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Abstract—This paper explores the behavior of the Flower 

Pollination Algorithm (FPA) and Particle Swarm Optimization 
(PSO) metaheuristic algorithm in resolving Resource 
Constrained Project Scheduling Problems (RCPSP) that can 
model certain practical issues in distributed applications. A 
RCPSP type problem has at the input a set of activities between 
which there are precedence relationships and for whose 
execution it is necessary to allocate resources that are limited. 
The solution determines the order of execution of the activities 
with respect to the precedence relations between them and the 
allocation of the available resources so that the total duration is 
minimal. The experimental results showed that a near optimal 
solution can be obtained faster than with other traditional 
algorithms, mainly for optimization problems in the continuous 
space. Two versions of FPA and PSO were used, namely 
combinatorial and priority based optimization. Because during 
evolution the individuals’ position changes do not guarantee 
the precedence order preservation, a new tasks reordering 
procedure is proposed in this paper. 
 

Index Terms—biological information theory, evolutionary 
computation, optimization, particle swarm optimization, 
scheduling algorithms. 

I. INTRODUCTION 

In economy, one of the key issues to be optimally solved 
is resources allocation in order to manage costs, working 
time, broaden access and improve general efficiency. For 
instance, an overview of recent Operating Research models 
developed for home health care routing and scheduling 
problem (HHCRSP) is presented in [1]. The HHCRSP is an 
extension of the vehicle routing problem with constraints 
that make it difficult to solve. The routes used by care 
workers to provide care to patients who live in the same 
geographic area and who must be treated at home have to be 
optimized in HHCRSP. Different objectives, as travel costs 
minimization or quality of services maximization, are used 
in this class of problems. 

The use of biological inspiration algorithms is a relatively 
new approach to solve optimization problems. These 
algorithms are inspired by the strategies of living beings in 
the feeding process, for survival or perpetuation of the 
species. Also, some algorithms in this class are inspired by 
other phenomena or natural or artificial processes. Being 
part of the metaheuristic algorithms, the biological 

inspirational algorithms often allow a quick solution to be 
obtained close to the optimal solution, in complexity 
problems. So, a new research on using such algorithms in 
Resource Constrained Project Scheduling Problem (RCPSP) 
makes sense. 

In [2] a novel Particle Swarm Optimization (PSO) based 
approach for RCPSP is proposed. It is based on two rules: 
delay local search rule and bidirectional scheduling rule 
which facilitate finding global minimum. The first rule 
enables some delayed activities by altering the starting time 
being capable of escaping from local minimum. The second 
rule combines forward and backward scheduling to expand 
the searching area for obtaining potential optimal solution. 
A hybrid combinatorial version of PSO is proposed in [3]. It 
is designed for the flowshop scheduling problem in which 
the makespan criterion has to be minimized. Different 
priority rules defined by experimental studies and statistical 
analysis are used in the initialization step of PSO. Another 
PSO based approach for RCPSP solving is presented in [4]. 
In [5] it is proposed a Discrete Flower Pollination Algorithm 
(DFPA) used to solve RCPSP. The DFPA is an adaptation 
of FPA for solving combinatorial optimization problems. In 
DFPA, some of the algorithm's core concepts, such as 
flower, global pollination, Lévy flight, local pollination, 
were redesigned.  

The FPA [6] is used to solve various optimization 
problems, including medical image processing, processes 
optimization or structural engineering. A retinal blood 
vessels localization approach which uses the multi-objective 
version of FPA for image optimal clustering and Pattern 
Searching algorithm for segmentation results enhancement 
is proposed in [7]. In [8] FPA is used to find the optimal 
thresholds by maximization of between-class variance for 
multi-threshold image segmentation. A FPA-based approach 
for structural design optimization is proposed in [9]. The 
problems to be solved there have various design constraints 
concerning structural security measures and are related to 
pin-jointed plane frames, truss systems, deflection 
minimization of I-beams, tubular columns, and cantilever 
beams. 
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In [10] the optimization objectives are: 1) minimizing 
the total transportation, and 2) maximizing the satisfaction 
of demand points (an interesting criterion). 

Finally, it is worth to be mentioned the paper [11], which 
introduces a novel metaheuristic framework that allows 
multi-objective optimization of combinatorial problems, that 
would be an useful tool for an extension of our proposed 
work. 

