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1Abstract—Peak detection of any time serial signals can be 

done using different methods. However, exact positions of the 
peaks cannot be achieved, if the method does not have a high 
sensitivity detection capability. It is known that various errors 
appear between the real peak value and the measured value; 
therefore, a true peak value can be obtained from the 
measured value by using a highly sensitive detection method. 
For this reason, spline interpolation is used to estimate the 
peak points from measured values. In this paper, highly 
sensitive peak detection of high-frequency signals based on 
FPGA is proposed using spline algorithm, which is capable of 
calculating the middle points using the first and last points on 
the signal. To evaluate the system, the histograms, the mean, 
and the variance of the peak values before and after spline 
interpolation are compared. Simulation results show that 
calculated peak points using splines and real peak values of a 
signal are very close to each other since the spline algorithm 
has very high calculation sensitivity. In addition, spline results 
show us how much error the existing peak values have. 
 
Index Terms—spline, architecture, field programmable gate 
arrays, peak, detection. 

I. INTRODUCTION 

Interpolation is often used as one of the operations of 
signal processing, similar to sampling and conversion. 
Therefore, many researchers have been using interpolation 
methods to analyze data of different applications. Some of 
the interpolation methods are as following: B-spline 
interpolation using linear approximations for setting up 
viewing and projection matrices and describing complex 
objects were studied in reference [1], implementing a cubic 
spline interpolation algorithm on DSP was studied in 
reference [2], an iterative linear interpolation based on fuzzy 
gradient model for low-cost VLSI implementation was 
introduced by reference [3], a polynomial interpolation for 
space-efficient verifiable secret sharing was given in 
reference [4], an interpolation method to investigate the 
improvement in image quality for ground penetrating radar 
(GPR) acquisition was highlighted in reference [5], gauss 
interpolation algorithms for nonlinear rational parameters 
were presented in reference [6], four image interpolation 
methods for 2-D AR modeling were given in reference [7], a 
polynomial approach to evaluate the fragmented function 
approach for two secure two-party computation (STPC) was 
introduced in reference [8], a bivariate splines in piecewise 
constant tension as the solution for a functional 
minimization problem was given in reference [9], a cubic 
spline interpolation algorithm for smoothness interpolation 
model of non-circular curve mechanical mold was studied in 

reference [10], a spline interpolation functions for solution 
of a non-linear equation was given in reference [11], a view 
interpolation method from defocused stereo images using 
linear filtering was introduced in reference [12], a linear 
interpolation effects on signal transferring was highlighted 
in reference [13], a novel and fast cubic B-splines algorithm 
for cancellation of random valued impulse noise was given 
in reference [14], a real time implementation of cubic           
B-spline algorithm for electro optical tracking system was 
studied in reference [15], a cubic B-spline curves based 
research of the approximate algorithm was given in 
reference [16], and a fast algorithm for quadratic and cubic 
spline wavelets was provided in reference [17]. Among 
these, the spline curve makes it easy to build an interface 
that will allow designing and controlling the shape of 
complex curves and surfaces by using low-degree 
polynomials in each of the intervals and by choosing the 
polynomial pieces such that they fit smoothly together. 

Spline was also used in reference [18] for control and 
optimization of UAV trajectory for aerial coverage in 
photogrammetry applications, in reference [19] for modeling 
of a switched reluctance generator using cubic spline 
coefficients on the phase flux linkage, inductance and torque 
equations, and in reference [20] for modeling shapes for 
pattern recognition by a simple low-cost spline-based 
approach. 

In addition to the papers given above, there are other 
studies including hardware implementations of spline. In 
reference [21], the streamed implementation of a higher 
order interpolation filter, with a weighted median classifier 
was explored. In reference [22], a bilinear interpolation 
algorithm to demosaic images with bayer color pattern was 
presented; the algorithm was implemented in a single Field 
Programmable Gate Array (FPGA) device using a pipelined 
architecture. In reference [23], FPGA implementation of 
bilinear interpolation algorithm for color filter array 
demosaicing was introduced, as real-time FPGA processing 
for high-speed optical frequency domain, imaging was 
studied in reference [24]. 

