
Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

Compiler Optimization on Instruction
Scheduling for a Specialized Real-Time

Floating Point Soft-Core Processor
Michael KIRCHHOFF, Lothar WAGNER, Wolfgang FENGLER

Technische Universität Ilmenau, Group for Computer Architecture and Embedded Systems, Germany
michael.kirchhoff@tu-ilmenau.de

1Abstract—This paper presents the authors' research in the

field of specialized optimizing assembly language compilers for
embedded real-time soft-core processor systems on FPGAs.
With this soft-core processor, we are targeting a highly
specialized field of applications that require large floating-
point precision and other unique characteristics. Therefore, a
specialized optimizing assembly language compiler is necessary
in order to provide the needed machine code and optimize it in
a way that efficient usage of the internal parallelism
mechanisms is possible, resulting in major performance
benefits on single-core, multi-core and vector processors. One
important key feature is the design-time analyzability to meet
the hard real-time constraints of any given problem.

Index Terms—dynamic compiler, optimization methods,
processor scheduling, scheduling algorithms, vector processor.

I. INTRODUCTION

Embedded systems are becoming more and more
common nowadays, largely driven by the enhanced
capabilities of modern technology. As semiconductor
complexity continues to rise in accordance to Moore's Law,
the SOC (System on Chip) and FPGA (Field Programmable
Gate Array) devices as part of SORC (System on
Reprogrammable Chip) used in these products are getting
more and more powerful. This enables the development of
new products to solve problems that were too expensive for
previous technologies. An important key point in using more
and more complex technologies is the ability to minimize
the cost of development of new products with those
technologies. Here, SORCs and especially FPGAs provide a
big advantage, the ability of reconfiguration, resulting in
much shorter design cycles, tackling the challenge of the
increasing system complexity and reducing the cost at the
same time. To minimize the cost even further, it is necessary
to reuse and to modularize as many components as possible.
Therefore, the authors developed a complete tool-chain in
order to (partially) automatize the development of SORC
logic for very complex problems with a large quantity of
requirements. One of the most important parts of the tool-
chain will be introduced in this paper.

This is a good way to exploit high level programming
languages in FPGA designs and to use a soft-core with
accompanying software development tools [1-3].

A prime example of solvable problems with the help of
new and faster SORCs is the real-time processing and
evaluation of camera data where large streams of data have
to be processed within strict timing limitations. As the

capabilities of the hardware are ever increasing, the software
and hardware-description development has to come up with
modular, scalable and reusable solutions as well.

1This work has partly been funded by Thüringer Aufbaubank TAB and

EFRE under grant 2016 VF 0023.

As the applications for these systems range from toys to
safety critical and potentially dangerous devices there won't
be any one-for-all solution for all these systems. Especially
the class of applications with hard real-time and complex
computation requirements will need a highly specialized, yet
future-proof and reusable solution, which is targeting the
priorities and limitations by design. This is especially true
for real-time systems that can be safety-critical and violation
of the timing constraints can lead to costly or dangerous
accidents.

Having a scalable solution for this kind of application that
can be deployed on modern and future devices, utilizing the
ever growing complexity, would significantly speed up
development times and thus not only decrease the time to
market but also cut development costs.

In this paper, the authors suggest the use of a highly
specialized soft-core processor for usage in FPGA designs
that is specialized for hard real-time computing. Generic
soft-core processors like the Nios II [4], the MicroBlaze [5]
or the LEON3 [6] do not provide the necessary specialized
logic in order to efficiently compute a complex hard real-
time problem. A comparison of different available soft-core
processors provided by commercial vendors and open
source communities can be seen in [7]. All those soft-cores
are not suitable for a highly specialized field of applications
that require a large floating point precision and other unique
characteristics like hard real-time ability or the possibility to
use complex specialized operators [8-9].

Therefore, the authors developed a highly reusable and
adaptable double precision floating point soft-core
processor, called ViSARD [10], that tackles problems of this
field of application, e.g. highly problem specialized
operators or real-time guarantees.

The fully pipelined design of the ViSARD enables high
processing speed while offering a deterministic, clock-exact
timing in every execution. In order to specialize the soft-
core to a specific task, the instruction set can be adjusted
and entire operations can be added or removed from the
design while processing speed of the individual instructions
is adjustable as well. This process not only includes adding,
removing and modifying the instructions units in the design
phase but also swapping them out on-demand during
runtime by partial reconfiguration of the FPGA. Special
units can be loaded and unloaded as needed by the
algorithm, changing the configuration of the soft-core as
needed. The available instruction set not only include

 57
Digital Object Identifier 10.4316/AECE.2019.03007

1582-7445 © 2019 AECE

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

elemental calculations but also offer extracting roots or
exponential functions, providing fast and clock-accurate
processing for sophisticated algorithms. In addition, the soft-
core makes use of a 5-staged instruction pipeline and every
operator is internally pipelined as well. By this way it is
possible to maximize the throughput over parallelization
approaches while maintaining the deterministic
predictability and the real-time constraints. Theoretically, it
is possible to start a new operation at every clock cycle,
depending on memory specific dependencies of the
operation input and output.

This way a compiler can make or break a soft-core-design
as weak compilers can have a several-fold increase in
computing times, potentially negating the features of the
soft-core design. The challenge in designing a compiler for
the suggested soft-core is taking into account the
configuration and availability of instruction units as these
are designed to be changed in any phase of the system's
design. Optimizations have to be adjusted to the configured
state of the soft-core and no hard-coded optimization logic
can be used for this task. All this aims at maximizing the
usage of all internal pipelines in order to minimize the
computation time of any given problem.

The compiler presented in this paper is a consistent

enhancement of a previous presented version [11] and
features a high level of micro-parallelism utilization,
drastically reducing execution time for given programs with
respect to previous versions. Using a sequential source-code
as the input, the compiler is able to generate machine code
for an arbitrary number of processor-cores, automatically
taking care of inter-core synchronizations and utilization of
communication resources while the configuration of
instruction units can be set for every individual core. As the
multi-core feature is a new feature compared to the previous
presented version, it is not the only enhancement. The
biggest improvement is the replacement of fixed
optimization algorithms in order to compile the source code.
With the new approach, it is possible to set the optimization
target by the programmer by weighting different parameters
of the instructions, customizing the optimization for a given
algorithm and soft-core configuration. This high level of
flexibility and customizability combined with sophisticated
algorithms to increase fine-grain parallelism and thus
increased performance amongst a single or a number of
codes make this compiler unique for use with the partially
reconfigurable nature of the soft-core.

The multi-core feature in embedded systems has many
potential approaches to solving the numerous multi-core-
related problems like presented in [12-16].

In addition we present a cancellation of the classic
variable to memory slot mapping which aims to provide
more independent operations, resulting in a higher usage of
internal pipelines. This is also improving the optimal
memory usage since a fixed amount of resources is always
reserved for memory in any FPGA design and can be
effectively used with this approach independent of the actual
number of used variables in any given problem.

