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1Abstract—In spite of recent remarkable advances in binary 

code analysis, adversaries are still using diverse anti-reversing 
techniques for obfuscating code and making analysis difficult. 
Unlike most of the previous work that relies on debugger-
plugins for neutralizing anti-debugging techniques, we focus on 
the Pin, which is one of the most widely used DBI (Dynamic 
Binary Instrumentation) tools in 80x86 environments. In this 
paper, we present an automatic anti-debugging 
detection/bypassing scheme using the Pin. In order to evaluate 
the effectiveness of our algorithm, we conducted experiments 
on 17 most widely used (commercial) protectors, which results 
in bypassing all anti-debugging techniques automatically. 
Particularly, our experiment includes Safengine, which is one 
of the most complex commercial protectors and, to the best of 
our knowledge, it has not been successfully analyzed by 
academic researchers up to now. Also, experimental results 
show that the proposed scheme performs better than the most 
recent work, Apate. 
 

Index Terms—computer hacking, computer security, 
debugging, reverse engineering, software protection. 

I. INTRODUCTION 

While a considerable amount of research efforts has been 
done on static and dynamic analysis for malicious code, 
anti-reverse engineering technology is still being developed 
to protect malware [1-3].  

The protector is a (commercial) program that uses various 
anti-reverse engineering techniques such as anti-debugging, 
code encryption, code obfuscation, code virtualization, etc. 
Themida [4], VMProtect [5], and Safengine [6] are some 
examples of widely used commercial protectors for 
Microsoft Windows environments.  

If malicious code is packed using the protector, malware 
analysts will have trouble in analyzing, which causes 
spending a significant amount of time, i.e., analysis/response 
can be slow down. E.g., the latest commercial protectors are 
still considered to be difficult to analyze: Themida’s [4] 
latest code virtualization does not seem to have an easy way 
to analyze it yet, and to the best of our knowledge, the latest 
version of Safengine [6] has not been analyzed. 

To neutralize anti-debugging techniques, most of previous 
works have been developed as plug-ins of debuggers [7-9]. 
Unlike these, we focus on the Pin [10], which is one of the 
most widely used DBI (Dynamic Binary Instrumentation) 
tool for 80x86 environment. DBI is the binary code analysis 

tool for dynamically analyzing the behavior of a target 
program at runtime. We chose the Pin because it emulates 
the binary code with high accuracy, and we found out that 
many anti-debugging techniques are automatically 
bypassed.  
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In this paper, we present a new strong anti-anti-debugging 
scheme using the Pin for 80x86 Windows environments. 
Our algorithm first finds suspicious code chunk. Then, it 
tries to match specific anti-debugging technique in the 
category (API-based, instruction-based, and others). If there 
is a match, it conducts bypassing work. After the bypassing 
work is done, it continues execution and analysis until the 
next anti-debugging code chunk is met. 

To evaluate feasibility of our algorithm, we conducted 
experiments on (commercial) representative 17 protectors, 
which are considered as the most complex and hard to 
analyze. Experimental results show that our scheme 
successfully bypasses all anti-debugging routines in them. 
The tested protectors include Safengine [6], which is, to the 
best of our knowledge, one of the most complex protectors 
and has not been successfully analyzed. Also, experimental 
results show that our scheme outperforms the most recent 
work, Apate [9]. 

This paper is organized as follows. Section II explains the 
related work. In Section III, we describe our scheme to find 
the anti-debugging techniques using the Pin in the x86 
Microsoft Windows environment. Section IV explains the 
experimental results and Section V concludes the paper. 

II. RELATED WORK 

For malware analysis and binary code analysis, a 
significantly large amount of research work has been done 
up to now [11-17]. However, topics relevant to advanced 
anti-reverse engineering techniques have not drawn strong 
interest from academic researchers (except for some specific 
topics such as code virtualization [8-9]). Anti-reverse 
engineering techniques can roughly be classified as anti-
debugging, code encryption/self-modification, code 
obfuscation, and code virtualization [18-21]. For lack of 
space, we briefly explain recent research work on analysis 
of anti-debugging techniques. 