This paper is dedicated to the FPA and PSO metaheuristic 
algorithm in resolving RCPSP, and an objective comparison 
between them is made in order to better model certain 
practical issues in distributed applications. 

The work presented in this paper continues the research of 
the authors in the nature-inspired (NI) optimization field. 
Mainly, NI algorithms were used for image registration 
procedures which require computing the parameters of a 
geometric transform. In this case the number of parameters 
is reduced and good results were obtained by applying the 
Bacterial Foraging Optimization Algorithm [12-14], Cuckoo 
Search and Bat algorithms [15]. Other approaches, as 
multispectral image fusion using Particle Swarming, Cuckoo 
Search and Fireworks algorithms were presented in [16]. A 
study of the nature inspired algorithms performances is 
presented in [17]. Because in image registration procedures 
the fitness function computing is time consuming, the speed 
can be improved by using parallel versions of the 
optimization algorithms [12]. 

The objective of the RCPSP problem is to compute the 
minimum time to complete a set of activities by respecting 
the precedence relations between them and allocating the 
required resources up to the limit of their availability.  

The following information is used to define a RCPSP [5]: 

 naaaA ,...,, 21  – a set of  activities;   and  are 

dummy activities representing the beginning and the end of 
the project, 

n 1a na

 ndddD ,...,, 21

01  nd

 – the duration of each activity; 

obviously the duration of the dummy activities is 
, d

  jinjiaaP ji  ,,1,,

ia

na

 – a set of precedence 

relationships meaning that activity  can be started only 

after the  is completed; obviously,  has no predecessors 

and  has no successors. The set of precedence 

relationships can be represented as a graph.  

ja

1a

 qrrrR ,..., 21

iri 1,

 – a set of  resources available in 

quantities , 

q

q

    nqnq bbbbB ,...,...,... 1111  – the resources required to 

complete each activity, where qjnibij  1,1,  is the 

quantity  of resource  required to complete activity i . The 

dummy activities do not need resources. 

j

The problem is to determine the execution order of 
activities in A  so that the total time is minimal, respecting 
the precedence relations and allocating the resources within 
the available limit, namely the set , where  

is the planned time to start 

 ntttT ,..., 21

ni 

 it

ai 1, . In fact, 01 t  and 

 is the total time, because .  nt 0nd

The mathematical formulation of the RCPSP problem is: 
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where (1) is the objective function to be minimized, in 
restrictions (2) the precedence relationships are encoded, 
and (3) represents the set of restrictions related to the 
available resources allocation, where  is the set of 

activities  in progress at time 
tA

ia t . 

This is the simplest formulation of a RCPSP, in which the 
duration of each activity is specified by a single value 
(Single Time Estimate). In practice, the duration of activities 
is not fixed, so that the minimum, maximum and most 
probable time required to complete each activity are 
considered (Triple Time Estimate). The classical methods of 
RCPSP solving are part of graph theory: CPM (Critical Path 
Method) or PERT (Program Evaluation and Review 
Technique). 

RCPSP can be solved as a combinatorial problem by 
computing the permutation  of  nzzzZ ,..., 21  n,...2,1

ka

 

which specifies the launching order of the activities in set A 
with the following meaning: if  then activity  is in 

the  position in the launching order. Obviously, the 
dummy activities  and  keep their original positions 

kzi 

n

thi

1
1a a

1 z  and nzn  . The moment when each activity is 

launched  ntt ,...2t ,1T   can be determined by a single 

parsing of the list of activities in the order specified by Z  as 
it will be described in the following sections. Obviously, 
there are  possible solutions for a RCPSP, value which 
can be enough large in case of a great number of activities, 
so, the usage of nature-inspired metaheuristics is justified. 

!n

II. OPTIMIZATION BY NATURE INSPIRED METAHEURISTICS 

In the following paragraphs it is analysed the usage of 
two nature-inspired (NI) optimization algorithms for RCPSP 
solving. The NI algorithms are inspired form the nature 
intelligence and model the strategies used by life forms for 
survival, feeding or species perpetuation. Other NI 
algorithms are inspired from natural or artificial phenomena. 
Most of these algorithms were initially developed for 
optimization problems in the continuous space, where they 
are able to find near optimal solutions faster than classical 
algorithms [18]. For most of the NI algorithms, versions for 
multi-objective optimization, integer and binary 
programming were also developed.  