The processor performance can be drastically increased
by increasing the frequent usage of pipelines [17].

The achieved speed and pipelining benefits are always

dependent on the program to be compiled and its internal
dependencies as pipelining utilizes micro-level parallelism
in order to keep processor utilization high. Examples can be
artificially created for either extreme from no benefit to
almost perfect utilization, which is why the authors have
decided to stick to real-world algorithms for testing their
results.

After pointing out major requirements for this objective
and analyzing existing solutions, we develop a specifically
designed algorithm combining new approaches. With the
presented extensions of the compiler, it will be possible to
distribute the instructions of a sequential program to
multiple cores while also utilizing micro-parallelism on
every core. We will extend the compiler with a mode to
support asymmetric cores in a multi-core architecture. This
will reduce the needed hardware resources for each soft-core
without a significantly loss of performance.

As proof of concept, experiments will show the
characteristics of the resulting machine code, e.g. level of
parallelism and functional correctness. Those machine codes
will be compared with existing solutions.

II. PROBLEM DEFINITION

When dealing with soft-core processors, specialized
instruction sets and thus specialized machine code, a
compiler is needed to efficiently produce the machine code.
Creating a compiler for a specific architecture can
incorporate specialized information about the target
processor itself. This can include the availability of
arithmetic operation units, as well as their processing
latency and the number of cores when using multi-core
processors. The ability to change these parameters in
accordance to changes in hardware configuration is
important, especially for soft-core processors, which can be
customized for a specific task and where reconfiguration is a
standard use-case (e.g. changing the core count and
available instructions). Furthermore, the advent of partially
reconfigurable FPGAs and thus partially reconfigurable
soft-core processors emphasizes the need for agile and fast-
changing optimization targets when compiling. While basic
knowledge about the processors architecture is required
when implementing the compiler, using the configuration of
the soft-core as an input will allow better optimization of the
machine code for the target while keeping its configuration
changeable.

Compiling a sequential program for a multi-core
processor not only includes distributing the instructions
between the cores but also coordinating synchronization
between them. This task involves keeping track of all values
of each variable, making sure no core is working on an
outdated copy of the variable.

For a more efficient design of multi-core processors, the
approach of asymmetric cores can lead to less resource
requirement but adds to the complexity of the compiler.
When compiling sequential source-code for a multi-core
architecture the available processing units have to be taken
into account for each core individually when assigning the
instructions to the cores.

This may lead to additional inter-core communication,
thus emphasizing the need for an efficient handling of the
limited communication resources by the compiler while

 58

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

maintaining the hard real-time requirements of the processor
without wasteful usage of the limited FPGA resources.

The targeted work domain of the ViSARD soft-core is the
real-time domain with computation expensive operations
such as double precision floating point operations, e.g.
computation of exponential functions. Because the target
algorithms not only include the processing of camera data
where large streams of data occur and have to be processed,
but also relatively simple control algorithms with high
precision, it is crucial to provide a maximum level of
flexibility in order to achieve the best result for different
problems within the targeted domain.

With the ViSARD soft-core it is possible to choose
between e.g. the use a single- or multi-core architecture with
single or double floating-point precision and to choose
between SISD (single instruction single data), SIMD (single
instruction multiple data), MISD (multiple instruction single
data) or even MIMD (multiple instruction multiple data)
realizations. All those cases have to be covered by the
compiler.

Therefore, it is necessary to discard fixed optimization
patterns in favor of an adjustable approach that is able to
target the very specific optimization goal of each
implemented problem.

III. RELATED WORK

Over the time, many different compiler scheduling
optimization approaches emerged. Many of them consider
the "on-the-fly" scheduling mechanisms, like [18-20] and
are not suited for a real-time scheduling. In [20] the
compiler uses a technique for scheduling threads to execute
different regions of a program. Therefore, a control flow
graph is determined that contains regions and directed edges
between regions, with different execution priorities of each
region. The directed edges indicate the direction of program
control flow. This method is suited for SIMD architecture,
but it is not possible to predict the exact runtime of a given
algorithm before execution.

In [21] a compiler is presented together with the
"Specialized Multi-Core Soft Microprocessor" it is
programmed for. Here, design time instruction scheduling
and core assignment is done as well as defining variable
placement.

Two models are used, the "Program Memory Init model"
and the "Data Memory Init model". Those models are used
for organization of all program memories by providing
memory images and realizing the initialization of data
memory. In section VI we will use this compiler as one
basis for comparison. One of the deficits of this approach is
the strict value to variable mapping and the deriving code
dependencies that reduces the parallelism and therefore
increases the execution time.

An essential problem that was already discovered by [22]
is the separate consideration and optimization of code
selection, register allocation and instruction scheduling. It
will occur that decisions made during any one phase place
unnecessary constraints on the remaining phases.

Our approach will also combine those three phases and

will optimize without any pre-fixed optimization algorithm
but with a dynamically customizable optimization for any
given problem.

IV. VISARD TOOL-CHAIN

The assembly language compiler as part of the whole
ViSARD tool-chain can be seen in Fig. 1.

model-based assembly code
generator

assembly code

applica tion

requ
irem

ents

m
achine code

assembly compiler

configured application specific
soft-core processor

adjustment

soft-core processor module set
operator library

optimization

Figure 1. The complete ViSARD Tool-chain, Source: [11]

A. Model-based Assembly Code Generator

In every new project, requirements and constraints have
to be defined. With this input it is possible to describe the
target application that needs to execute an embedded
algorithm with hard real-time characteristics and massive
parallelism requirements. The application sets a scenario
and the user can model the problem with the first part of the
tool-chain, the model-based assembly code generator. This
Matlab/Simulink based tool gives the user the ability to
realize any given algorithm without the need of special
knowledge of any programming language. The user simply
drags and drops blocks that realize the needed functionality
and connects them as desired. To get a better understanding
of how this can look like, Fig. 2 shows a very simple
example. This tool can be understood as a data-flow based
model oriented way to effectively generate assembly code
while maximizing the reuse aspect as it is possible to
include previous generated models.

Figure 2. Model-based Assembly Code Generator, Source: [11]

 59

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

Prg Addr

DPRAM
(Program)

Decoder

DPRAM
(Data A)

DPRAM
(Data B)

Set/Reset

Signal
padding

Output
Register 0

Output
Register n

fpALU

mdata

statusbusy

Data Input n

Data Input 0

Prg We

Prg Data

mcmd

Guard

WB CommAdr1

Start

Wb Addr

DPRAM
(Shared)

B

A

Result

Ex Comm

EX

WB
WB

ALU OP
enable

ADD

MUL

DIV

...