Xu Chen et al.’s work [18] deals with anti-debugging and 
anti-reverse engineering techniques which are commonly 
used in malicious code. They first classified and 
characterized various anti-reversing techniques. Then, they 
described how to detect and avoid them. Also, they devised 
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how to detect remote host VMs (virtual machines) using 
clock skew behaviors. They proposed the new scheme to 
protect the real machines by mimicking the 
monitoring/debugging systems such that malware misjudges 
that it is being monitored/debugged and terminates 
execution. 

Adam J. Smith et al. developed REDIR [22], a tool for 
statically analyzing anti-debugging techniques in the binary 
code. In order to analyze the obfuscated code, binary code is 
first transformed into the intermediate language using BAP 
[23] and then optimized for easy analysis. Then, the 
suspicious code chunk is found by the predefined rule. If 
there is a pattern match, it dynamically analyzes the code 
chunk under the debugging environment in the BAP. If the 
execution result is different from the actual execution result, 
they judge that the corresponding chunk is the anti-
debugging routine.  

In [24], Ping Chen et al. investigated how much anti-
debugging and anti-VM techniques are used in both general 
malware and targeted malware (i.e., it is designed for the 
specific target system). As a result, targeted malware does 
not use anti-debugging/anti-VM techniques more than 
general malicious code, unexpectedly. Moreover, they have 
observed that there is a decrease in the number of used anti-
VM techniques over time in the targeted malware. 

K. Yoshizaki et al. [25] focus on the property that 
malware uses some specific API functions for anti-
debugging. They proposed the automatic scheme to detect 
anti-debugging techniques by hooking those API calls. After 
hooking the anti-debugging-related API calls, it changes the 
return values of API functions, which plays two roles: first, 
detecting the malicious code, and second, cheating the target 
malware such that malware execution is not considered to be 
in the debugging environments. The proposed scheme has 
two states. In the non-analysis state, malicious code detects 
the debugging/monitoring status and aborts execution. In the 
analysis state, malware conducts malicious actions because 
it cannot detect the debugging status. By comparing these 
two patterns of behaviors, they proposed the scheme to 
detect malware automatically. 

For detecting/evading anti-debugging techniques, diverse 
tools have been developed, the most of which are 
implemented as plug-ins of debuggers. Representative tools 
include OllyAdvanced [8] and strongOD [7]. Recently, Hao 
Shi and Jelena Mirkovic proposed Apate [9], which detects 
and defeats various anti-debugging techniques for Microsoft 
Windows environments. Apate was implemented as a plug-
in for 80x86 WinDbg 6.3. In their implementation, Apate 
can handle 79 anti-debugging-related attack vectors. They 
showed that Apate outperforms other debuggers (IDA Pro, 
OllyDbg, and Immunity Debuggers) for anti-debugging 
detection. Moreover, in their experiments Apate found all 
anti-debugging techniques for 4 complex malware samples 
and 10 (commercial) protectors. In Section IV, we will show 
experimental results: even though Apate is much better than 
other DBI/debuggers for detecting anti-debugging, our 
scheme outperforms Apate, especially for complex 
commercial protectors. 

III. AN AUTOMATIC ANTI-DEBUGGING 

DETECTION/BYPASSING SCHEME USING THE PIN 

First, in Section III-A, we explain major anti-debugging 
techniques which are widely used in Microsoft Windows 
environments. Then, in Section III-B we describe a new 
automatic scheme to evade anti-debugging techniques in 
80x86 environments. This scheme relies on the Pin [10], 
which is one of the most widely used DBI tools for 80x86 
environments. 

Dynamic Binary Instrumentation (DBI) is a binary code 
analysis tool for dynamically analyzing the behavior of a 
target program at runtime. DBI emulates and analyzes the 
target program as follows. First, the plug-in code for 
dynamic analysis should be made in advance. By using this, 
DBI interleavingly executes the target code chunk and the 
plug-in code chunk such that various information such as 
memory, registry, and API (Application Program Interface)-
call information can be analyzed. DBI was primarily 
designed for performance analysis such as finding 
slow/bottleneck points in less-optimized code or for finding 
bugs in erroneous code. Also, DBI can be used for analyzing 
malware or other diverse applications including [26-29]. 

A. Analysis of anti-debugging techniques for Microsoft 
Windows environments. 

Generally, each DBI can bypass different anti-debugging 
techniques. Unlike other debuggers and DBI tools, the Pin 
can bypass many anti-debugging functionalities without 
using any plug-in tools. However, execution in the Pin is not 
exactly same as the real execution and some anti-debugging 
techniques can detect this difference. Hence, it is necessary 
to investigate which techniques can detect the Pin or not. 
We first manually implemented most of anti-debugging 
techniques [19-21] for Microsoft Windows environments 
and then conducted experiments with the Pin for checking 
whether each of them can be evaded by the Pin or not.  