In case of the single-objective optimization, the general 
form of the problem is 

  d

Sx
RSxf 


,min ,   (4) 

where  is the problem domain and it can also specify a set 
of constraints. The domain number of dimensions  is 
given by the number of parameters of the objective function 

S
d

f .  

The structure of NI optimization algorithms is similar to 
most evolutionary algorithms (Fig. 1): 

 
Initialize the set of possible solutions 
Initialize the value of the best solution 
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while stop condition is not met perform 
evolution loop 

 build the next generation of solution  
candidates by applying the evolution 
strategy 

evaluate the value of the objective function 
for all new solution candidates  

 apply the selection strategy to build the next 
generation of possible solutions 

 update the value of the best solution 
end while  

Figure 1. General structure of nature-inspired algorithms 
 

The NI algorithms are based on a set of individuals 
(possible solutions) which evolve in the problem domain 
using the evolution strategy that models the evolutionary 
strategy of the species from which the algorithm is inspired. 
The optimization problem’s parameters are encoded as 
position of individuals. The objective function is evaluated 
in all the positions achieved by individuals during the 
evolutionary process. The algorithm continues until the stop 
condition is met. The solution of the problem is the position 
in which the best value of the objective function was 
reached. Usually, during evolution, the individuals move in 
the problem domain trying to optimize the objective. In 
some algorithms new individuals (descendants) are created 
in new positions so a selection strategy is applied to keep 
the populations size constant. 

A. Particle Swarm Algorithm 

The Particle Swarm Optimization (PSO) algorithm is one 
of the most efficient nature-inspired metaheuristic which is 
derived from the bird or fish swarming intelligence [19]. 
The evolution strategy is collaborative and individuals tend 
to move together toward the solution of the problem. This is 
done by using the personal and global experience when the 
moving direction is computed. In every step the particles 
move in directions which are mainly random, but 
components which direct them toward their personal best 
and global best positions are used.  

Let  be the position of the  particle  in the  

iteration. The new position is computed as:  

t
ix thi Sxi 

tht

11   t
i

t
i

t
i vxx       (5) 
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i
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i

t
i

t
i xxrcvwv 11

1    

  t
i

best xxrc  22 , (6) 

where  is the displacement of the  particle in the  

iteration,  is the moving inertia coefficient,  and  are 

the local (personal) and global (social) learning coefficients, 

respectively,  is the best position reached by the  

particle,  is the best position reached by any particle in 
the population and ,  are random values. Using this 

strategy, the particles tend to swarm towards the solution of 
the problem. Multi Swarm Optimization [20] is an extension 
of PSO which is useful for multi-modal optimization 
problems. The particles are organized into swarms and the 
experience of the group is also used in the evolution 
strategy.  

t
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B. Flower Pollination Algorithm (FPA) 

The FPA, proposed in [21] is inspired by the pollination 
process of flowering plants. Pollination can be achieved by 

self-pollination (pollen of the same flower or another flower 
of the same plant) or cross-pollination (pollen of another 
plant). The cross-pollination can be biotic when it is 
achieved by pollen vectors (insects or birds which fly a long 
distance), or abiotic when the pollination is helped by wind 
or water, usually on short distances. The pollination process 
was modelled [21-22] by the following rules used in FPA: 
- biotic cross-pollination is considered as global 

pollination in which the vectors perform Lévy flight; 
- self-pollination and abiotic pollination are considered as 

local pollination; 
- the reproduction probability (flower constancy) is 

proportional to the similarity of the two flowers;  
- local and global pollination is controlled by a switch 

probability. 

Let  nixX i ,...,1,   the individuals in the population, 

in this case flowering plants which are specified by their 

position in the optimization problem domain, , 

where  is equal to the number of parameters of the 
objective function. As it is described in the algorithm in Fig. 
2, during a number of generations, each individual  is 

replaced by a new individual whose position is computed 
using the local or global pollination model, the selection 
being made using the switch probability, only if the value of 
the objective function in the new position is better. Global 
pollination is modelled [21] by:  

d
i RSx 

ix

d

 t
i

bestt
i

t
i xxLxx 1 ,   (7) 

where  şi  are positions of the  individual in the  

and iterations respectively,  is the position in 

which the best value of the objective function was computed 
and  is the step length computed using the Lévy 
distribution [21]: 

t
ix

t 1

L

1t
ix thi

bestx

tht
th)(

   
   