On the other hand, in our previous work, we showed that 
the automatic multiscale-based peak detection (AMPD) [25] 
method has been proven to be effective for periodic and 
quasi-periodic noisy signals. However, one of the problems 
about the AMPD peak detection is that processing time of a 
signal to be analyzed becomes longer due to the sampling 
point of AC/DC converter. Basically, it happens when the 
peak point is detected using variance that is extensive data 
on the time axis due to the deviation. Consequently, we can 
say that the problem is to have a big data enlarging time 
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axis. To solve this problem from the detected peak data, it is 
necessary to interpolate the assumed function and estimate 
the maximum value (correct peak position). Representation 
of interpolation method includes Lagrange polynomial 
interpolation, Newton polynomial interpolation and spline 
interpolation, etc. 

In this paper, we proposed a highly sensitive real peak 
point estimation system using the spline interpolation based 
on AMPD. For this reason, the data was obtained from 
spline interpolation by means of AMPD peak values. To 
solve the spline interpolation, it is necessary to solve 
simultaneous equations. As the amount of calculation time 
increases, in general real-time in hardware that has been 
deemed not suitable for processing, also increases. 
However, in this paper, the calculation process is simplified 
using the fact that the data sampling interval is constant. To 
design a simple spline algorithm hardware, a circuit 
architecture is proposed for complementary in-line 
processing implemented on an FPGA. The reason of 
introducing spline interpolation is to obtain precise peak 
point values, even if the sampling frequency is relatively 
low. FPGA implementation of a high-accuracy peak value 
estimation system from high frequency signals has been 
proposed in this paper. It is the FPGA implementation of a 
spline interpolation system that estimates the peak value. In 
addition, the histogram of the detected peak value with 
respect to the sine wave input was evaluated and the effect 
of the system was confirmed. Consequently, this study will 
allow us to estimate the real peak value of data at both low 
and high sampling frequencies. 

II. MATERIALS AND METHODS 

A. Algorithm 
Estimation of intermediate values between precise data 

points is necessary for the signal processing. Polynomial 
interpolation algorithms such as Lagrange interpolation or 
Newton interpolation are the most common methods used 
for this purpose. However, in some cases these functions can 
cause incorrect results due to round-off error and overshoot. 
Therefore, lower-order polynomials can be applied to 
subsets of data points as an alternative approach. These 
polynomials connected with each other are named as spline 
functions. In addition, spline interpolations [26] have less 
vibration and more resistance against noise compared to 
Lagrange interpolation and Newton interpolation. The 
general idea of a spline is represented in Fig. 1 [27] that is 
drawn by connecting all points and then it is formulated as a 
function as in Equation 1. 

 
Figure 1. Analysis of spline 

Linear, quadratic, and cubic splines are well-known spline 
interpolations. However, among these, linear spline and 

quadratic spline are not used that much because of low 
accuracy. Moreover, if the degree becomes too large, the 
calculation time will increase. In general, cubic spline 
functions are often used from the point of balance of 
interpolation accuracy and computational complexity. 
Additionally, spline interpolation encompasses a range of 
interpolation techniques to reduce the effects of overfitting. 
Furthermore, it applies only in one dimension but is useful 
for modeling yield curves, forward curves, and other term 
structures. 