TABLE I. ANTI-DEBUGGING TECHNIQUES FOR DETECTING THE PIN 
Classif
ication 

Anti-debugging technique 
Pin 

Detected 

IsDebuggerPresent X 

CheckRemoteDebuggerPresent X 

OutputDebugString X 

FindWindow X 

QueryInformationProcess 
(ProcessDebugPort) 

X 

SetInformationThreadDebuggerDetaching X 

OllyDbg OutputDebugString() Format String X 

SeDebugPrivilege OpenProcess X 

QueryInformationProcess 
(ProcessDebugFlags) 

O 

QueryInformationProcess 
(DebugObjectHandle) 

X 

QueryPerformanceCounter O 

GetTickCount X 

timeGetTime X 

CloseHandle X 

Hardware Breakpoints X 

API-
based 

Control-C Vectored Exception X 

Instruct RDTSC O 
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INT 3 Exception (0XCC) X 

INT 2D (Kernel Debugger Interrupt) O 

ICE Breakpoint X 

Single Step Detection O 

Unhandled Exception Filter X 

VMware STR Register Detection X 

VMware LDT Register Detection X 

Prefix Handling O 

CMPXCHG8B and LOCK X 

ion-
based 

VMware Magic Port X 

Memory Breakpoint O 
Others 

Self-Modification O 

 
Table I shows the experimental results on the Pin for each 

anti-debugging technique in Microsoft Windows 
environments. We classify 29 techniques as three categories: 
the anti-debugging techniques that are performed by calling 
the API are classified as “API-based,” and the technique 
performed by a specific instruction are classified as 
“Instruction-based.” Techniques that are not in these 
categories are classified as “Others.” As shown in Table I, 
most of the techniques (except 8) cannot detect the Pin 
correctly. We briefly describe the 8 techniques that can 
detect the Pin as follows.  

• QueryInformationProcess (a.k.a. ProcessDebugFlags): 
This is one of the ntdll.dll APIs, which has five arguments. 
The second argument represents the data type of the target 
program. Suppose that a constant value, 0x1f, is used as this 
argument and then this API is called. After the return, we 
check the memory cell pointed by the third argument. if 0 is 
stored, it is judged to be debugged. 

• QueryPerformanceCounter: This is the time-related 
API of kernel32.dll. This API returns the current data value 
of the hardware performance counter to the specified 
memory. Because DBI execution is slower than the real 
execution, we can judge that the program is being analyzed 
when the difference between the two data values exceeds a 
predetermined threshold value after this API is called twice. 

• RDTSC: This is the instruction that returns the 
processor timestamp value, which records the number of  
elapsed clock cycles from the last reset time. Due to the 
slow execution property of DBI, the anti-debugging 
technique judges that the program is being debugged when 
the difference between two timestamp values exceeds a 
certain threshold value after executing this instruction twice. 

• Int 0x2d: In this technique, we register the desired 
exception handler in fs: [0x0] where SEH (Structured 
Exception Handler, the exception handling routine of 
Windows operating system) is located. Then, we generate 
the breakpoint exception using int 0x2d instruction. The 
DBI tools such as the Pin, usually ignore the execution of 
this handler routine. Hence, this technique checks whether 
the handler has been executed or not to judge for being in 
the debug mode. 

• Single Step Detection: The debugger or the DBI tool 
can be detected by using the fact that it ignores or 
incorrectly handles the exception when a single-step 
exception occurs. The trap flag in the EFLAGS register is 
flipped to invoke a single-step exception. In normal 

execution, the SEH handler is executed but in 
DBI/debugging environments, usually it is not executed. 

• Prefix Handling: In some 80x86 instructions, there is a 
prefix byte, which gives a different meaning when 
interpreting the opcode. For example, rep prefix means to 
repeat the subsequent instruction until the ecx register 
becomes zero. If an interrupt is invoked when the instruction 
is repeatedly executed, the debugger or the DBI program 
may ignore or incorrectly handle the exception, which can 
be used to detect the debugger. 