1

2sin



 


s

L .   (8) 

In (8),   is the gamma function,   is constant and  
is a constant used to establish the step length. The local 
pollination is described by: 

0s

    t
k

t
j

t
i

t
i xxxx  1 ,   (9)  

where   is a random value with uniform distribution,   

and  are two randomly chosen individuals with 

jx

kx kj  . In 

Fig. 2 the general structure of the FPA is described. 
 
generate X  the initial population in 

random positions 
compute the objective function for each 

individual  
compute  the best solution in the initial 

population 
for  t =1 to number of generations  
 for each individual  
  if  random < selection likelihood 
   compute L step length with Lévy     

distribution 
   Global pollination:  
  else 
   generate  a random value with 

uniform distribution 
   randomly choose 2 individuals  şi   
   Local pollination:  
  end if 
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  evaluate the new solutions  
  if  the new solutions are better  
   update the elements in   
  end if 
 end for 
 update the best solution  
end for 

Figure 2. General structure of Flower Pollination algorithm [21] 
 

The FPA was developed mainly for global optimization in 
the continuous space and it proved to be more efficient than 
PSO and Genetic Algorithms (GA). In literature, multiple 
variants of FPA are presented, including versions for integer 
or binary programming. 

C. Combinatorial optimization using Particle Swarm 
algorithm 

In [23-24] it is proposed an extension of PSO for solving 
combinatorial problems, named CPSO. Bellow, the 
proposed changes in the standard PSO are briefly presented. 

In CPSO, each possible solution  is a permutation 

of  and it is accompanied by a status vector   

defined as follows for each of its components: 

Xxi 
 n,...2,1  iy







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
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



,0

,11

1

1

otherwise

xxxifrandomlyor

xxif

xxif

y
best
j
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ijij

best
ijij

best
jij

ij  (10) 

where  is the  component of  best global 

position, and  is the  component of , the best 

position of the  particle. The position update is performed 
for each component of the position vector using (11), (12) 
and (13). First, the velocity is computed for each particle: 
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jx thj bestx
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t
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t
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t
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Then, the values of  are adjusted to compute the new 

position: 








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otherwise

vxif

vxif

y t
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t
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t
ij

t
ij

t
ij 


  (12) 

where   is a parameter used for intensification and 
diversification. For small values of  , the components of 
the best global position or best personal position are used 
(intensification). For larger values of   new random values 
are used (diversification). Finally, the new position is 
computed by: 












 





otherwiserandom

yifx

yifx

x t
ij

best
ij

t
ij

best
j

t
ij 1

1
1

1
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It is obvious that in the new position computing step, care 
should be taken to ensure that it is a permutation of 

 and the precedence relations are verified.  n,...,2,1 
D. Combinatorial optimization using Flower Pollination 
algorithm 

One FPA-based RCPSP solving method is the Discrete 
Flower Pollination Algorithm (DFPA) proposed in [5]. 

Below, the differences between FPA and DFPA are shortly 
presented. Concerning the model used for individuals 
evolution in the problem‘s domain, the following operators 
are defined: swap mutation (the position of two randomly 
chosen activities are switched), multiple swap mutation, 
inverse mutation (the positions of all activities between two 
randomly selected activities are switched) and crossover 
(combines two randomly selected flowers) [5]. The local 
pollination is accomplished by applying the crossover 
operator: a sequence of tasks from the first flower is selected 
to create a new flower and all missing tasks are added in the 
free positions with respect of their order in the second 
flower. The global pollination requires a step length 

 1;0s  to be computed using the Lévy distribution. The 

interval  1;0  is divided in  subintervals of equal length. If k

 ks 1;0  then a swap mutation is executed. If 

   2,...1,)1(;  kikikis  then a multiple swap which 

consists of  1i  swap mutations, is executed. For the 

larger values of the step length,  1;)1( kks   an inverse 

mutation is executed. 
It must be noticed that in DFPA, in the global pollination 

a single individual is involved, unlike the standard FPA, 
which uses also the current best position  to compute 
the new solution candidate. 

