
Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

Automatic Detection and Bypassing of Anti-
Debugging Techniques for Microsoft Windows

Environments

Juhyun PARK1, Yun-Hwan JANG2, Soohwa HONG1, Yongsu PARK1
1Department of Computer Science, Hanyang University, S. Korea

2Department of Information Security, Hanyang University, S. Korea
*Corresponding author Yongsu PARK: yongsu@hanyang.ac.kr

1Abstract—In spite of recent remarkable advances in binary

code analysis, adversaries are still using diverse anti-reversing
techniques for obfuscating code and making analysis difficult.
Unlike most of the previous work that relies on debugger-
plugins for neutralizing anti-debugging techniques, we focus on
the Pin, which is one of the most widely used DBI (Dynamic
Binary Instrumentation) tools in 80x86 environments. In this
paper, we present an automatic anti-debugging
detection/bypassing scheme using the Pin. In order to evaluate
the effectiveness of our algorithm, we conducted experiments
on 17 most widely used (commercial) protectors, which results
in bypassing all anti-debugging techniques automatically.
Particularly, our experiment includes Safengine, which is one
of the most complex commercial protectors and, to the best of
our knowledge, it has not been successfully analyzed by
academic researchers up to now. Also, experimental results
show that the proposed scheme performs better than the most
recent work, Apate.

Index Terms—computer hacking, computer security,
debugging, reverse engineering, software protection.

I. INTRODUCTION

While a considerable amount of research efforts has been
done on static and dynamic analysis for malicious code,
anti-reverse engineering technology is still being developed
to protect malware [1-3].

The protector is a (commercial) program that uses various
anti-reverse engineering techniques such as anti-debugging,
code encryption, code obfuscation, code virtualization, etc.
Themida [4], VMProtect [5], and Safengine [6] are some
examples of widely used commercial protectors for
Microsoft Windows environments.

If malicious code is packed using the protector, malware
analysts will have trouble in analyzing, which causes
spending a significant amount of time, i.e., analysis/response
can be slow down. E.g., the latest commercial protectors are
still considered to be difficult to analyze: Themida’s [4]
latest code virtualization does not seem to have an easy way
to analyze it yet, and to the best of our knowledge, the latest
version of Safengine [6] has not been analyzed.

To neutralize anti-debugging techniques, most of previous
works have been developed as plug-ins of debuggers [7-9].
Unlike these, we focus on the Pin [10], which is one of the
most widely used DBI (Dynamic Binary Instrumentation)
tool for 80x86 environment. DBI is the binary code analysis

tool for dynamically analyzing the behavior of a target
program at runtime. We chose the Pin because it emulates
the binary code with high accuracy, and we found out that
many anti-debugging techniques are automatically
bypassed.

This research was supported by Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2017R1D1A1B03029550).

In this paper, we present a new strong anti-anti-debugging
scheme using the Pin for 80x86 Windows environments.
Our algorithm first finds suspicious code chunk. Then, it
tries to match specific anti-debugging technique in the
category (API-based, instruction-based, and others). If there
is a match, it conducts bypassing work. After the bypassing
work is done, it continues execution and analysis until the
next anti-debugging code chunk is met.

To evaluate feasibility of our algorithm, we conducted
experiments on (commercial) representative 17 protectors,
which are considered as the most complex and hard to
analyze. Experimental results show that our scheme
successfully bypasses all anti-debugging routines in them.
The tested protectors include Safengine [6], which is, to the
best of our knowledge, one of the most complex protectors
and has not been successfully analyzed. Also, experimental
results show that our scheme outperforms the most recent
work, Apate [9].

This paper is organized as follows. Section II explains the
related work. In Section III, we describe our scheme to find
the anti-debugging techniques using the Pin in the x86
Microsoft Windows environment. Section IV explains the
experimental results and Section V concludes the paper.