Data RAM
enable

Adr2Shared
Adr

WE

Input

Data Path

Program
Counter

Control
Signal

Data

Address

Control PathControl Path

Figure 3. ViSARD Soft-Core Processor Schematic

As soon as the model-based algorithm is finished, it is
possible to automatically generate the special assembly code
needed to run the ViSARD soft-core.

In addition, different optimizations can be used to
optimize the graph generated by the model (or even the
model itself) by replacing blocks with faster equivalent
logic, or remove dead parts in the model, resulting in a
shorter assembly code. In addition, it is possible to minimize
the usage of variables of the generated assembly code.

Of course it is also possible (even if not recommended) to
skip the model-based assembly code generator and manually
write the assembly code. After the assembly code is
generated, it is then compiled with the tool presented in this
paper as the second step of the tool-chain, which will be
explained in detail in the later sections.

B. ViSARD soft-core processor

The third part of the tool-chain is a general soft-core
processor module set. In this set are included many
operators and other specializations that can be used. An
example of those specializations is the possibility to run the
ViSARD in single precision or, if needed, double precision
[10].

The basic structure of the ViSARD soft-core processor
can be seen in Fig. 3. It shows a single core in a (potentially)
multi-core setup with the shared memory needed for
communication with other cores. This architecture offers the
possibility to be adjusted for any problem with a theoretical
infinite number of cores. In this context, it is also possible to
realize each core with a different set of operators in the
floating-point arithmetic logic unit (ALU).

Even the adjustment of any ALU during runtime is
possible, but the compiler needs to consider such a recon-

figuration. This will be explained in detail in section VI.
As can be seen in Fig. 3, each core consists of an I/O-

interface with data input and output, and different ports for
controlling. Furthermore, it contains different cache blocks
for storing the machine code as well as the needed values of
the variables. As can be seen, there are three data caches.
Data A and data B are needed to read up to two operands per
cycle, so it is possible to start a new operation at every clock
cycle. In addition, it is possible to change one operand per
cycle with either an external data input or a value from a
shared resource from another core. A shared memory
architecture for the multi-core is used, comparable with the
in [23] presented approach.

In every clock cycle both operands are read by the fully
pipelined ALU. That means the ViSARD not only uses a 5-
staged pipeline but also every operator (like addition or
multiplication) inside the ALU is internally pipelined as
well. After the computation of an operation is finished, the
resulting value can either be stored inside data cache A and
B only, or in the two local and the shared data caches, or can
be put into the output register. All the mentioned parts are
part of the data path, which is marked gray in the figure.

The control path, marked white-double-boxed in the
figure, reads the next command from the program cache,
decodes it and send the addresses, the write-back command
and the execution command to the respective modules. The
task of the "data ram enable" module is to activate the
needed cache, or to deactivate it if it is not needed in the
current clock cycle in order to reduce the power
consumption. The "ALU op enable" module has the same
task but for the operator modules inside the ALU. If a
module is not needed for the current operation and there are
no ongoing computations inside the internal operator

 60

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

pipeline, the operator module can be deactivated as well in
order to further reduce the power consumption.

As can be seen in Fig. 1, there is a whole set instruction
units for the ViSARD. This means the ViSARD is configu-
rable for the special requirements that derive from a new
application. It is possible to change, add or remove any
operator in the ALU of each core. Furthermore, it is also
possible to add or remove Cores, which means the ViSARD
can be used as a single core or a multi-core processor, with
no theoretical limitation on the number of cores. Also it is
possible to use the ViSARD as a SISD (single instruction
single data), SIMD or MIMD (multiple instruction multiple
data) architecture. The SIMD version is called vector-
ViSARD and provides benefits especially when computing
hard real-time image processing algorithms.

It is also possible to reconfigure parts of the processor or
even an entire processors as parts of SIMD or MIMD
architectures during runtime. This can be interesting when
the application needs different algorithms that change over
time and have different constraints for the processing. Of
course the compiler needs to consider such a case and this
will be explained in detail in section VI.

According to the requirements derived from the
application, the soft-core is adjusted and specialized. After
this step, the soft-core gets the machine code that is needed
to run the application on it. The machine code has two
independent parts:

 Storage part
 Algorithm part

The storage part tells the soft-core processor exactly
where to store variables. The algorithm part is the logical
part that tells the soft-core processor how to manipulate
those variables, e.g. do any kind of operation on them. The
structure of the resulting machine code of the algorithm part
can be seen in the following figure:

Figure 4. Machine Code Structure

There is a general address width of currently 8 Bit but
adaption to specific problems is possible. The shared
address defines the memory slot in the shared memory, in
case a multi-core version of the ViSARD is used.

One of the novel approaches of the ViSARD architecture
is the possibility to parallel write shared and (core-)local
memory. With this approach it is possible to improve the
CPI in case a multi-core configuration is used.

Currently it is possible to generate ViSARD processors
with up to ten independent core modules but experiments
have shown that more than four cores result in a decrease of
overall processing speed because of the increasing multi-
core overhead. This result is only a reflection of the
algorithms tested by the authors and programs with less
scheduling dependencies may scale better on a higher core
count processor.

The destination address defines the local memory slot for
the current operation result to be saved. The operator
address and the modificator are defining the processing
element (PE) that computes the current operation with the

two variables defined as source address one and two.
The last 4 Bits are reserved for Flags that are

manipulating the data path. If the application needs more
space for storing variables, it can be adjusted. This would
result in a larger bit representation of the respective address
slots and can be handled by the compiler as well.

V. ASSEMBLY CODE DEPENDENCIES

The assembly language for the ViSARD architecture has
been designed to realize sequential hard real-time
algorithms, which can be verified for correctness without the
complexity of multi-core communication. While the
programmer does not need to take any form of parallelism
into account while implementing their program, a fair
amount of independent and thus parallelizable instructions
might exist in the resulting source code. Analyzing the
assembly code dependencies to parallelize the execution has
been done before in order to utilize microparallelism on the
ViSARD [11].

This approach of analyzing sequential source code can
also be expanded to support multi-core parallelism (while
maintaining micorparallelism usage on each core).
Offloading the complexity of multi-core parallelism into the
compiler not only has benefits but also presents a number of
difficulties. Such a compiler enables a given (sequential)
program to be re-compiled for an arbitrary number of cores
and thus providing easier scalability, especially in late
design phases. However, the quality of the result has to be
critically evaluated because the compiler has no information
about the high-level design of the algorithm, which could be
used by a programmer to parallelize streams of instructions.
In order to archive acceptable parallelism, sophisticated
scheduling techniques are needed that might need to be
adjusted according to a specific (soft- or hardware) design.

Traditionally directional graphs are used to analyze these
dependencies [11].