• Memory Breakpoint: Some DBI programs can execute 
instructions in the protected region while there is no 
exception occurred. However, in the real execution an 
exception should occur in the access of the protected region. 
This difference is used to detect the debugger/DBI. 
Typically, we set protection region at a specific area in the 
runtime and then access it using jmp/call/ret instructions.  

• Self-Modification: Some DBI/debuggers execute code 
chunks in the assumption that the code has not been 
modified during the run-time. If the code is modified in the 
run-time, they should carefully flush the instruction cache 
memory to reflect the modification. Otherwise, the original 
instructions (before the modification) are executed. Note 
that self-modifying code is not common in the normal 
program. Hence, many DBIs including the Pin do not flush 
the caches. This difference is used to detect the 
debugger/DBI. 

B. Automatic detection and neutralization of anti-
debugging techniques using the Pin 

In this subsection, we present a new automatic detection 
and neutralization scheme for anti-debugging techniques 
using the Pin tool. This scheme conducts dynamic analysis, 
in which it executes the code chunk in the target program 
and detects/bypasses anti-debugging techniques at the run-
time. It relies on Intel's Pin DBI in x86 environments. As 
mentioned in Section III-A, the Pin is detected in 8 anti-
debugging techniques out of the 29. Hence, we focused on 
these 8 cases: detecting and evading them automatically. 

Figure 1 shows the overall structure of the proposed 
scheme. First, the Pin loads the target program (e.g., 
malware containing anti-debugging techniques) on the 
memory and fetches the first instruction. Then, it calls our 
scheme (plug-in) for detecting anti-debugging techniques. 
At ‘Check Current IP’ step, our scheme first checks whether 
the current instruction belongs to the DLL (Dynamic Link 
Library) or to the target program code area. If it belongs to 
the DLL area, we should check the API-based anti-
debugging techniques since API code resides in DLL. 
Otherwise, we go to ‘Check the Instruction’ step. In this 
step, we examine whether the current instruction has some 
specific functionalities w.r.t. anti-debugging. If so, we 
perform pattern matching to find the corresponding 
instruction-based anti-debugging techniques. Finally, in 
“Check other Anti-Debugging Techniques” step, we check 
other anti-debugging techniques.  After finishing execution 
of our scheme (plug-in code), execution goes back to the 
Pin. Optionally, the Pin can execute other plug-ins (e.g., for 
malware analysis). Then, the Pin emulates (decodes and 
executes) the current instruction. Finally, it fetches the next 
instruction of the target program. 
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Figure 1. Overall structure of the proposed scheme for detecting and bypassing anti-debugging techniques using the Pin. 

 

 
Figure 2. Pseudo-code of ‘Check current IP’ Step in Figure 1. 

 
Fig. 2 shows the pseudo-code of the algorithm executed at 

the ‘Check Current IP’ step of Fig. 1. In Fig. 2, we check 
whether the control flow goes from the target program area 
to the DLL region or vice versa, where the threshold address 
value is 0x10000000; in Microsoft Windows (32-bit) 
environment, the memory region below 0x10000000 is for 
code, global data, stack, and heap while the area above that 
is used for DLL, memory-mapped file, etc. If the execution 
flow goes to DLL area, this means that the API has been 
called. At this point, we check appropriate API-based anti-
debugging techniques, as follows. 

If the name of currently called API is 
QueryInformationProcess(), as explained in Section III-A, 
we should check whether the 2nd argument of the call is 
ProcessDebugFlags (0x1f). If true, we change the value of 
ProcessInformation, the return value of 
QueryInformationProcess(), to 1 (true) for bypassing. 

If there is an API call for QueryPerformanceCounter(), 
instead of returning the hardware timestamp value, we 
return the virtual time counter value (timecount). Then, 
timecount is increased by 1. If the same API is called again, 
it will return timecount+1, and the difference between the 
return values of two calls becomes small (=1), which makes 
anti-debugging technique get neutralized. 

If the address of the currently executed instruction is 
0x10000000 or less, we regard that the instruction is in the 
target program area (code, data, stack and heap). Fig. 3 

shows the pseudo-code of the algorithm executed at the 
‘Check the Instruction’ step of Fig. 1. In Fig. 3, we find 
instruction-based anti-debugging techniques by pattern-
matching.  

 

 
Figure 3. Pseudo-code of ‘Check the Instruction’ Step in Figure 1. 