II. RELATED WORK

For malware analysis and binary code analysis, a
significantly large amount of research work has been done
up to now [11-17]. However, topics relevant to advanced
anti-reverse engineering techniques have not drawn strong
interest from academic researchers (except for some specific
topics such as code virtualization [8-9]). Anti-reverse
engineering techniques can roughly be classified as anti-
debugging, code encryption/self-modification, code
obfuscation, and code virtualization [18-21]. For lack of
space, we briefly explain recent research work on analysis
of anti-debugging techniques.

Xu Chen et al.’s work [18] deals with anti-debugging and
anti-reverse engineering techniques which are commonly
used in malicious code. They first classified and
characterized various anti-reversing techniques. Then, they
described how to detect and avoid them. Also, they devised

 23
1582-7445 © 2019 AECE

Digital Object Identifier 10.4316/AECE.2019.02003

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

how to detect remote host VMs (virtual machines) using
clock skew behaviors. They proposed the new scheme to
protect the real machines by mimicking the
monitoring/debugging systems such that malware misjudges
that it is being monitored/debugged and terminates
execution.

Adam J. Smith et al. developed REDIR [22], a tool for
statically analyzing anti-debugging techniques in the binary
code. In order to analyze the obfuscated code, binary code is
first transformed into the intermediate language using BAP
[23] and then optimized for easy analysis. Then, the
suspicious code chunk is found by the predefined rule. If
there is a pattern match, it dynamically analyzes the code
chunk under the debugging environment in the BAP. If the
execution result is different from the actual execution result,
they judge that the corresponding chunk is the anti-
debugging routine.

In [24], Ping Chen et al. investigated how much anti-
debugging and anti-VM techniques are used in both general
malware and targeted malware (i.e., it is designed for the
specific target system). As a result, targeted malware does
not use anti-debugging/anti-VM techniques more than
general malicious code, unexpectedly. Moreover, they have
observed that there is a decrease in the number of used anti-
VM techniques over time in the targeted malware.

K. Yoshizaki et al. [25] focus on the property that
malware uses some specific API functions for anti-
debugging. They proposed the automatic scheme to detect
anti-debugging techniques by hooking those API calls. After
hooking the anti-debugging-related API calls, it changes the
return values of API functions, which plays two roles: first,
detecting the malicious code, and second, cheating the target
malware such that malware execution is not considered to be
in the debugging environments. The proposed scheme has
two states. In the non-analysis state, malicious code detects
the debugging/monitoring status and aborts execution. In the
analysis state, malware conducts malicious actions because
it cannot detect the debugging status. By comparing these
two patterns of behaviors, they proposed the scheme to
detect malware automatically.

For detecting/evading anti-debugging techniques, diverse
tools have been developed, the most of which are
implemented as plug-ins of debuggers. Representative tools
include OllyAdvanced [8] and strongOD [7]. Recently, Hao
Shi and Jelena Mirkovic proposed Apate [9], which detects
and defeats various anti-debugging techniques for Microsoft
Windows environments. Apate was implemented as a plug-
in for 80x86 WinDbg 6.3. In their implementation, Apate
can handle 79 anti-debugging-related attack vectors. They
showed that Apate outperforms other debuggers (IDA Pro,
OllyDbg, and Immunity Debuggers) for anti-debugging
detection. Moreover, in their experiments Apate found all
anti-debugging techniques for 4 complex malware samples
and 10 (commercial) protectors. In Section IV, we will show
experimental results: even though Apate is much better than
other DBI/debuggers for detecting anti-debugging, our
scheme outperforms Apate, especially for complex
commercial protectors.

III. AN AUTOMATIC ANTI-DEBUGGING

DETECTION/BYPASSING SCHEME USING THE PIN

First, in Section III-A, we explain major anti-debugging
techniques which are widely used in Microsoft Windows
environments. Then, in Section III-B we describe a new
automatic scheme to evade anti-debugging techniques in
80x86 environments. This scheme relies on the Pin [10],
which is one of the most widely used DBI tools for 80x86
environments.