To get a better understanding, a short explanation of the
used assembly code style is necessary. Every command is
built up according to the following scheme:

TABLE I. MNEMONIC TABLE WITH EXAMPLES
Operand

modificator
DPRAM B or

IN-MUX
DPRAM A Result

Address
Mnemonic Op1 Op2 Op3

In 0 ? Var1
Out Var1 ? 0
Add Var1 Var2 Var3
Mul Var1 Var1 Var1
Sqrt Var1 ? Var2

As can be seen in Table 1, every command consists of 4

parts: a modification operand, telling to the ALU what ope-
rator is needed, the name of the first operand or the address
of the data input, an optional second operand and the
address of the variable where the result will be stored. The
"?" is a placeholder in case no second operand is needed.

When using a multi-core architecture it is possible to
load/store values from a shared DPRAM but it is not
possible for the developer to explicitly define the access to
the shared cache since the compiler determines if and when
a value needs to be stored/loaded from the shared cache.

One of the main problems that a compiler has to solve is

 61

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

to maximize the micro parallelism, increasing performance
by utilizing the pipelining possibilities as much as possible.
The example in Table 1 shows that every operation depends
on the "In" operation. So in this example it would not be
possible to schedule any operation before the "In" operation
is finished. This case can occur very often in large algo-
rithms. In this paper, we will provide a solution on
maximizing this micro parallelism by minimizing or even
eliminating this problem.

VI. THE OPTIMIZING ASSEMBLY COMPILER

The compiler discussed is based on the theoretical results
of [11] and elaborates on the object-oriented approach
especially with respect to variable referencing and handling
while adding support for a partially reconfigurable multi-
core architecture. In addition, this new approach advances
the fixed optimization approaches by replacing them with a
flexible optimization approach and aims to maximize the
pre-reserved memory space utilization.

A. Features and characteristics

The compiler is designed and implemented to address the
problems and needs discussed in earlier chapters. The
compiler offers a configuration file to set the available cores
and the available instructions on each individual core. The
performance of an operation can also be set on a per core
basis so one core may have a fast multiplication unit while
other cores have slower ones or do not support
multiplications at all. These information’s will be used when
compiling and optimizing a given program without the need
for hard-coded knowledge about the cores or instructions.
Thus any given program can be re-optimized to a new soft-
core configuration by changing the configuration file and
recompiling, not only enabling better parallelization of
hardware design and software development but also
supporting the partially reconfigurable design of the soft-
core, offering a wide range of different hardware
configurations to be available.

One of the main differences between the ViSARD and
general soft-core processors is the hard real-time capability.

In order to ensure this characteristic, some adjustments
were needed both in the assembly code and in the
architecture. The adjustments made to the assembly code
directly affects the compiler and will therefore be discussed:

The use of (conditional) jump instructions in the assembly
code is prohibited and thus not supported by the processor.
So also the compiler will not allow any conditional jump
instructions as inputs. However, this limitation is an
insignificant disadvantage in the addressed domain, since
the tasks realized in this domain are fixed at design time and
mechanisms are implemented, to replace the corresponding
jumps without showing a negative effect.

Because all algorithms are fixed at design time, it is
possible to unroll any loop that otherwise would have to be
defined by a (conditional) jump instruction in the assembly
code.

With this adjustment, it is possible to fully analyze the

resulting machine code and with it the clock accurate
behavior of the processor during design time and therefore
guarantee that the hard real-time constraints are met.

In order to prevent too long machine code, resulting by
unrolling every loop, it is possible to realize a hardware-
controlled loop. This hardware loops are controlled by the
hardware (the Set/Reset Module, see Fig.3). Basically it is
possible to simply not unroll the loop and give the processor
the information’s where (line of code) the loop starts, how
much clock cycles it takes and how many iterations of the
loop are needed. During run-time the hardware will then use
those information and realize a loop, the so called hardware
loop.

The compiler will ensure that those parts of the machine
code that will be used as hardware loops are encapsulated
from the rest of the machine code to prevent unpredictable
behaviour.

The optimization of the compiler will automatically
parallelize given source-code on multiple processor cores
and handle all synchronizations and data exchange between
the cores.

Using complex variable optimizations, enabled by the
object oriented approach of the compiler, code dependencies
can be resolved at the cost of a slight increase of memory
usage, efficiently shortening execution times on single- and
multi-core processors. This will not only decrease the size of
the programs binary but also reduce the time to load the
execution binary into a processor core after a runtime-
reconfiguration which is critical for reducing the time
needed for the reconfiguration process.

By using a user-configurable "penalty expression" for
determining the dynamic scheduling priorities, no hard-
coded scheduling algorithms are needed. All available
metrics for optimization can be weighted and combined by
the user as needed, in order to optimize the scheduling to a
given program and hardware design.

B. Implementation overview

Using an object-oriented programming language to
implement the compiler enables easy implementation of
traditionally complex tasks. By having each instruction
represented by an instance of an "Instruction-Object" the
logic for testing execute-ability can be handled by each
instruction internally, knowing its own dependencies and
requirements. This not only includes the variables needed as
inputs to the instruction but also the required execution unit
that has to be present on a core to be able to execute this
instruction.

Fig. 5 illustrates the execute-ability check of an
instruction. The instruction object will call the functions of
the variables to check their presence and the core to check
for the required execution unit in order to combine these
information and return the result to the scheduler.

 62

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

As can be seen, it will be checked if the specific core has
the needed execution unit for executing the current
instruction. If yes, it will check for all needed input
operands and for a free slot on the memory of that core. If
all conditions are true, it will schedule the instruction on that
core if the calculated penalty has the best result on this core.

With this realization, it is also possible to realize the
support for the partially reconfigurable multi-core
architecture. The compiler need the information at which
clock cycle the partial reconfiguration begins, how long
does it take to reconfigure the defined part of the soft-core
(e.g. the exact core of the multi-core architecture to be
reconfigured) and what execution units are exchanged
during the reconfiguration.

Because of the hard real-time constraint, the full
analyzability at design time is given and furthermore all
mentioned needed information’s are available to the
compiler. So the compiler can set the availability of all
execution units of the affected core(s) to false at this time
frame, resulting in no computation on this core during the
reconfiguration period.

C. Handling of variables

In a fixed variables-handling approach, each variable is
bound to a specific memory address for the entire runtime of
the program. This simple approach leads to various
problems in regards to efficiency and scalability. For
example a specific variable might be used only once or
twice within the program. This leads to a mostly unused
memory cell and results in an inefficient memory usage.
Another scenario is that multiple operations are referring to
the same variable. The emerging dependencies are

preventing the compiler from increasing the processing
speed by reducing pipelining possibilities.

The concept of representing instructions as instances of
an object can be applied to variables as well with each
variable being represented as an instance of a "Variable-
Object". Furthermore, this approach can be expanded to
each individual value of a variable being represented as an
individual instance of a "Variable-Value-Object". For this
approach, the Variables will become Factory-Objects, in
charge of producing the instances for the individual Values.