The objective in cubic spline is to derive a third-order 
polynomial for each interval between knots, as in Equation 
(1). 

        iiiiiiii dxxcxxbxxaxS  23
       (1)  

The piecewise polynomial is (i = 0, 1, 2, ..., n - 1) in 

the interval [xi, xi+1]. Thus, for  n + 1  data points (i = 0, 1, 2, 
..., n-1),  there are n intervals. Consequently, to determine 
the cubic spline Si, we must determine the coefficients ai, bi, 
ci and di. For this reason, we follow some conditions as 
given below; 

iS

Condition 1: 
Si is on (xi, yi)  

Si(xi) = yi ,     (i= 0, ..., n-1)                           (2) 

Condition 2: 
Each polynomial passes through its respective end points: 

Si is on (xi+1, yi+1)  

iS ( ) = ( )= , (i= 0, ..., n-1)        (3) 1ix 1iS 1ix 1iy

Condition 3: 
First derivatives match at interior points: 

iS ' ( )= ( ) , (i= 0, ..., n-2)           (4) 1ix 1iS '
1ix

Condition 4: 
Second derivatives match at interior points: 

iS '' ( )= ( ) , (i= 0, ..., n-2)           (5) 1ix 1iS ''
1ix

Condition 5: 
Second derivatives are vanished at the end points: 

0
''S (0) = (0)=0                           (6) 1nS ''

 Here, if the value of the second derivative          
is wheniu ixx  and the size of the interval ),( 1ixx is , it 

is expressed by the following equation: 
ih

iii bxSu 2 )('' , (i= 0, 1, 2, ..., n)                   (7) 

Then, can be calculated as in Equation 8. ih

iii xxh  1  ,   (i= 0, 1, 2, ..., n)                   (8) 

Thus, all unknowns ai, bi, ci and di can be represented by 
ui and known hi and yi expressions. 
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If ui is found, all unknown coefficients are determined.   

ui can be obtained from condition 3 and Equation (1). The 
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final simultaneous equation of ui is as follows. 
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Here, substituting vi for the constant term on the right 
side, the Equation (13) can be expressed by the following 
Equations (14) and (15). 
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126   (i= 1, ..., n-1)    (14) By deforming like this, yn=zn
' is obtained, then yn can 

easily be obtained. 

  1111 2   iiiiiiii uhuhhuhv     (i= 1, ..., n-1)   (15) 
III. SPLINE ALGORITHM ARCHITECTURE DESIGN 

By solving Equation (15), ui can be determined. When 
replacing the constant term with vi, the simultaneous linear 
equation obtained by substituting u0=uN=0 is shown as 
follows. 
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Spline algorithm architecture design can be explained by 
Fig. 2. It includes a selector module, a differentiation 
module and interpolation modules. If the spline system is 
explained simply, it is assumed that 8 pieces of data are sent 
simultaneously for each clock. So, there are 8 input ports 
dini (i = 0, …, 7) to receive the 8 data as well as flags for 
determining whether or not each data point is a peak at same 
clock cycle. The value input to din0 is the oldest data among 
the 8 points, and din7 is the newest data.  

The input dini is sent to the selector module, and some 
part of di is stored in the register between di (i = 0, …, 7) at 
the same clock. Thereafter, data adjacent to the registers yi             
(i = 0, …, 7) is stored. The data stored in the register d is 
sent to the selector, and at the same time, a part of it is 
stored in the register pi (i = 0, …, 3) The data stored in the 
register p is sent to the selector. 
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In the selector module, 8 points necessary for 
interpolation are determined from 15 pieces of data. The 8 
points to be interpolated are 8 points adjacent to the center 
of the position of the peak data stored in register d. 
Thereafter, data adjacent to the register yi (i = 0, …, 7) is 
stored so that the peak data is stored in y4. The data of 
register y is sent to the differentiation module to calculate 
the tridiagonal matrix part of the spline function. The 
calculated value spi (i = 3, …, 5) in the differentiation 
module and the received value yi (i = 3, …, 5) from the 
selector module are sent to the interpolation module. In the 
interpolation module, an interpolation value for a certain 
time x is obtained by solving a spline equation. Note that the 
time x is interval between peak points. The real peak value 
is selected from the obtained interpolation value spli (i = 0, 
…, 9) and the peak data sent from delay before 
interpolation. The selected real peak value is output as 
interpolated peak data. 