Dynamic Binary Instrumentation (DBI) is a binary code
analysis tool for dynamically analyzing the behavior of a
target program at runtime. DBI emulates and analyzes the
target program as follows. First, the plug-in code for
dynamic analysis should be made in advance. By using this,
DBI interleavingly executes the target code chunk and the
plug-in code chunk such that various information such as
memory, registry, and API (Application Program Interface)-
call information can be analyzed. DBI was primarily
designed for performance analysis such as finding
slow/bottleneck points in less-optimized code or for finding
bugs in erroneous code. Also, DBI can be used for analyzing
malware or other diverse applications including [26-29].

A. Analysis of anti-debugging techniques for Microsoft
Windows environments.

Generally, each DBI can bypass different anti-debugging
techniques. Unlike other debuggers and DBI tools, the Pin
can bypass many anti-debugging functionalities without
using any plug-in tools. However, execution in the Pin is not
exactly same as the real execution and some anti-debugging
techniques can detect this difference. Hence, it is necessary
to investigate which techniques can detect the Pin or not.
We first manually implemented most of anti-debugging
techniques [19-21] for Microsoft Windows environments
and then conducted experiments with the Pin for checking
whether each of them can be evaded by the Pin or not.

TABLE I. ANTI-DEBUGGING TECHNIQUES FOR DETECTING THE PIN
Classif
ication

Anti-debugging technique
Pin

Detected

IsDebuggerPresent X

CheckRemoteDebuggerPresent X

OutputDebugString X

FindWindow X

QueryInformationProcess
(ProcessDebugPort)

X

SetInformationThreadDebuggerDetaching X

OllyDbg OutputDebugString() Format String X

SeDebugPrivilege OpenProcess X

QueryInformationProcess
(ProcessDebugFlags)

O

QueryInformationProcess
(DebugObjectHandle)

X

QueryPerformanceCounter O

GetTickCount X

timeGetTime X

CloseHandle X

Hardware Breakpoints X

API-
based

Control-C Vectored Exception X

Instruct RDTSC O

 24

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

 25

INT 3 Exception (0XCC) X

INT 2D (Kernel Debugger Interrupt) O

ICE Breakpoint X

Single Step Detection O

Unhandled Exception Filter X

VMware STR Register Detection X

VMware LDT Register Detection X

Prefix Handling O

CMPXCHG8B and LOCK X

ion-
based

VMware Magic Port X

Memory Breakpoint O
Others

Self-Modification O

Table I shows the experimental results on the Pin for each

anti-debugging technique in Microsoft Windows
environments. We classify 29 techniques as three categories:
the anti-debugging techniques that are performed by calling
the API are classified as “API-based,” and the technique
performed by a specific instruction are classified as
“Instruction-based.” Techniques that are not in these
categories are classified as “Others.” As shown in Table I,
most of the techniques (except 8) cannot detect the Pin
correctly. We briefly describe the 8 techniques that can
detect the Pin as follows.

• QueryInformationProcess (a.k.a. ProcessDebugFlags):
This is one of the ntdll.dll APIs, which has five arguments.
The second argument represents the data type of the target
program. Suppose that a constant value, 0x1f, is used as this
argument and then this API is called. After the return, we
check the memory cell pointed by the third argument. if 0 is
stored, it is judged to be debugged.

• QueryPerformanceCounter: This is the time-related
API of kernel32.dll. This API returns the current data value
of the hardware performance counter to the specified
memory. Because DBI execution is slower than the real
execution, we can judge that the program is being analyzed
when the difference between the two data values exceeds a
predetermined threshold value after this API is called twice.

• RDTSC: This is the instruction that returns the
processor timestamp value, which records the number of
elapsed clock cycles from the last reset time. Due to the
slow execution property of DBI, the anti-debugging
technique judges that the program is being debugged when
the difference between two timestamp values exceeds a
certain threshold value after executing this instruction twice.

• Int 0x2d: In this technique, we register the desired
exception handler in fs: [0x0] where SEH (Structured
Exception Handler, the exception handling routine of
Windows operating system) is located. Then, we generate
the breakpoint exception using int 0x2d instruction. The
DBI tools such as the Pin, usually ignore the execution of
this handler routine. Hence, this technique checks whether
the handler has been executed or not to judge for being in
the debug mode.