An example of the variable value handling can be seen in
Fig. 6. In this example, three variables are used in different
operations. The summation uses A and B, the division uses
the result of the summation, stored in B and the original
value of A, and the multiplication uses the original value of
B and C. As can be seen there is a problematic dependency
chain between those three operations as with the traditional
approach, the multiplication has to be started before the
summation overwrites the original value of variable B, and
the division relies on the result of the summation before it
can be started.

Generally
Executable
Instructions

Instruction X

Inp
u
t 2

Inp
u
t 1

O
utp

u
t

Execu
tio

n U
n
it

Is A
vailab

le
?

Is A
vailab

le
?

Core specific
Executable
Instructions

Is Executable
On Core

ViSARD Core
Object

H
as M

e
m
o
ry Slo

t?

H
as U

n
it?

Calculate
Penalty

...

...

Figure 5. Implementation Overview

Figure 6. Variable value example

This can lead to an inefficient pipeline usage as it forces
the compiler to find a slot where both operations ADD and
MUL can be started right after one another or to even force
the compiler to start the multiplication before the
summation. This would be inefficient since the summation
would be started later and therefore finish later, resulting in

 63

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

an increased waiting time for the division to be started and
increase the overall computation time of the given
algorithm.

With this adaptable approach, it is possible to simply
store the new value of B in another memory slot (in this
example slot 0x03). Now both operations (ADD and MUL)
are completely independent of each other, resulting in the
freedom of scheduling the operations to whatever time-slot
fits best for maximizing the pipeline utilization and
minimizing the overall computation time. This approach
removes pseudo data-dependencies like write after read and
writes after write dependencies, and realizes a register
renaming approach. [24]

Every time an operation uses a variable as an input, the
resulting read access will be registered in the value-object.
Likewise, the write accesses are registered in every value-
object. This way each value keeps track of when it was
produced (written) and consumed (read). The information
includes which core produced the value and if it has been
written to the shared cache or synchronized to another core's
local cache.

While this adds a layer of complexity in the compiler's
handling of the variables, it will provide more accurate
handling of the dependencies of the instructions and
improve parallelism with the instructions referencing a
specific instance of the value of a variable.

With each value of each variable being individually
tracked and registering when this value is being produced
and when it is being consumed for the last time, it is
possible to use an individual cache-address for each of these
values.

As a result, the different values of a variable are not tied
to the same memory address; it is even possible to overwrite
old variables with other variables in order to maximize the
memory utilization. This leads to two possible benefits,
depending on the nature of the input of the compiler.

If a programmer declares a large number of variables with
each variable being used only a few times in local contexts,
the different variables may be moved to the same physical
cache address to be able to keep the cache size small. The
compiler will ensure the usage of the cache cells will not be
overlapping and variable integrity is kept.

Tracking individual values of the variable across different
cache cells (and different cores) is important for multi-core
processors to be able to minimize synchronization between
the cores but can also be beneficial for a single-core
processor. By allowing for multiple values of the same
variable to be stored in different cache cells and thus being
available at the same time, parallelization of programs with
highly dependent instructions can be greatly improved.
Having different values of the same variable on different
cache cells will inevitably increase the required number of
cache cells. This is not a disadvantage since the soft-core
itself reserves a minimum number of FPGA resources for
storing variables and therefore it only leads to a better
utilization of anyway allocated FPGA resources.

D. Scheduling by using configurable penalties

The result of the automatic parallelization will greatly
depend on the scheduling-algorithm used, as it will

determine the time and the core used to execute every
individual instruction. For multi-core processors the limited
communication resources between the cores have to be
taken into account when scheduling an instruction. In the
special case of asymmetric multi-cores, another layer of
complexity is added, as not every core is physically able to
execute every instruction.

The approach of [11] so far was to statically measure the
relation between the time and distance (time distance ratio
TDR) from an operation to its successor operations as
shortly described below. Therefore, the operations were
internally described as nodes of a directed dependency
graph where the TDR of every operation i was computed as
follows:

 (1) ()
k

i

level

i
j level

TDR averageDelay delay


  j i

where levelk represents the level of the successor node of

i. The averageDelayj matches the equation:

0

cmdNumber

m
m

j
i

levelDelay
averageDelay

nodesPerLevel



 (2)

where

| ,

0 | .

i i

m

i

delay m level
levelDelay

m level










 (3)

where nodesPerLeveli represents the number of nodes that
leveli have and cmdNumber is the total number of all nodes
in the graph.

As can be seen this approach is very complex in
understanding and not very flexible, as it cannot be
customized for a specific problem with special
characteristics.

To be able to provide the best-suited scheduling algorithm
for each algorithm and hardware-architecture combination, a
combination of multiple metrics is now used for scheduling.
In contrast to a fixed scheduling algorithm of the previous
version of the compiler presented in [11], the combination
and weight of the individual metrics can be optimized for a
specific problem. The benefit of using an “object-oriented”-
like approach for the compiler is key to implementing this
functionality. The user-defined scheduling penalty-expres-
sion can be parsed and stored in a penalty calculation object
at the beginning of the compilation which is then passed
down to the instructions by property injection.

This way each instruction can calculate its own penalty
for execution on a given core, keeping information local to
the objects they belong to. These metrics include simple
expressions such as the execution time of an instruction,
which can be used for example for an implementation of an
SJF (Shortest Job First) or LJF (Longest Job First)
Algorithm.

This is done by either putting a positive or a negative
penalty on the execution time of the instruction.

Another example is illustrated in Fig. 7. This expression
would result in an optimization algorithm that prioritizes all

 64

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

instructions with results that are required often, meaning that
instructions that are used very frequently in the given
assembly code would be scheduled as soon as possible.

Figure 7. Example Penalty PROmax

The availability of the input variable values can also be
used as a metric for scheduling. These values can either be
available in the local cache of a core, available in the shared
cache or available on another core's local cache. The latter
case is the least preferable as it would require not only a
read but also a write access to the shared cache, potentially
blocking the communication resources for other cores.

Another example for a scheduling-metric is the amount of
instructions that depend on an instruction. This enables the
priorization of calculation of values that are required by a
large number of upcoming operations.

The compiler will compute a penalty for every
theoretically startable assembly instruction at every clock
cycle. The scheduling now depends completely on those
metrics and the penalty computed with it. This penalty
calculation replaces the previous complex and not adaptable
optimization algorithms.

In the following, all usable expressions are explained. The
values of the expressions define their weighting in the
penalty, e.g. zero means that the expression is ignored:

 Instruction.Delay: (Value 0..n) set importance of
computation time of the instructions.

 Operand.Read: (1..n) set importance of the number
of instructions that needs this specific operand as
input. Can be adjusted for both input operands
separately.

 Operand3.ReadOperationsTotal: (0..n) set
importance of the number of following instructions,
that need the result of current instruction as input

 Operand.Is.Variable: (0..1) checks if Operand is a
variable (also adjustable for both operands
separately) .

 Operand.Is.Constant: (0..1) checks if Operand is a
constant (also adjustable for both operands
separately) .