E. Precedence relations in solutions candidates 

During the evolutionary process, it is obvious that not all 
possible solutions (permutations) are generated. Some 
solutions are generated more than once and there are also 
solutions which do not check the precedence relations. Since 
these solutions do not solve the problem, it can be assumed 
that in these cases the execution time of the project is  
without modifying the algorithm. But as it will be seen in 
the following paragraphs, the number of these invalid 
solutions is large enough, which reduces the possibility to 
find the optimal solution of the RCPSP problem. 

The problem is to sort the elements of the input 
permutation to obtain a valid permutation which meets the 
precedence conditions, using a minimum number of changes 
in the original permutations so that the elements that are not 
related keep as much as possible their relative order. The 
classical sorting algorithms can’t be used for such ordering 
because the precedence relation is not a total order relation. 
It is not defined for tasks located on different paths on the 
associated directed graph. In this case, a topological 
ordering (Kahn’s algorithm) has to be applied. 
Unfortunately, the topological ordering leads always to the 
same solution if the successors of an activity are not 
processed in the order specified by the processed 
permutation. Even if in the algorithm the successors are 
processed in the order of their occurrence in the 
permutation, this is considerably altered, making it difficult 
to obtain the known solution. To solve these issues, an 
original sorting procedure is proposed in this paragraph (Fig. 
3). It is based on the usage of a temporary array which 
contains the position of each task in the permutation. All the 
pairs of tasks between which there is a precedence relation 
are checked and swapped if their order is incorrect in the 
permutation. The procedure is resumed from the new 
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position of the current element, which is a position prior to 
the original one. 

 
SortByPrecedence 
Build the  array which contains for each 
activity its position in the permutation 
for i=1 to n  
  
 for each  -successor of  
  if   
   swap  and  in the permutation 

   spawn the corresponding elements in the 
index array 

    
  end if 
 end for 
 if   
   
 end if 
end for 

Figure 3. Sort algorithm for permutation validity checking and reordering 

 
The proposed sorting method allows obtaining a valid 

permutation in which the precedence conditions are met, 
using a minimum number of changes in the original 
permutations.  

F. Transforming the permutations into solutions  

Each permutation specifies the order in which the 
activities are started. The starting time of each activity is 
then computed according to the completion of previous 
activities and resources availability. During the solution 
computing, a list of events is built up. Each event contains 
information about the current time, the list of current 
activities which includes their status in relation to the event 
time (start, end, ongoing) and the resources availability at 
that time. A single parsing of the activities in the order 
specified by the permutation allows the solution to be 
determined by building the events list (Fig. 4).    

 
Build_Solution 
Create an event at time  and add the dummy 
   activity  with start and end status, the  
  resources are not changed 
for each  activity  in the order specified by  
  the permutation  
  find  with the maximum time at which a 

predecessor activity of  is completed  
 while required resources for activity  are not 

free go to next event in the list 
 end while 
 add activity  in the list of current event  
   with status  and update resources 
 find  whose time is equal to the end time 
    of activity   
 if such an event does not exist, a new _2  
   is created in the proper position 
 add activity  in the list of  with  
   status  and update resources 
 add activity  with status ongoing to all  
   events between  and  and update 
   resources 
end for 
for each event in the list of events are 

identified the activities with status ;  
 the time of the event is the starting time for  
   these activities 
end for 
the time required to complete the project is the 
   starting time of the last activity. 

Figure 4. Algorithm for transforming a permutation of activities into the 
solution 

It is obvious that the solution computed using the 
proposed algorithm is not unique. There may be situations 
when the resources required for an activity are available for 
a longer period than the duration of the activity. In this case, 
the activity may be delayed, but the change is local and does 
not affect the overall duration of the project. 

III. EXPERIMENTS AND RESULTS 

First, the proposed permutation sorting method to solve 
RCPSP using PSO and FPA was validated and then the 
results obtained by the two optimization methods were 
compared to those reported in [5]. The RCPSP library 
available on the PSPLIB site of TUM School of 
Management, Technical University of Munich was used in 
experiments [25].  

A. Validation of the permutation sorting procedure 

The “Patterson” set [25], which includes 100 problems, 
each with up to 51 tasks and up to 3 resources to be shared, 
was used to validate the permutation sorting method 
proposed in the previous sections. In the next paragraphs, 
the results obtained for three RCPSP problems (Table I) 
which were considered representative are presented.   