• Single Step Detection: The debugger or the DBI tool
can be detected by using the fact that it ignores or
incorrectly handles the exception when a single-step
exception occurs. The trap flag in the EFLAGS register is
flipped to invoke a single-step exception. In normal

execution, the SEH handler is executed but in
DBI/debugging environments, usually it is not executed.

• Prefix Handling: In some 80x86 instructions, there is a
prefix byte, which gives a different meaning when
interpreting the opcode. For example, rep prefix means to
repeat the subsequent instruction until the ecx register
becomes zero. If an interrupt is invoked when the instruction
is repeatedly executed, the debugger or the DBI program
may ignore or incorrectly handle the exception, which can
be used to detect the debugger.

• Memory Breakpoint: Some DBI programs can execute
instructions in the protected region while there is no
exception occurred. However, in the real execution an
exception should occur in the access of the protected region.
This difference is used to detect the debugger/DBI.
Typically, we set protection region at a specific area in the
runtime and then access it using jmp/call/ret instructions.

• Self-Modification: Some DBI/debuggers execute code
chunks in the assumption that the code has not been
modified during the run-time. If the code is modified in the
run-time, they should carefully flush the instruction cache
memory to reflect the modification. Otherwise, the original
instructions (before the modification) are executed. Note
that self-modifying code is not common in the normal
program. Hence, many DBIs including the Pin do not flush
the caches. This difference is used to detect the
debugger/DBI.

B. Automatic detection and neutralization of anti-
debugging techniques using the Pin

In this subsection, we present a new automatic detection
and neutralization scheme for anti-debugging techniques
using the Pin tool. This scheme conducts dynamic analysis,
in which it executes the code chunk in the target program
and detects/bypasses anti-debugging techniques at the run-
time. It relies on Intel's Pin DBI in x86 environments. As
mentioned in Section III-A, the Pin is detected in 8 anti-
debugging techniques out of the 29. Hence, we focused on
these 8 cases: detecting and evading them automatically.

Figure 1 shows the overall structure of the proposed
scheme. First, the Pin loads the target program (e.g.,
malware containing anti-debugging techniques) on the
memory and fetches the first instruction. Then, it calls our
scheme (plug-in) for detecting anti-debugging techniques.
At ‘Check Current IP’ step, our scheme first checks whether
the current instruction belongs to the DLL (Dynamic Link
Library) or to the target program code area. If it belongs to
the DLL area, we should check the API-based anti-
debugging techniques since API code resides in DLL.
Otherwise, we go to ‘Check the Instruction’ step. In this
step, we examine whether the current instruction has some
specific functionalities w.r.t. anti-debugging. If so, we
perform pattern matching to find the corresponding
instruction-based anti-debugging techniques. Finally, in
“Check other Anti-Debugging Techniques” step, we check
other anti-debugging techniques. After finishing execution
of our scheme (plug-in code), execution goes back to the
Pin. Optionally, the Pin can execute other plug-ins (e.g., for
malware analysis). Then, the Pin emulates (decodes and
executes) the current instruction. Finally, it fetches the next
instruction of the target program.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

Figure 1. Overall structure of the proposed scheme for detecting and bypassing anti-debugging techniques using the Pin.

Figure 2. Pseudo-code of ‘Check current IP’ Step in Figure 1.

Fig. 2 shows the pseudo-code of the algorithm executed at

the ‘Check Current IP’ step of Fig. 1. In Fig. 2, we check
whether the control flow goes from the target program area
to the DLL region or vice versa, where the threshold address
value is 0x10000000; in Microsoft Windows (32-bit)
environment, the memory region below 0x10000000 is for
code, global data, stack, and heap while the area above that
is used for DLL, memory-mapped file, etc. If the execution
flow goes to DLL area, this means that the API has been
called. At this point, we check appropriate API-based anti-
debugging techniques, as follows.

If the name of currently called API is
QueryInformationProcess(), as explained in Section III-A,
we should check whether the 2nd argument of the call is
ProcessDebugFlags (0x1f). If true, we change the value of
ProcessInformation, the return value of
QueryInformationProcess(), to 1 (true) for bypassing.

