods the 
bands were obtained automatically and their quantities are 
shown in the experiments. In the IG-GWO method the 
original number of bands obtained in [26], that is, 30, 28 and 
18 bands were respectively used for the Indian Pines, 
Salinas and Pavia U. images. In the other three selection 
methods, the number of bands selected is 30 for the Indian 
Pines and Salinas datasets and 20 for the Pavia University 
dataset. 

Three metrics were used to evaluate the success rate of 
classification of pixels: 

i) Overall accuracy (OA) refers to the number of correctly 
classified instances divided by the total number of testing 
samples;  

ii) Average accuracy (AA) is a measure of the mean value 
of the classification accuracies of all classes;  

iii) The kappa coefficient (KC) is a statistical 
measurement of consistency between the ground truth map 
and the final classification map [26]. 

In addition to these metrics the number of bands used in 
each method is also discussed. 

 26 

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 10:01:58 (UTC) by 3.85.63.190. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 4, 2019 

B. Results 

The results obtained by the different methods and for each 
considered HI are shown in Tables II-IV. The first column 
shows the name of each method and also in parentheses is 
shown the total amount of bands used. The three results 
from the following columns respectively represent the 
overall accuracy (OA), the average accuracy (AA) and the 
kappa coefficient (KC). Best results in these tables are 
highlighted in bold. 

Table II refers to results obtained for Indian Pines image. 
This Table shows that bands selected by IDMMoBS 
outperform the other six cases for classification using the 
SVM classifier. The good results provided by the 
IDMMoBS are repeated for the different metrics evaluated, 
that is, OA, AA and KC. In particular, it is observed that 
even the GA-SVM method, which is biased towards 
searching for solutions that directly improve the pixel 
classification, has no classification results similar to those 
provided by the bands selected by IDMMoBS. A plausible 
explanation for the good results achieved by the IDMMoBS 
in this image is because of the use of spatial information 
obtained by the mean filter. The results are also superior to 
other state-of-the-art literature methods such as IG-GWO 
and also for the images that use of all spectral bands. 

 
TABLE II. OA, AA AND KC OBTAINED FROM DATA WITH BANDS SELECTED 

FROM INDIAN PINES BY DIFFERENT METHODS AND CLASSIFIED BY THE SVM 

USING 5-FOLD CROSS-VALIDATION 
Indian Pines 

Method OA(%) AA(%) KC(%) 
GA-SVM (131 bands) 86.8 ±1.5 81.0 ±2.1 84.9 ±1.7 
IRMoBS (44 bands) 80.0 ±1.7 74.6 ±4.6 77.2 ± 1.9 
WaLuMi (30 bands) 80.6 ±0.8 68.2 ±2.0 77.7 ±1.0 

MIMR-CSA (30 bands) 84.5 ±0.9 79.4 ±1.8 82.3 ±1.0 
IG-GWO (30 bands) 85.2 ±0.8 82.6 ±6.6 83.1 ±0.9 

All Bands (200 bands) 84.9 ±1.5 75.2±4.0 82.8 ±1.7 
IDMMoBS (29 bands) 91.4 ±1.1 91.4 ±3.9 90.1 ±1.3 

 
TABLE III. OA, AA AND KC OBTAINED FROM DATA WITH BANDS SELECTED 

FROM SALINAS BY DIFFERENT METHODS AND CLASSIFIED BY THE SVM 

USING 5-FOLD CROSS-VALIDATION 
Salinas 

Method OA(%) AA(%) KC(%) 
GA-SVM (38 bands) 92.4 ±0.3 96.2 ±0.2 91.5 ±0.4 
IRMoBS (32 bands) 88.3 ±0.6 93.5 ±0.5 86.9 ±0.6 
WaLuMi (30 bands) 93.0 ±0.2 96.4 ±0.2 92.2 ±0.2 

MIMR-CSA (30 bands) 93.5 ±0.2 96.8 ±0.1 92.7 ±0.2 
IG-GWO (28 bands) 93.9 ±0.2 97.0 ±0.7 93.2 ±0.2 

All Bands (204 bands) 92.8 ±0.3 96.5±0.2 92.1 ±0.4 
IDMMoBS (29 bands) 94.4 ±0.4 97.3±0.1 93.7 ±0.4 