TABLE I. RCPSP PROBLEMS USED FOR VALIDATION 
RCPSP 
problem 

Number of tasks 
Number of 
resources 

Solution 

pat1 14 3 19 
pat100 27 3 33 
pat110 51 3 50 

 
Considering that the permutations generated by the 

algorithm can be invalid in the sense that they do not 
necessarily check the precedence conditions, two tests were 
carried out, with and without applying the sorting procedure. 
The results obtained by applying FPA are presented in Table 
II and Table III. The following parameters of FPA were 
used: number of iterations – 2000, number of individuals 
(flowers) – 20 and switch probability – 0.8.  

Concerning the contents of the two tables, it should be 
mentioned that: 
- the optimal solution of the problems is known [25]; 
- the number of optimal permutations of the activities set is 

not necessarily equal to that of the optimal solutions 
because for different permutations, identical time 
allocations of activities can be obtained (case when more 
activities start simultaneously);  

- the valid permutations are those for which the precedence 
conditions are met. 

 
TABLE II. RESULTS OBTAINED IN CASE OF UNSORTED PERMUTATIONS 

Number of 
generated 

permutations 

Number of 
generated 
optimal 

permutations

RCPSP
problem

Num
-ber 
of 

tasks

Total number 
of 

permutations 
total unique valid total unique

Known
solution

pat1 14 479.001.600 40020 8047 1091 31883 1024 19 
pat100 27 ~1.55e+25 40020 38550 - - - 33* 
pat110 51 ~6.08e+62 40020 39276 - - - 50* 

 
The following conclusions can be drawn by analysing the 

results obtained without applying the sorting procedure 
(Table II): 
- in case of a reduced number of tasks (pat1), the algorithm 

is able to generate valid permutations, including some 
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permutations which correspond to the optimal solutions; 
- if the number of tasks is greater (pat100 and pat110) the 

set of generated permutations does not even include a 
valid permutation. However there is the possibility to 
obtain solutions by modifying the parameters of the 
algorithm (a greater number of iterations and/or 
individuals).  
In the second experiment (Table III), because the sorting 

procedure was applied, all the generated permutations are 
also valid from the precedence relations point of view. 

 
TABLE III. RESULTS OBTAINED IN CASE OF SORTED PERMUTATIONS 

Number of 
generated 

permutations 

Number of 
generated 
optimal 

permutations 

RCPSP 
problem 

Number
of tasks 

Total 
number of 

permutations 
total unique total unique

Solu-
tion 

pat1 14 479.001.600 40020 1335 39705 1181 19 
pat100 27 ~1.55e+25 40020 11196 33119 8860 33 
pat110 51 ~6.08e+62 40020 19129 33760 15935 50 

In this case, the proposed method allows obtaining the 
optimal solution for all three RCPSP problems, even if the 
number of tasks is greater. Also the number of unique 
optimal permutations is enough great, which leads to the 
idea that the algorithm can be used to solve more complex 
problems. The optimal solution was obtained for all 110 
RCPSP problems in the “Patterson” set with the notice that 
for some of them it was necessary to increase the number of 
iterations from 2000 to 5000.  

B. Comparison of results obtained by using PSO and FPA 

In the experiment presented below the results obtained by 
using FPA and PSO are compared, using both optimization 
methods: combinatorial and priority based. The priority 
based optimization is performed in the continuous space. 
The coordinates of individual’s positions are real numbers in 
the  hyper-interval, where n is the number of tasks in 
the optimization problem. The value of each coordinate is 
considered as the priority of the corresponding task in the 
project. More specifically, for each solution the coordinates 
are sorted in increasing order to obtain a permutation of 
tasks. As in the combinatorial optimization, the obtained 
permutation does not necessarily verify the precedence 
conditions, so the sorting by precedence procedure has to be 
applied.  

To compare the results to those reported in [5], the same 
set of 10 optimization problems from [25] was used. In [25] 
a large amount of benchmarks with 30, 60, 90 and 120 tasks 
is available. In all these, the number of resources is 4 and 
each task has no more than 3 successors.  In the last part of 
this section, some results obtained in case of problems with 
120 tasks are presented.   