If there is an API call for QueryPerformanceCounter(),
instead of returning the hardware timestamp value, we
return the virtual time counter value (timecount). Then,
timecount is increased by 1. If the same API is called again,
it will return timecount+1, and the difference between the
return values of two calls becomes small (=1), which makes
anti-debugging technique get neutralized.

If the address of the currently executed instruction is
0x10000000 or less, we regard that the instruction is in the
target program area (code, data, stack and heap). Fig. 3

shows the pseudo-code of the algorithm executed at the
‘Check the Instruction’ step of Fig. 1. In Fig. 3, we find
instruction-based anti-debugging techniques by pattern-
matching.

Figure 3. Pseudo-code of ‘Check the Instruction’ Step in Figure 1.

If the current instruction is RDTSC, we change the value

of eax register to the virtual time counter (timecount) and
then increment timecount value by 1. Since subsequent
executed RDTSC will return timecount+1, the difference
between the return values of two RDTSC calls becomes
small (=1), which makes the anti-debugging technique get
neutralized.

If the program encounters the instruction ‘int 0x2d’ when
executed normally, it will raise a breakpoint exception
whereas the Pin does not raise exception at all. Therefore, if
the current instruction is ‘int 0x2d,’ breakpoint exception
should be forcibly raised using the Pin library function,
PIN_RaiseException().

If current instruction is ‘popfd,’ we should check the
EFLAGS that is stored in the stack before executing
instruction. The trap flag, which is the 8th bit of EFLAGS,
raises the single step exception. Since the Pin cannot handle
single step exception automatically, if the trap flag bit is 1, it
has to be cleared to 0. After that, single step exception
should be forcibly raised using the Pin library function,
PIN_RaiseException().

 26

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

 Finally, if the current opcode is ‘int’ and the size of
instruction is 3 bytes, this instruction has some prefix bytes
because the size of the instruction ‘int’ is originally 1 byte.
Generally, the Pin cannot correctly execute this instruction.
In order to manually handle this, current instruction pointer
is incremented by 2 to skip prefix bytes for bypassing this
anti-debugging technique.

Figure 4. Pseudo-code of ‘Check other Anti-debugging Technique’ Step in
Figure 1.

Fig. 4 shows the pseudo-code of ‘Check other Anti-

Debugging Techniques’ step of Fig. 1. At this step, it is
necessary to check the current status to identify anti-
debugging techniques such as memory breakpoints and self-
modification. Memory breakpoints occur only when the
current instruction is a branch or call. For each branch or
call instruction, in order to find memory breakpoints, we
check whether access violation is invoked or not by using
the Pin library function, PIN_CheckReadAccess(). If the
return value is false, it means that PAGE_GUARD is
applied to the target address. Since the Pin cannot handle
this automatically, invalid page access exception should be
manually raised using PIN_RaiseException().

Since self-modification occurs only when the current
instruction is the memory write operation, we hook every
memory write operation using INS_IsMemoryWrite(). For
each memory write operation, we check self-modification as
follows. When executing self-modified code, the Pin
overwrites instructions in the cache area. We can check this
case by utilizing the fact that the Pin copies the code chunk
from the memory to the cache area all at once and then
executes each instruction in the cache. Let “addrlast” denote
the last address of the cached chunk of code and “addrnow”
denote the current instruction pointer. We hook every write
operation and check whether addrnow < writing_address ≤
addrlast or not. If it is true, we judge that self-modification
occurs, and we call PIN_ExecuteAT() function to clean the
cache memory in the Pin.

IV. EXPERIMENTAL RESULTS

In Section IV-A we explain the experimental results for
each anti-debugging technique. Then, in Section IV-B, we
explain the experimental results on our scheme for the major
(commercial) protectors. Experimental environments are as
follows. CPU: Intel i5 3.7GHz (80x86), Operating system:
Microsoft Windows 7 (32bit), DBI tool: Pin v3.2.