 Operand.Bypass: (0..1) checks if input of the
current instruction is available in the bypass (also
adjustable for both operands separately).

 Operand.Local: (0..1) checks if input of the current
instruction is available on the local core (also
adjustable for both operands separately). Only
useable for multi-core architectures.

 Operand.Shared: (0..1) checks if input of the
current instruction is available on the shared
memory (also adjustable for both operands
separately). Only useable for multi-core
architectures.

 Operand.Requestable: (0..1) checks if input of the
current instruction is available only on other cores

(also adjustable for both operands separately). Only
useable for multi-core architectures.

Overall, there are 16 penalty expressions that the
programmer can choose from, combine them in every
thinkable relation to each other, and weight each expression
exactly with the value best suited for the special problem. In
addition, the authors offer pre-defined penalty sets as
example sets to use without the need for every programmer
to work into every possible penalty expression.

However, if needed, the programmer can create combina-
tions of any length of all possible penalty expressions, cus-
tomizing any thinkable optimization algorithm for any given
scheduling problem. The ability to have scheduling that is
customizable by the user allows for a great flexibility in
optimization targets and eliminates possible negative effects
of fixed optimization approaches for specific problems with
special characteristics. By weighting the available metrics in
any desired combination and being able to (re-) configure
the soft-core to change its feature and performance set, the
development of the system remains flexible even after the
source code for its algorithm has been written and verified.

VII. EXPERIMENTAL RESULTS

To test the new features and show the difference in
quality compared to the previous published optimization
approaches, multiple experiments were executed. For once,
a benchmarking tool generated thousands of assembly codes
with different characteristics, e.g. with a set level of
dependence in between the lines of code with rising code
lengths from 1000 up to 10.000 lines of code, in steps of
250. To get meaningful results, the test characteristics went
from zero data dependency up to data dependencies of 100
(in steps of 10), with 100 test runs for each dependency
degree and each different code length, resulting in a total
amount of 40,700 automatically tested (and pseudo random
generated) assembly codes.

However, there was also various real world data
processing algorithms tested and for this paper we picked
one to explain in more detail and another four to show as a
short summary. The chosen real world algorithm that will be
explained in detail is a data processing algorithm that
analyzes huge amount of image data streams in real-time.
Those real world experiments are important as artificial
testing programs can be created to meet either of the
extremes from perfect pipelining improvements to no
benefits from the newly introduced optimizations.

The use of a pre-existing algorithm that is being used in
real applications will produce results that will set expec-
tations for more real world usage.

It should be mentioned that this compiler is designed to
solve large and complex problems. For very short algo-
rithms it would be possible to just brute-force an optimal
solution and therefore it would be no need for a compiler
with such complex optimization approaches as presented.

The one real world problem presented here in detail is the
"white light interferometry" (WLI) algorithm. WLI is a
method for obtaining 3D-topology information’s by cap-
turing multiple images of the same surface while increasing
the distance to the surface. This creates an image stack from
which 3D-information will be computed.

As can be seen in Fig. 8, the algorithm shows a tilted

 65

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

sample surface with correlograms emerging in z-direction
for three selected surface points. According to the elevation
difference of the surface points also the corresponding
correlograms will manifest in different z intervals for each
surface point.

Figure 8. WLI Correlograms in the Captured Image Stack, Source: [25]

The amount of data streams that must be handled are
images of 1024x1024 pixels with a 8-bit gray scale per
image, with 500 fps, resulting in a data stream of nearly 525
MiB per second and a total image stack of up to 70,000
images for each calculation.

As the image capturing processes, fixed intervals with
maximum changes of intensity will occur. With this, the
topology of the surface can be derived by computing the
center of the correlogram in relation to the image index. The
relevant information cannot be computed from one pixel
frame, but needs a pixel volume. [25]

The post processing of the WLI problem will determine
the surface topology from the pixel stacks and produce a
high-resolution surface map. The task is to realize an
assembly program that solves the complete post-processing
under hard real-time conditions. The ViSARD is able to
solve this problem, if the converted assembly code provides
enough parallelism.

In order to test the machine code that was produced by the
compiler from each real world experiment, we used an
experimental setup. Here the Xilinx Zynq 7020 (XC7Z020)
[26] FPGA was used via a hardware-in-the-loop setup. On
this FPGA we realized a single core ViSARD soft-core
processor that runs all the machine code with pre-defined
input values and returns the results to the computer. There,
the results were checked for any computation errors to
ensure that the compiler produced correct working machine
code.

As mentioned in section IV B. the compiler always
computes two output files: the file with the resulting
schedule of the algorithm and a separate file with the storage
instructions for the variables. The storage file will be used to
compare the achieved memory utilization with a (for this
test) fixed reserved memory space with a (current)
maximum of 255 variables. The scheduling file will be used
to compare the actual computation time the soft-core would
need for the execution of every compiled assembly code.

The experiments have shown that 255 variables are
enough for even very complex algorithms like WLI.

Because of reasons of clarity, we will only show the
results of the best optimization algorithm of the previous
compiler as base for comparison with the adaptable

approaches.

TABLE II. AVERAGED RESULTS

Execution

Time
Memory

Utilization
Processor
Utilization

Compiler from [21] 24.18 % 22.75 % 23.74 %
Previous Version of the
Compiler with TDR [11]

42.3 % 22.75 % 13.57 %

No Optimization 100 % 22.75 % 5.74 %
Pipeline Optimization

Only
32.82 % 22.75 % 17.49 %

Pipeline & Variable
Optimization

8.91 % 60.39 % 64.43 %

The comparison value of the execution time is always the

result of the compiler with every optimization disabled set to
100%. The memory utilization is the difference between the
actual needed memory and the theoretical available memory
when reserving enough space for 255 variables. As can be
seen, with only the pipeline optimization with the help of
adjustable penalty-algorithms, it was already possible to
reduce the needed execution time by 9.48%, compared to
the previous version of the compiler. Still, the compiler from
[21] achieved a better result because of the used bypassing
of operation results that enables a faster access to the new
values of the variables. However, with the help of the
adaptable approach, the variable optimization approach and
the penalty optimization, it was possible to reduce the
overall execution time to 8.91% and achieve a 15.27% better
result, compared to the compiler from [21] and a 33.39%
better result, compared to the old version of the compiler.
As can be seen, the memory utilization of this optimization
approach is 60.39%, which means nearly 40% of the
memory is still unused, but the overall utilization of
reserved memory is far better than any other result. All other
compiler and optimization approaches have the assembly
code specific pre-defined data dependencies that prevent a
better reduction of the execution time. Because of this, all
the memory utilization values are 22.75%; this is the
averaged number of variables that the assembly codes used.