The two optimization algorithms were applied using the 
following parameters: 
- FPA combinatorial (FPA-C): #flowers=50, 

#iterations=100, switch probability=0.8; 
- FPA priority based (FPA-P): #flowers=50, 

#iterations=100, switch probability=0.8; 
- PSO combinatorial (PSO-C): #particles=50, 

#iterations=100, inertia weight 75.0w , personal 
cognitive weight 2.01 c , social cognitive weight 

8.02 c ; 

- PSO priority based (PSO-P): #particles=50, 
#iterations=100, inertia weight 729.0w , personal 
cognitive weight 49445.11 c , social cognitive weight 

49445.12 c ; 

The number of individuals and iterations was determined 
by experiments and they were chosen so that the number of 
objective function evaluations is similar in all cases. The 
other parameter of FPA-C and FPA-P was determined by 
experiments. The weights used in PSO-C are those proposed 
in [24] and the weights used in PSO-P are those proposed in 
[26]. Because the number of iterations and individuals 
(flowers / particles) have a great impact on the required 
computing resources, especially on the processing time, 
their values were chosen to allow obtaining the known 
solution for most of the test problems. In the case of more 
complex problems, these values need to be increased, as will 
be outlined in the next paragraphs. The other parameters 
influence the convergence speed. For each optimization 
problem 100 runs of each algorithm were performed, with 
the results presented in Table IV and Table V. The column 
Known solution contains the optimal solution as it is 
specified in [25]. The columns Min, Max and Avg show the 
minimum, maximum and average optimal solutions 
respectively, determined as results of the 100 runs of each 
algorithm. The column Err% contains the percentage 
deviation of the average solution from the optimal solution 
and it is computed using (14) [5]. 

100



solutionoptimal

solutionoptimalsolutionaverage
Err . (14) 

The last column, Err%*, contains the deviation percent 
reported in [5]. These values were obtained using DFPA 
with 20 individuals in the population and 1000 iterations 
which means that about four times more solution candidates 
were generated. 

 
TABLE IV. RESULTS OBTAINED USING FPA 

Solutions - 
combinatorial 

Solutions – Priority 
based Problem

Known 
solution

Min Max Avg Err% Min Max Avg Err%
Err%*

J3006_2 51 51 51 51.00 0 51 51 51.00 0 1.06 
J3015_4 48 48 48 48.00 0 48 48 48.00 0 0.29 
J3020_1 57 57 57 57.00 0 57 57 57.00 0 0.24 
J3026_6 53 53 54 53.66 1.25 54 55 54.10 2.07 0.34 
J3029_4 103 104 104 104.00 0.97 104 105 104.22 1.18 0.47 
J3034_4 67 67 67 67.00 0 67 67 67.00 0 0.42 
J3039_3 54 54 54 54.00 0 54 54 54.00 0 0.22 
J3042_8 82 82 82 82.00 0 82 82 82.00 0 0.41 
J3045_2 125 125 125 125.00 0 125 126 125.01 0.01 0.56 
J3048_2 54 54 54 54.00 0 54 54 54.00 0 0.33 

 
TABLE V. RESULTS OBTAINED USING PSO 

Solutions - 
combinatorial 

Solutions – Priority 
based Problem

Known 
solution

Min Max Avg Err% Min Max Avg Err%
Err%*

J3006_2 51 51 52 51.18 0.35 51 52 51.13 0.25 1.06 
J3015_4 48 48 48 48.00 0 48 48 48.00 0 0.29 
J3020_1 57 57 57 57.00 0 57 57 57.00 0 0.24 
J3026_6 53 53 55 54.07 2.02 53 55 54.04 1.96 0.34 
J3029_4 103 104 105 104.15 1.11 104 105 104.16 1.12 0.47 
J3034_4 67 67 67 67.00 0 67 67 67.00 0 0.42 
J3039_3 54 54 54 54.00 0 54 54 54.00 0 0.22 
J3042_8 82 82 82 82.00 0 82 82 82.00 0 0.41 
J3045_2 125 125 126 125.08 0.06 125 126 125.06 0.05 0.56 
J3048_2 54 54 54 54.00 0 54 54 54.00 0 0.33 
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By analysing the results presented in Table IV and Table 
V the following conclusions can be drawn: 
- The optimal solution was reached by FPA-C, PSO-C and 

PSO-P for 9 benchmark problems and by FPA-P for 8 
problems; 

- The optimal solution was obtained in all 100 executions of 
the algorithm by FPA-C for 8 problems and by FPA-P for 
7 problems;   

- For 6 problems, PSO-C and PSO-P have obtained the 
optimal solutions in all 100 executions of the optimization 
algorithm; 

- For the J3029_4 problem, the optimal solution was never 
obtained. 