A. Experimental results for each anti-debugging technique.

We have implemented the proposed scheme and
conducted experiments for 29 anti-debugging techniques
[19-21]. The following table summarizes the experimental

results. Unlike the Pin, which has simple instruction tracing
code, the proposed scheme successfully evades all of them.

TABLE II. EXPERIMENTAL RESULTS ON ANTI-DEBUGGING TECHNIQUES

The number of successfully by-
passed anti-debugging techniques

Classification
(number of anti-debugging

techniques) Pin Proposed scheme

API-based
anti-debugging techniques

14 16

Instruction-based anti-
debugging techniques

7 11

Others 0 2

Total: 29 21 29

B. Experimental results for major protectors.

Recall that the Protector (a.k.a. the packer) is the program
that uses various anti-reverse engineering techniques to
deter program analysis. In this experiment, we chose 17
major protectors, which are being widely used in Microsoft
Windows environments. The protector list includes
ASProtect 2.56, Enigma Protector 4.40, Themida 2.2.7 [4],
ACProtect 2.0.0, VMProtect 3.09, Safengine 2.3.9.0 [6],
and, Obsidium 1.5 [30], which can be considered the most
complex and difficult to analyze.

Experiments were conducted as follows. First, we used
each protector to pack the unprotected program. Second, we
conducted simple dynamic analysis (extracting the
instruction trace) using the previous tools: WinDbg 10.0,
OllyDbg 1.1, QuickUnpack 2.2, AbstersiverA, the vanilla
Pin (it has simple instruction tracing code and does not
contain any anti-debugging detection methods),
OllyAdvanced [8] and Apate [9]. Third, we conducted
dynamic analysis using the proposed scheme.

TABLE III. EXPERIMENTAL RESULTS ON MAJOR PROTECTORS

Protecto
r name

WinDb
g

OllyDb
g [31]

Quick
Unpac

k

Abster
siverA Pin OllyAd

vanced
Apate

[9]
Our

scheme

UPX
1.02 Yes Yes Yes No Yes Yes Yes Yes

PEComp
act No No Yes No Yes Yes No Yes

ASPack
2.0 Yes Yes Yes Yes Yes Yes Yes Yes

WWPac
k No No No No Yes No Yes Yes

Packman Yes Yes Yes No Yes Yes Yes Yes

Petite Yes Yes No No Yes Yes Yes Yes

MEW Yes Yes Yes No Yes Yes Yes Yes

Mpress Yes Yes No No Yes Yes Yes Yes

Nspack No Yes No No Yes Yes Yes Yes

yoda 1.3 No No No No No No No Yes

ASProte
ct 2.56 No Yes No No Yes Yes Yes Yes

Enigma
4.40 No No No No No No Yes Yes

Themida
2.3.5 No No No No Yes No No Yes

ACProte
ct 2.0.0 No No No No No Yes Yes Yes

VMProte
ct 3.09 Yes No No No No No Yes Yes

Safengin
e 2.3.9.0 No No No No No No No Yes

Obsidiu
m 1.5 No No No No No No No Yes

 27

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 2, 2019

 28

Success
rate 41.2% 47.1% 29.4% 0.06% 64.7% 58.8% 70.5% 100

%

Table III shows the experimental results on the 17

protectors. The success rate is defined as the number of
successfully analyzed cases (i.e., successfully bypassed all
anti-debugging techniques) divided by the number of all
protectors. As shown in Table III, the success rates of
WinDbg, OllyDbg, QuickUnpacker, AbstersiverA,
OllyAdvanced are relatively low: from 0.06% – 58.8%. (We
omit StrongOD [7] because its result is identical to
OllyAdvanced.) Compared with these tools, the success rate
of the vanilla Pin is much higher: 64.7%. The vanilla Pin
successfully executes ASProtect, Enigma protector, and
Themida until the OEP (original entry point, the starting
address of the original program) is met. However, it cannot
evade anti-debugging techniques and execution is aborted
before the OEP on ACProtect, VMProtect, Safengine and
Obsidium. The success rate of Apate, 70.5%, is slightly
higher than that of the vanilla Pin. Apate can successfully
analyze for relatively simple protectors whereas execution
aborts for some complex commercial protectors. We
confirmed that for all 17 protectors, our implementation of
the proposed scheme can successfully detect and evade all
anti-debugging techniques. Among them, to the best of our
knowledge, SafeEngine 2.3.9 is the protector that can be
considered extremely difficult to analyze and has not been
successfully analyzed by academic researchers up till now.