                                                        
The matrix on the left-hand side of Equation (16) is a 

tridiagonal matrix, and all the elements on the variable side 
are characterized by a linear equation of the difference of x. 
Finally, when all variables are calculated such as ai, bi, ci 
and di, we can plot the spline figure by using the peak 
points. 

 
B. The Gauss-Jordan method 

In the process of spline interpolation, the solution is 
necessary for simultaneous equations. For this reason, we 
prefer the Gauss–Jordan method to solve the tridiagonal 
matrix in Equation (16). The Gauss–Jordan method [28] is 
an improvement of the sweeping method. Although it is 
more than the sweeping out method in the calculation 
amount, there is the advantage that a direct solution is 
obtained. Generally, when a simultaneous equation such as 
Equation (17) is given, it is a method of obtaining a solution 
by transforming it as shown in Equation (18). 

 
A. Selector module 

Fig. 3(a) and Fig. 3(b) are diagrams showing the 
correspondence between input data and registers in which 
data is stored. The input data is stored in the register in this 
way. Fig. 3(b) illustrates the figure where 8 points to be 
interpolated are determined by defining the peak position 
from the peak flag of register d. Register y that stores 8 
points to be interpolated contains any data from p0 to din7 
that are data from y0 to y3 at the four points before the peak 
point, data at the peak at y4, and data after the peak at y5 to 
y7. In the figure, the peak position is d5 and its value is 
stored in y4.  
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Figure 2. Spline architecture design 
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(b) 
Figure 3. Selector module design 

 

B. Differentiation module 
In the differentiation module, the second derivative ui     

(i = 0, …, 6) of each segment Si(x) (i = 0, …, 6) in spline 
interpolation is calculated. The calculation method of ui is 
represented by Equation (16). In this implementation, since
there are 8 data points input at the same time, there are 7
segments. Therefore, the trid  matrix part is a 7×7 

ta points are sampled at regular 
of Equation (8) is replaced as a 

           

 
 

iagonal
matrix. Also, since the da
intervals, the calculation 
constant, and the spline function can be simplified and 
solved. For computing tridiagonal matrix, the Gauss-Jordan 
method described in section 2 is used. 

Here, the equation is modified to simplify the calculation. 
From the Equation (15), the tridiagonal matrix can be 
expressed as given in Equation (19). vi is expressed by 
Equation (14). 
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Dividing the whole of Equation (19) by (xi-xi-1) yields 

Equation (23). hipi, hi, spi are expressed by Equations (20) to 
(22). The definition of hi is different from that of the 
previous section II. 
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Figure 4. Differentiation module 
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01 6 fs

 10   ii yyfs  1 ii yy                (36) 

. 4 are calculated by the 
Gauss-Jordan method. Since the peak value is always sto
in y[4] and sent to differentiation module, ui, which
necess

nt to 
d. 

C. Interpolation module 
From the interpolatio

 interpolated value for a 

ted by (x, YI). x falls 
after the peak 

lue. First, it is divided into cases where x is between x3 
and x4, and between x4 and x5. This can be determined by 

comparing the magnitudes of y3 and y5. Figs. 5(a) and 5(b) 
show the image of the interpolated waveform and the peak 
value. 

 
(a) 

 
(b) 

Figure 5. Interpolation waveform 

 
When x is between x3 and x4, and between x4 and x5, the 

basic calculation method is the same through the numerical 
value is different. Here, the former will be described as an 
example.  

Fig. 6 illustrates the data flow of the interpolation part. As 
a calculation procedure, coefficients of the piecewise 
polynomial are calculated using sp3, sp4, y3, and y4 sent from 
differentiation module at the beginning. Calculation 
formulas of coefficients can be obtained by applying 
numerical values to formulas (9) to (12), respectively. 