 
If the current instruction is RDTSC, we change the value 

of eax register to the virtual time counter (timecount) and 
then increment timecount value by 1. Since subsequent 
executed RDTSC will return timecount+1, the difference 
between the return values of two RDTSC calls becomes 
small (=1), which makes the anti-debugging technique get 
neutralized. 

If the program encounters the instruction ‘int 0x2d’ when 
executed normally, it will raise a breakpoint exception 
whereas the Pin does not raise exception at all. Therefore, if 
the current instruction is ‘int 0x2d,’ breakpoint exception 
should be forcibly raised using the Pin library function, 
PIN_RaiseException(). 

If current instruction is ‘popfd,’ we should check the 
EFLAGS that is stored in the stack before executing 
instruction. The trap flag, which is the 8th bit of EFLAGS, 
raises the single step exception. Since the Pin cannot handle 
single step exception automatically, if the trap flag bit is 1, it 
has to be cleared to 0. After that, single step exception 
should be forcibly raised using the Pin library function, 
PIN_RaiseException(). 
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 Finally, if the current opcode is ‘int’ and the size of 
instruction is 3 bytes, this instruction has some prefix bytes 
because the size of the instruction ‘int’ is originally 1 byte. 
Generally, the Pin cannot correctly execute this instruction. 
In order to manually handle this, current instruction pointer 
is incremented by 2 to skip prefix bytes for bypassing this 
anti-debugging technique. 
 

 
Figure 4. Pseudo-code of ‘Check other Anti-debugging Technique’ Step in 
Figure 1. 

 
Fig. 4 shows the pseudo-code of ‘Check other Anti-

Debugging Techniques’ step of Fig. 1. At this step, it is 
necessary to check the current status to identify anti-
debugging techniques such as memory breakpoints and self-
modification. Memory breakpoints occur only when the 
current instruction is a branch or call. For each branch or 
call instruction, in order to find memory breakpoints, we 
check whether access violation is invoked or not by using 
the Pin library function, PIN_CheckReadAccess(). If the 
return value is false, it means that PAGE_GUARD is 
applied to the target address. Since the Pin cannot handle 
this automatically, invalid page access exception should be 
manually raised using PIN_RaiseException(). 

Since self-modification occurs only when the current 
instruction is the memory write operation, we hook every 
memory write operation using INS_IsMemoryWrite(). For 
each memory write operation, we check self-modification as 
follows. When executing self-modified code, the Pin 
overwrites instructions in the cache area. We can check this 
case by utilizing the fact that the Pin copies the code chunk 
from the memory to the cache area all at once and then 
executes each instruction in the cache. Let “addrlast” denote 
the last address of the cached chunk of code and “addrnow” 
denote the current instruction pointer. We hook every write 
operation and check whether addrnow < writing_address ≤ 
addrlast or not. If it is true, we judge that self-modification 
occurs, and we call PIN_ExecuteAT() function to clean the 
cache memory in the Pin. 

IV. EXPERIMENTAL RESULTS 

In Section IV-A we explain the experimental results for 
each anti-debugging technique. Then, in Section IV-B, we 
explain the experimental results on our scheme for the major 
(commercial) protectors. Experimental environments are as 
follows. CPU: Intel i5 3.7GHz (80x86), Operating system: 
Microsoft Windows 7 (32bit), DBI tool: Pin v3.2. 

A. Experimental results for each anti-debugging technique. 

We have implemented the proposed scheme and 
conducted experiments for 29 anti-debugging techniques 
[19-21]. The following table summarizes the experimental 

results. Unlike the Pin, which has simple instruction tracing 
code, the proposed scheme successfully evades all of them. 

 
TABLE II. EXPERIMENTAL RESULTS ON ANTI-DEBUGGING TECHNIQUES 

The number of successfully by-
passed anti-debugging techniques 

Classification 
(number of anti-debugging 

techniques) Pin Proposed scheme 

API-based 
anti-debugging techniques 

14 16 

Instruction-based anti-
debugging techniques 

7 11 

Others 0 2 

Total: 29 21 29 

 

B. Experimental results for major protectors. 

Recall that the Protector (a.k.a. the packer) is the program 
that uses various anti-reverse engineering techniques to 
deter program analysis. In this experiment, we chose 17 
major protectors, which are being widely used in Microsoft 
Windows environments. The protector list includes 
ASProtect 2.56, Enigma Protector 4.40, Themida 2.2.7 [4], 
ACProtect 2.0.0, VMProtect 3.09, Safengine 2.3.9.0 [6], 
and, Obsidium 1.5 [30], which can be considered the most 
complex and difficult to analyze. 