V. CONCLUSION

We have implemented 29 anti-debugging engineering
techniques in Microsoft Windows environments and
conducted experiments to check whether they can detect the
Pin tool, or not. The results show that 8 of them can detect
the Pin. From this, we devised an automatic scheme that can
detect and evade anti-debugging techniques for Microsoft
Windows environments. We conducted experiments on 17
major protectors. Experimental results show that the
proposed method can detect and evade all anti-debugging
techniques used in the protectors. Among them, to the best
of our knowledge, SafeEngine 2.3.9 is the protector that has
not been successfully analyzed in the public until now.

REFERENCES
[1] W. Yan, Z. Zhang, N. Ansari, “Revealing packed malware,” IEEE

Security and Privacy, Vol. 6, No. 5, pp. 65-69, 2008.
doi:10.1109/msp.2008.126

[2] D. Devi, S. Nandi, “Detection of packed malware,” in Proc. of the
First International Conference on Security of Internet of Things, pp.
22-26, 2012. doi:10.1145/2490428.2490431

[3] G. N. Barbosa, R. R. Branco, “Prevalent characteristics in modern
malware,” in Proc. of Black Hat’2014, USA, 2014.

[4] Orleans Technology, “Themida: advanced windows software
protection system,” https://www.oreans.com/themida.php, 2014.

[5] VMSoft. “VMProtect software: VMProtect virtualizes code,”
http://vmpsoft.com/products/vmprotect/, 2018.

[6] Safengine, “Safengine protector,” http://www.safengine.com/en-us/,
2017.

[7] StrongOd, StrongOD 0.4.8.892 – Make your OllyDbg Strong,
https://tuts4you.com/download.php?view.2028, 2012.

[8] OllyAdvanced, OllyAdvanced – OllyDbg plugin for a number of
advancements and anti-debug features,
https://www.aldeid.com/wiki/OllyDbg/OllyAdvanced, 2013.

[9] H. Shi, J. Mirkovic, “Hiding debuggers from malware with Apate,” in
Proc. of ACM SAC’2017, pp. 495-508, 2017.
doi:10.1145/3019612.3019791

[10] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Raddi, K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proc. of the
2005 ACM SIGPLAN Conference on PLDI, pp. 190-200, 2005.
doi:10.1145/1064978.1065034

[11] S. Bardin, R. David, J. Marion, “Backward-Bounded DSE: Targeting
Infeasibility Questions on Obfuscated Codes,” in Proc. of 2017 IEEE
Symposium on Security and Privacy, pp 633-651, 2017.
doi:10.1109/sp.2017.36

[12] T. Blazytko, M. Contag, C. Aschermann, T. Holz, “Syntia:
Synthesizing the Semantics of Obfuscated Code,” in Proc. of
USENIX Security Symposium 2017, pp. 643-659, 2017.

[13] R. David, S. Bardin, T. D. Ta, J. Feist, L. Mounier, M. L. Potet, J. Y.
Marion. “BINSEC/SE: A Dynamic Symbolic Execution Toolkit for
Binary-level Analysis,” In Proc. of 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering
(SANER) 2016, pp. 653-656, 2016. doi:10.1109/saner.2016.43

[14] X. Meng, B. P. Miller. “Binary code is not easy,” in Proc. of the 25th
International Symposium on Software Testing and Analysis, pp. 24-
35, 2016. doi:10.1145/2931037.2931047

[15] S. Eschweiler, K. Yakdan, E. Gerhards-Padilla, “discovRE: Efficient
Cross-Architecture Identification of Bugs in Binary Code,” in Proc. of
The Network and Distributed System Security Symposium (NDSS
2016), 2016. doi:10.14722/ndss.2016.23185