 Figure 6. Block diagram of interpolation module
 

 
This calculation is performed in the fs part and the ss part 

in Fig. 6. The coefficients calculated at fs and ss are 

       7

[Downloaded from www.aece.ro on Tuesday, March 19, 2024 at 08:12:15 (UTC) by 44.204.164.147. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 19, Number 4, 2019 

corrected to the form of Equation (1) at ts and finally detect 
YI at x. In addition, this process is parallelized as depicted in 
Fig. 2, and it is possible to detect the target value at high 
speed. 

Finally, the interpolated value spli sent from interpolation 
module and the maximum value of peak data before 
interpolation coming from delay is detected. The output 
value is output as interpolated peak data. 

IV. RESULTS AND DISCUSSION 

In this section, spline algorithm is evaluated in detail by 
comparing peak points of the same data series used in 
AMPD algorithm in the previous study of authors. Basic 
definition of AMPD method is to detect the real position of 

inp  data by using any time series data. It calculates all 
m uation to find the peak points. 

ut
atrix eq
The results obtained from both AMPD algorithm (raw-

peak data), and spline algorithm (fitted-peak data) have been 
compared in order to estimate the right positions of the peak 
data on X and Y coordinate system. It is not only the AMPD 
method; any peak detection method can also be analyzed 
with spline algorithm to estimate the right positions. 

 
A. Simulation of the spline algorithm hardware 

In this section, a simulation has been performed with 
input data of the phase-to-phase effective voltage values of a 
medium-voltage transformer located in the Organized 
Industrial Z tober 1 to one used for the period from Oc
October 31, 2015. The corresponding data set contains 4470 
data points recorded at 10-min intervals for each L3-L2, L2-
L1 and L1-L3 phase-to-phase effective voltages. L1, L2 and 
L3 denote the power line in order in 3 phase power system. 
The important point here is that the input peak data used for 
spline simulation were obtained after implementing the 
AMPD algorithm. That means inputs of spline algorithm 
were obtained from previous AMPD algorithm studies (raw-
peak data). Fig. 7 illustrates the details of the raw-peak data 
and fitted-peak data. 

 
Figure 7. Raw-peak data and fitted-peak data 
 

Daily fitted peak points on hardware design by the spline 
algorithm method are illustrated in Figs. 8, 9 and 10, for 
lines L2–L1 (VL2-L1), L3–L2(VL3-L2) and L1–L3 (VL1-L3) 
voltage values, respectively. In Figs. 8, 9 and 10, upper 
traces are showing peak points (raw-peak data) obtained in 
red color and real fitted data (fitted-peak data) obtained in 
green color. It can be clearly seen that the difference 
between two methods are small. Maximum raw peak data, 
maximum fit peak data and maximum differences between 
them are given in Table I. Nevertheless, the reason of using 
spline algorithm is not only to detect the peak points, but 
also to identify the real position of the peak points obtained. 
So that in all these graphics given in Fig. 8, Fig. 9 and Fig. 

10, lower traces visualize the differences between raw-peak 
data and fitted-peak data. 

TABLE I. MAXIMUM DIFFERENCES BETWEEN RAW-PEAK DATA  
AND FITTED DATA 

Phase-To-Phase 
Effective Peak 

Data 

Maximum 
Raw-Peak 

Data 
(kV) 

Maximum Fit-
Peak Data 

(kV) 
 

Maximum 
Differences 

(kV) 
 

L2-L1 line voltage 
peak data 

35.062500 34.984375 0. 25 0781

L3-L2 line voltage 
33.890625 33

peak data 
.828125 0.062500 

L1-L3 line voltage 
peak data 

34.187500 34.156250 0.031250 

The maximum difference of positive edge is found as 
0.078125 kV for L2–L1 phase.  