 
TABLE IV. OA, AA AND KC OBTAINED FROM DATA WITH BANDS SELECTED 

FROM PAVIA UNIVERSITY BY DIFFERENT METHODS AND CLASSIFIED BY 

THE SVM USING 5-FOLD CROSS-VALIDATION 
Pavia University 

Method OA(%) AA(%) KC(%) 
GA-SVM (70 bands) 93.9 ±0.5 92.9 ±1.1 92.0 ±0.7 
IRMoBS (24 bands) 89.5 ±0.3 88.9 ±1.0 86.2 ±0.5 
WaLuMi (20 bands) 90.1 ±1.0 86.7 ±1.2 86.7 ±1.4 

MIMR-CSA (20 bands) 92.5 ±0.3 89.1 ±0.6 90.1 ±0.3 
IG-GWO (18 bands) 94.2 ±0.2 92.3 ±1.0 92.3 ±0.2 

All Bands (103 bands) 94.1±0.3 92.8±0.9 92.2±0.4 
IDMMoBS (15 bands) 96.2 ±0.3 95.5±0.5 94.7 ±0.4 

 
Tables III and IV refer to Salinas and the Pavia University 

images respectively. For these images most methods 
performed well for classification, often with metrics greater 
than 90%. These tables show that the IDMMoBS also 

presented better results when compared with the other 
methods in the classification criterion. The most competitive 
method to IDMMoBS was the IG-GWO which for Salinas 
and Pavia University images presented very close results. 

In addition to comparing the OA, AA, and KC metrics, 
the mean value of the last solution found by each method 
and used to generate the data from Tables II-IV are shown in 
Table V. This Table shows the data on the number of bands 
reduction percentage for each evaluated method. These data 
can be calculated from the number of bands shown in the 
first column of Tables II, III and IV.  

As shown in Table V, IDMMoBS also showed better 
results in the number of bands of the Indian Pines and Pavia 
University images, but for the Salinas image the IG-GWO 
performed better. 

  
TABLE V. PERCENTAGE REDUCTION OF THE NUMBER OF BANDS DEFINED 

OR OBTAINED IN EACH METHOD. 
Method Indian 

Pines 
Salinas Pavia 

University 
GA-SVM 34.5% 81.4% 32.0% 
IRMoBS 78% 84.3% 76.7% 
WaLuMi 85% 85.3% 80.6% 

MIMR-CSA 85% 85.3% 80.6% 
IG-GWO 85% 86.3% 82.5% 

IDMMoBS 85.5% 85.8% 85.4% 

 
By analyzing data classification and number of bands 

shown in the previous tables, in many methods 
simultaneously reducing the number of bands can lead to 
improved classification metrics. This behavior is present 
mainly when the IDMMoBS and IG-GWO methods are 
applied, which for many of the cases presented better results 
than the use of all bands and can suggest some improvement 
of the Hughes phenomenon. 

IV. CONCLUSION 

In this study, a novel supervised MOBS method called 
IDMMoBS was proposed. This method uses evolutionary 
algorithms and it is based on TDS, SVM, a repair strategy, 
spatial information and a centroid-based DM. The 
IDMMoBS searches for tradeoff solutions with the balance 
between the overall accuracy and the number of bands. 

Experiments were conducted on HIs with different 
regions and diverse areas. HIs with selected bands by the 
proposed method were compared to pixel classification of 
original HIs with all bands and five other band selection 
methods. For most of the test cases conducted, the 
IDMMoBS, showed higher performance for the number of 
bands and better overall accuracy when applying the SVM 
classifier. In just one case, the method called IG-GWO 
achieved a slightly lower number of bands than the proposed 
method, but this method had a worse classification rate. 
Based on the tests performed the IDMMoBS has been able 
to find significant tradeoff solutions for specific classifiers 
and appear as a good alternative MOBS of HIs. IDMMoBS 
may have promoted good results in the classifier, mainly 
due to the use of spatial information incorporated in the 
band selection process and subsequent classification. 

In future works, the band selection process will be 
evaluated with other algorithms such as decision trees and 
deep learning. Different parameters will also be tested, such 
as the number of generations, crossing rate, mutation, and 
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fitness functions. Other filter methods will also be 
considered to improve segmentation. 
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