[16] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, T. Holz. “Cross-
Architecture Bug Search in Binary Executables,” in Proc. of the 2015
IEEE Symposium on Security and Privacy 2015, pp. 709-724, 2015.
doi:10.1109/sp.2015.49

[17] J. Lee, H. Chang, S. Cho, S. Kim, Y. Park, W. Choi, “Integration of
Software Protection Mechanisms against Reverse Engineering
Attacks,” Journal of Information, Vol. 15. No. 4, pp. 1569-1578, 2012.

[18] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, J. Nazario, “Towards an
Understanding of Anti-virtualization and Anti-debugging Behavior in
Modern Malware,” in Proc. of IEEE Conference on Dependable
Systems and Networks (DSN 2008), pp. 177-186, 2008.
doi:10.1109/dsn.2008.4630086

[19] J. Tully, “Introduction into Windows anti-debugging,”
http://www.codeproject.com/Articles/29469/Introduction-Into-
Windows-Anti-Debugging/, Sep. 2008.

[20] P. Ferrie, “The ultimate anti-debugging reference,” http://www.anti-
reversing.com/the-ultimate-anti-debugging-reference/, 2011.

[21] T. Shields, “Anti-debugging – a developers view,” 2011.
[22] A. J. Smith, R. F. Mills, A. R. Bryant, G. L. Peterson, M. R. Grimaila,

“REDIR: Automated static detection of obfuscated anti-debugging
techniques,” in Proc. of 2014 International Conference on
Collaboration Technologies and Systems 2014, pp. 173-180, 2014.
doi:10.1109/cts.2014.6867561

[23] D. Brumley, I. Jager, T. Avgerinos, E. J. Schwartz, “BAP: A Binary
Analysis Platform,” in Proc. of International Conference on Computer
Aided Verification 2011, pp. 463-469, 2011. doi:10.1007/978-3-642-
22110-1_37

[24] P. Chen, C. Huygens, L. Desmet, W. Joosen, “Advanced or not? A
comparative study of the use of anti-debugging and anti-VM
techniques in generic and targeted malware,” in Proc. of
IFIPSEC’2016 Conference, pp. 323-336, 2016. doi:10.1007/978-3-
319-33630-5_22

[25] K. Yoshizaki, T. Yamauchi, “Malware Detection Method Focusing on
Anti-debugging Functions,” in Proc. of Computing and Networking
(CANDAR) 2014, pp. 563-566, 2014. doi:10.1109/candar.2014.36

[26] V. Oduguwa, A. Tiwari, R. Roy, “Evolutionary computing in
manufacturing industry: an overview of recent applications,” Applied
Soft Computing, vol. 5, no. 3, pp. 281-299, 2005.
doi:10.1016/j.asoc.2004.08.003

[27] C. Pozna, F. Troester, R. E. Precup, J. Tar, S. Preitl, “On the design of
an obstacle avoiding trajectory: method and simulation,” Mathematics
and Computers in Simulation, vol. 79, no. 7, pp. 2211-2226, 2009.
doi:10.1016/j.matcom.2008.12.015

[28] J. Saadat, P. Moallem, H. Koofigar, “Training echo state neural
network using harmony search algorithm,” International Journal of
Artificial Intelligence, vol. 15, no. 1, pp. 163-179, 2017.

[29] S. Vrkalovic, E. Lunca, I. Borlea, “Model-free sliding mode and fuzzy
controllers for reverse osmosis desalination plants, International
Journal of Artificial Intelligence,” vol. 16, no. 2, pp. 208-222, 2018.

[30] Obsidium Software. “Obsidium Software Protection System,”
http://www.obsidium.de/, 2016.

[31] OllyDbg. “OllyDbg v1.10: 32-bit assembler level analyzing debugger
for Microsoft Windows,” http://www.ollydbg.de/, 2014.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 16:36:28 (UTC) by 35.173.233.176. Redistribution subject to AECE license or copyright.]