 
Figure 8. Differences of peak data obtained from raw-peak data and fitted-
peak data for L2–L1 line voltage values 
 

Next, this study analyzes the data of MSE and RMSE in 
detail in order to show the difference between raw-peak data 
and fitted-peak data. First of all, Mean Absolute Error 
(MAE) can be defined with the equation (37) given below.  





n

i
ii xx

n
MAE

1

1

^

                         (37) 

Here, n = the number of errors, |xi – x |= absolute errors. 
Secondly, Root Mean Squared Error (RMSE) is analyzed 

and, then, error ratios are calculated with the equation given 
below, where, n = the number of errors. 

 





n

i
ii xx

n
RMSE

1

21
)(                        (38) 
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Figure 9.  Differences of peak data obtained from raw-peak data and fitted-
peak data for L3–L2 line voltage values 

 

Figure 10. Differences of peak data obtained from raw-peak data and fitted-
peak data for L1–L3 line voltage values 
 

Tables II and Table III illustrate results of the MAE and 
RMSE as 0.00548246 kV and 0.0105528 kV in order for 
phase voltages of L1_L3. 

TABLE II. MEAN ABSOLUTE ERROR FOR ALL PHASE-TO-PHASE VOLTAGE 

RAW PEAK DATA AND FIT-PEAK DATA 
Phase-To-Phase 

Voltage Data 
L1–L2 Phase L1–L3 Phase  L3–L2 Phase 

Mean Absolute 
Error (MAE) 

0.00911458 0.00548246 0.0080819 

 
TABLE III. ROOT MEAN ERROR FOR ALL PHASE-TO-PHASE VOLTAGE RAW 

PEAK DATA AND FIT-PEAK DATA 
Phase-To-Phase 

Voltage Data 
L1–L2 Phase L1–L3 Phase  L3–L2 Phase 

Root Mean 
Squared Error 

(RMSE) 
0.0183774 0.0105528 0.0176491 

 
B. Evaluation of the spline method with an FPGA board 

In this section, the device utilization and performance of 
the modified algorithm on the Kintex-7 XC7K325T are 
evaluated. As a mapping tool, a Vivado 2016.3 tool was 
used. In this study, the maximum system frequency was 
preferred as 100MHz, and input data width is 12 bit. The 
system was implemented on the FPGA board. Then we 
analyzed the latency, memory usage and performance of the 
implemented system. Table IV shows the resource usage 
(area). Maximum frequency is 140.865 MHz, and latency is 
78.088 ns. 

TABLE IV. RESOURCE USAGE 
Resource Utilization Available  Utilization % 

LUT 7168 203800 3.52 
FF 3135 407600 0.77 

DSP 24 840 2.86 
IO 10 500 2.00 

Max. Frequency (MHz) 140.865 - - 
Latency (ns) 78.088 - - 

 
Fig. 11 depicts FPGA card design that includes an FPGA, 

an AC/DC converter and a functio nera reover, 
F

n ge tor. Mo
ig. 12 highlights the flow chart about the hardware design. 
 

 
Figure 11. FPGA card design 

 
F flowigure 12. Hardware design chart 
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In y spec ware architecture was not 
us  in order to optimize the use of LUT, BRAM and 
re

the high frequency signal is considered for real tim
applications on an FPGA, and it offers short latency
compared to the GPU and CPU. In here, the 100 MH
frequency is preferred because most AC/DC converters a
compatible adaptable with 100 MHz.  

V. CONCLUSION 

In this study, a spline interpolation algorithm was used t
detect the peak point detection of a time series signal. As th
data, peak points detected previously based on automa

etection (AMPD) were used
study was carried out using hardware implementation an
evaluation of the spline method on an FPGA board. Late
on, results obtained from spline interpolation and previou
obtained peak points were compared for each phase data of 
the power system. It was observed that peak poin
calculated from fitted-peak data obtained using splin
algorithm and raw-peak data obtained using AMP
algorithm were very close to each other. Difference
between AMPD and spline algorithms were then analyzed in 
detail in order to show sensitivity of spline algorithm.
Finally, it can be said that the spline algorithm helped us to 
identify the real position of the time serial data. 
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