Experiments were conducted as follows. First, we used 
each protector to pack the unprotected program. Second, we 
conducted simple dynamic analysis (extracting the 
instruction trace) using the previous tools: WinDbg 10.0, 
OllyDbg 1.1, QuickUnpack 2.2, AbstersiverA, the vanilla 
Pin (it has simple instruction tracing code and does not 
contain any anti-debugging detection methods), 
OllyAdvanced [8] and Apate [9]. Third, we conducted 
dynamic analysis using the proposed scheme.   

TABLE III. EXPERIMENTAL RESULTS ON MAJOR PROTECTORS 

Protecto
r name 

WinDb
g 

OllyDb
g [31]

Quick
Unpac

k  

Abster
siverA Pin OllyAd

vanced
Apate 

[9] 
Our 

scheme

UPX 
1.02 Yes Yes Yes No Yes Yes Yes Yes 

PEComp
act No No Yes No Yes Yes No Yes 

ASPack 
2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

WWPac
k No No No No Yes No Yes Yes 

Packman Yes Yes Yes No Yes Yes Yes Yes 

Petite Yes Yes No No Yes Yes Yes Yes 

MEW Yes Yes Yes No Yes Yes Yes Yes 

Mpress Yes Yes No No Yes Yes Yes Yes 

Nspack No Yes No No Yes Yes Yes Yes 

yoda 1.3 No No No No No No No Yes 

ASProte
ct 2.56 No Yes No No Yes Yes Yes Yes 

Enigma 
4.40 No No No No No No Yes Yes 

Themida 
2.3.5 No No No No Yes No No Yes 

ACProte
ct 2.0.0 No No No No No Yes Yes Yes 

VMProte
ct 3.09 Yes No No No No No Yes Yes 

Safengin
e 2.3.9.0 No No No No No No No Yes 

Obsidiu
m 1.5 No No No No No No No Yes 
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Success 
rate 41.2% 47.1% 29.4% 0.06% 64.7% 58.8% 70.5% 100

% 

 
Table III shows the experimental results on the 17 

protectors. The success rate is defined as the number of 
successfully analyzed cases (i.e., successfully bypassed all 
anti-debugging techniques) divided by the number of all 
protectors. As shown in Table III, the success rates of 
WinDbg, OllyDbg, QuickUnpacker, AbstersiverA, 
OllyAdvanced are relatively low: from 0.06% – 58.8%. (We 
omit StrongOD [7] because its result is identical to 
OllyAdvanced.) Compared with these tools, the success rate 
of the vanilla Pin is much higher: 64.7%. The vanilla Pin 
successfully executes ASProtect, Enigma protector, and 
Themida until the OEP (original entry point, the starting 
address of the original program) is met. However, it cannot 
evade anti-debugging techniques and execution is aborted 
before the OEP on ACProtect, VMProtect, Safengine and 
Obsidium. The success rate of Apate, 70.5%, is slightly 
higher than that of the vanilla Pin. Apate can successfully 
analyze for relatively simple protectors whereas execution 
aborts for some complex commercial protectors. We 
confirmed that for all 17 protectors, our implementation of 
the proposed scheme can successfully detect and evade all 
anti-debugging techniques. Among them, to the best of our 
knowledge, SafeEngine 2.3.9 is the protector that can be 
considered extremely difficult to analyze and has not been 
successfully analyzed by academic researchers up till now. 

V. CONCLUSION 

We have implemented 29 anti-debugging engineering 
techniques in Microsoft Windows environments and 
conducted experiments to check whether they can detect the 
Pin tool, or not. The results show that 8 of them can detect 
the Pin. From this, we devised an automatic scheme that can 
detect and evade anti-debugging techniques for Microsoft 
Windows environments. We conducted experiments on 17 
major protectors. Experimental results show that the 
proposed method can detect and evade all anti-debugging 
techniques used in the protectors. Among them, to the best 
of our knowledge, SafeEngine 2.3.9 is the protector that has 
not been successfully analyzed in the public until now. 
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