Figure 9. Averaged Results of the new Compiler

Fig. 9 shows the experiment results from the new

compiler presented in this paper. As the algorithms used for
testing are generated in a memory-efficient way, the
memory optimization did not find options to reduce memory
utilization by combining multiple variables in a cache cell
while on the other hand more cache cells are utilized for

 66

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

resolving code dependencies. Using the newly presented
memory and pipeline optimizations execution time could be
cut by 91.09%, resulting in a processor utilization of
64.43%.

That means only 35.57% of the processor clock cycles are
not used for starting new operations and only this time is
spent waiting for the execution units' latencies.

To be able to evaluate the quality of the realized compiler
even more, more real world problems were implemented
and experiments were carried out. A short summary of some
of the further implemented algorithms as well as the
experimental results will be given now:
 “Ellipse” is an algorithm from our research projects

that performs ellipse-shaped regression and
computational correction with signals from
incremental sensors (see [27]). It includes regression
using the ‘recursive least squares’ method, parameter
calculation, and signal correction.

 “FIR64” is an eight order finite impulse response
filter with 64 coefficients (see [28]).

 “Kalman” is a modified Kalman filter with four
inputs for use as a state estimator in a non-trivial
closed-loop control algorithm. The time consuming
matrix operations have been optimized with respect
to weakly occupied matrices (e.g. triangular
matrices), see [29].

 “6-Axes” is a closed-loop control algorithm for three-
dimensional motion control in a mechanical system,
featuring three translative axes and three rotational
axes. This algorithm includes six PID controllers,
three Kalman filters as mentioned above (state
estimators for translative axes), and further
calculations (see [30], [31]).

For those four experiments, only the results of the current
version of the compiler will be given, because the results do
not vary from the previous experiments. Those four
algorithms were created using the “model-based assembly
code generator” (see Fig. 1).

TABLE III. RESULTS (ELLIPSE, FIR64, KALMAN, 6-AXES)

Execution

Time
Memory

Utilization
Processor
Utilization

Ellipse (no
Optimization)

100 % 29.80 % 9.02 %

Ellipse (Pipeline only) 39.02 % 29.80 % 23.11 %
Ellipse (Pipeline &
Variable)

31.06 % 37.65 % 29.03 %

FIR64 (no Optimization) 100 % 28.63 % 17.48 %
FIR64 (Pipeline only) 71.33 % 28.63 % 25.51 %
FIR64 (Pipeline &
Variable)

35.43 % 28.24 % 49.34 %

Kalman (no
Optimization)

100 % 29.80 % 7.29 %

Kalman (Pipeline only) 20.42 % 29.80 % 35.71 %
Kalman (Pipeline &
Variable)

12.22 % 26.63 % 59.65 %

6-Axes (no
Optimization)

100 % 43.53 % 9.09 %

6-Axes (Pipeline only) 21.85 % 43.53 % 41.61 %
6-Axes (Pipeline &
Variable)

10.12 % 43.53 % 89.81 %

As can be seen in Table III., the experiments confirm the

previous results: the overall processor utilization can be
greatly increased by using the penalty based optimization

approach presented in this paper. An additional
improvement can be achieved when activating the variable
(memory) optimization. For example the FIR-filter, with
both optimizations enabled, a processor utilization gain from
7.29 % over 25.51 % (for pipeline optimization only) up to
49.34 % can be achieved.

In contrasts to the previous results, the overall memory
utilization does not necessary increase when enabling the
memory optimization algorithm. An example for this is the
Kalman filter. Here, the total memory utilization even
decreases from 29.80 % to 26.63 % with simultaneous
increasing in processor utilization from 35.71 % to 59.65 %
as the variable optimization is enabled. This is because this
optimization will re-use memory slots from variables as
soon as they won’t be read (and therefore needed) any more
by any (following) assembly instruction in addition to have
(potentially) multiple instances of one variable at the same
time. So if many variables are rarely used it is even possible
to reduce the memory consumption while maximizing the
processor utilization.

VIII. CONCLUSION AND FUTURE WORK

As presented in this paper, it was possible to develop a
new optimizing assembly code compiler that offers a nearly
unlimited amount of scheduling optimization algorithms,
customizable to every specific field of application, with the
help of 16 arbitrarily combinable and factorizable penalty
expressions. In addition, a new variable to memory cell
relationship was introduced. The assumption that a variable
is always present on the same cache cell is no longer
appropriate, as the availability in several cores has to be
taken into account. The adaptable approach allows the
compiler automatically to unite multiple variables to one
memory slot, or spit a variable to multiple memory slots,
dependent on the current data dependency situation. With
this approach, it is possible to maximize the processor
utilization of the soft-core processor and therefore to
minimize the needed execution time of any given problem.
Furthermore, the compiler is able to compile any assembly
code for a theoretical infinite number of cores in a multi-
core application scenario. Various tests have shown the
quality improvement of the generated machine code, at it is
possible to reduce the needed execution time by over 90%,
compared to a not optimized machine code.

In the future, it is planned to expand both the compiler
and the soft-core processor with a bypassing functionality,
allowing the access to any computation result without the
current delay of saving it into a memory slot.

Another possible enhancement would be way to
automatically test any given assembly code with different
combinations of penalty expressions and automatically
compare the scheduling results to find the best-suited
optimization algorithm for any given problem.

REFERENCES
[1] O. Esko, P. Jaaskelainen, P. Huerta, S. Carlos, J. Takala, J.I. Martinez,

“Customized exposed datapath soft-core design flow with compiler
support”, 2010 International Conference on Field Programmable
Logic and Applications (FPL), pp. 217-222, doi:10.1109/FPL.2010.
51.

 67

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 3, 2019

 68

[2] Altera Corporation, “Nios II Processor Overview”, https://www.
altera.com/products/processors/overview.html, accessed: Jan 22,
2018.

[3] Andreas Erik Hindborg, Pascal Schleuniger, Nicklas Bo Jense,
Maxwell Walter, Laust Brock-Nannestad, Lars Bonnichsen, Christian
W. Probst, Sven Karlsson, “Automatic generation of application
specific FPGA multicore accelerators”, Signals Systems and
Computers 2014 48th Asilomar Conference on, pp. 1440-1444, 2014,
doi:10.1109/ACSSC.2014.7094700.

[4] Danko Ivošević, Vlado Sruk, “Unified flow of custom processor
design and FPGA implementation”, EUROCON 2013 IEEE, pp.
1721-1727, 2013, doi:10.1109/EUROCON.2013.6625209.

[5] Xilinx Inc., “MicroBlaze Soft Processor Core”, https://www.xilinx.
com/products/design-tools/microblaze.html, accessed: Jan 22, 2018.

[6] Gaisler Research, “LEON3 Processor”, http://www.gaisler.com/
index.php/ products/processors/leon3, accessed: Jan 22, 2018.

[7] J.G. Tong, I.D. Anderson, M.A. Khalid, “Soft-core processors for
embedded systems”, International Conference on Microelectronics,
2006, ICM'06, pp. 170-173, doi:10.1109/ICM.2006.373294.

[8] Andreas Erik Hindborg, Pascal Schleuniger, Nicklas Bo Jensen, Sven
Karlsson, “Hardware realization of an FPGA processor — Operating
system call offload and experiences”, Design and Architectures for
Signal and Image Processing (DASIP) 2014 Conference on, pp. 1-8,
2014, doi:10.1109/DASIP.2014.7115604 .

[9] Oliver Stecklina, Michael Methfessel, “A Tiny Scale VLIW Processor
for Real-Time Constrained Embedded Control Tasks”, Digital System
Design (DSD) 2014 17th Euromicro Conference on, pp. 559-566,
2014, doi:10.1109/DSD.2014.31.

[10] M. Kirchhoff, W. Fengler, “Realization of an embedded hard realtime
softcore processor”, 2014 7th GI Workshop on Autonomous Systems,
pp. 33-42.

[11] M. Kirchhoff, N. Kaptsova, D. Streitpferdt, W. Fengler, “Optimizing
compiler for a specialized real-time floating point softcore processor”,
2017 8th Annual Conference of Industrial Automation and Electro-
mechanical Engineering, IEMECON, pp. 181-188, doi:10.1109/
IEMECON.2017.8079585.

[12] M. Levy, T.M. Conte, “Embedded multicore processors and systems”,
IEEE micro, 29(3), pp. 7-9, doi:10.1109/MM.2009.41.

[13] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, S.W.
Liao, E. Bugnion, M.S. Lam, “Maximizing multiprocessor perfor-
mance with the SUIF compiler”, Computer, 29(12), pp. 84-89, 1996,
doi:10.1109/2.546613.

[14] Jiayin Li, Meikang Qiu, Jianwei Niu, Meiqin Liu, Bin Wang, Jingtong
Hu, “Impacts of Inaccurate Information on Resource Allocation for
Multi-Core Embedded Systems”, Computer and Information
Technology (CIT) 2010 IEEE 10th International Conference on, pp.
2692-2697, 2010, doi:10.1109/CIT.2010.452.

[15] Roman Atachiants, Gavin Doherty, David Gregg, “Parallel
Performance Problems on Shared-Memory Multicore Systems:
Taxonomy and Observation”, Software Engineering IEEE
Transactions on, vol. 42, no. 8, pp. 764-785, 2016,
doi:10.1109/TSE.2016.2519346.

[16] Sungju Lee, Eunji Lee, Yongwha Chung, Hyeonjoong Cho, Byoungki
Min, “Energy-efficient protection of video surveillance data using
multicore-based video sensors”, Digital Content Multimedia
Technology and its Applications (IDC) 2010 6th International
Conference on, pp. 327-330, 2010.

[17] E. Sprangle, D. Carmean, “Increasing processor performance by im-
plementing deeper pipelines”, ACM SIGARCH Computer Architec-
ture News, Vol. 30, No. 2, pp. 25-34, IEEE Computer Society,
doi:10.1109/ISCA.2002.1003559.

[18] T. Hagras, J. Janeček. “A high performance, low complexity
algorithm for compile-time task scheduling in heterogeneous
systems”, Parallel Computing, 31(7), pp. 653-670, 2005,
doi:10.1109/IPDPS.2004.1303056.

[19] Y. Yan, R. Zheng, “Code Generating Method, Compiler, Scheduling
Method, Scheduling Apparatus and Scheduling System”, U.S. Patent
Application No. 15,058,610, 2016.

[20] G. Diamos, M Mehrara, “Compiler-controlled region scheduling for
SIMD execution of threads”, U.S. Patent No. 9,424,038. Washington,
DC: U.S. Patent and Trademark Office, 2016.

[21] B. Däne, A. Pacholik, S. Zschäck, W. Fengler, C. Ament, T. Braune,
“Designing a Control Application by Using a Specialized Multi-Core
Soft Microprocessor”, IFAC Proceedings Volumes, 46(28), pp. 221-
226, 2013, doi:10.3182/20130925-3-CZ-3023.00034.

[22] S. Novack, A. Nicolau, “Mutation scheduling: A unified approach to
compiling for fine-grain parallelism”, International Workshop on
Languages and Compilers for Parallel Computing, pp. 16-30, Springer
Verlag, Berlin, Heidelberg, 1994.

[23] Z. Yu, K. You, R. Xiao, H. Quan, P. Ou, Y. Ying, X. Zeng, “An 800
MHz 320 mW 16-core processor with message-passing and shared-
memory inter-core communication mechanisms”, 2012 IEEE
International Solid-State Circuits Conference, ISSCC, pp. 64-66,
doi:10.1109/ISSCC.2012.6176931.

[24] S. Dezso, “The design space of register renaming rechniques” 2000
IEEE micro 20 (5), pp. 70-83, doi:10.1109/40.877952.

[25] M. Müller, T. Machleidt, W. Fengler, “SoC Design for Complex
Standalone Optical Measurement Devices”, 2014 7th GI Workshop
on Autonomous Systems, pp. 66-75.

[26] Xilinx Inc., “Zynq-7000 SoC Data Sheet: Overview. DS190 v1.11.1”,
https://www.xilinx.com/support/documentation/data_sheets/ds190-
Zynq-7000-Overview.pdf, accessed: July 22 2019.

[27] T. Hausotte, B. Percle, U. Gerhardt, D. Dontsov, E. Manske, G. Jäger,
“Interference signal demodulation for nanopositioning and
nanomeasuring machines”, Measurement Science and Technology,
23(7):074004, 2012, doi:10.1088/0957-0233/23/7/074004.

[28] B. Shenoi, “Introduction to digital signal processing and filter
design”, John Wiley & Sons, 2005.

[29] A. Pacholik, J. Klöckner, M.Müller, I. Gushchina, W.Fengler,
“LiSARD: LabVIEW integrated softcore architecture for
reconfigurable devices”, 2011 International Conference on
Reconfigurable Computing and FPGAs (ReConFig '11), pp. 442-447,
Cancun, Mexico, 2011, IEEE Computer Society CPS,
doi:10.1109/ReConFig.2011.56.

[30] A. Amthor, S. Zschäck, C. Ament, “Position control on nanometer
scale based on an adaptive friction compensation scheme”, 2008 34th
Annual Conference of IEEE Industrial Electronics, pp. 2568-2573,
IEEE, 2008, doi:10.1109/IECON.2008.4758361.

[31] S. Zschäck, J. Klöckner, I. Gushchina, A. Amthor, W.Fengler,
“Control of nanopositioning and nanomeasuring machines with a
modular FPGA based data processing system”, Mechatronics,
23(3):257–263, 2013, doi:10.1016/j.mechatronics.2012.12.003.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 14:02:31 (UTC) by 3.235.180.245. Redistribution subject to AECE license or copyright.]