- The results obtained in all 4 experiments are better than 
those reported in [5] in terms of percentage of the 
deviation for 8 benchmark problems.  

 
For problems J3026_6 and J3029_4 the results were 

improved by increasing the number of iterations (Table VI) 
and in case of FPA-C, the error became lower than that 
reported in the mentioned paper. Unfortunately, none of 
FPA-P, PSO-C and PSO-P was able to obtain the known 
optimal solution for problem J3029_4. 

 
TABLE VI. RESULTS OBTAINED AFTER THE NUMBER OF ITERATIONS WAS 

INCREASED TO 400 
Solutions - 

combinatorial 
Solutions – Priority 

based Alg Problem 
Known 
solution 

Min Max Avg Err% Min Max Avg Err%

Err
%*

J3026_6 53 53 54 53.10 0.19 53 54 53.80 1.51 0.34
FPA 

J3029_4 103 103 104 103.99 0.96 104 104 104.00 0.97 0.47
J3026_6 53 53 55 53.72 1.35 53 55 53.84 1.58 0.34

PSO 
J3029_4 103 104 105 104.09 1.05 104 105 104.10 1.07 0.47

 

In Table VII an analysis on the number of unique (U), 
optimal (O) and unique optimal (OU) solutions generated 
during the evolution by all four algorithms used in the 
experiment is presented. The unicity was considered in 
terms of the time established to start each task, not of 
generated permutations, because different permutations can 
lead to the same solution. Because the number of individuals 
(50) and iterations (100) was the same in all cases, the total 
number of generated solutions was 5050 and is not shown. 
The permutation sort procedure was applied, so, all 
solutions are valid. It must be mentioned also that all the 
values in the Table VII were obtained for a single execution 
of the algorithms. 

 
TABLE VII. UNIQUE, OPTIMAL AND UNIQUE OPTIMAL SOLUTIONS 
 FPA-C FPA-P PSO-C PSO-P 

Problem U O OU U O OU U O OU U O OU
J3006_2 288 3411 14 394 198 8 438 4062 7 657 1439 13 
J3015_4 936 5025 927 746 4976 736 170 5044 64 1157 4875 1021
J3020_1 1 5050 1 1 5050 1 1 5050 1 1 5050 1 
J3026_6 374 253 2 411 10 1 608 3450 7 2334 339 7 
J3029_4 600 2848 206 601 204 10 1230 3622 67 4373 68 14 
J3034_4 10 4951 3 10 4966 3 11 4995 3 14 2817 3 
J3039_3 23 4761 1 21 4283 1 27 4854 1 55 1355 1 
J3042_8 964 4834 848 704 4351 542 358 4813 139 2835 1704 531
J3045_2 1398 3811 955 1235 17 1 1551 3704 284 4241 824 451
J3048_2 1 5050 1 1 5050 1 1 5050 1 1 5050 1 

 

The following conclusions can be also drawn: 
- First of all, there is no rule linking the number of solutions 

to the algorithm used. Rather it seems that the number of 
solutions depends on the optimization problem and on 

how favourable or not are the possible solutions generated 
during the execution of the algorithms; 

- Comparing the number of solutions generated by the 
combinatorial and priority based versions of the two 
algorithms it seems that the second one generates less 
optimal solutions even if in some cases the number of 
unique optimal solution is greater than in the first case; 

- For the problems J3020_1 and J3048_2, all the 5050 
generated solutions are optimal and there is only one 
unique solution which is also optimal. From this, we can 
conclude that for each of these optimization problems the 
precedence conditions lead to a unique solution which is 
optimal. In fact for all generated sequences of tasks, the 
sorting procedure offers always the same result; 

- Concerning the problem J3029_4 for which the known 
optimal solution was not obtained, we can conclude that 
the optimization processes are trapped in some local 
solutions and the result can be improved only by a better 
adjustment of the algorithms parameters. 
All the algorithms were implemented in C++ and the 

experiments were made using a Core i3 2.4 GHz processor 
based computer with 6 GB RAM. The average processing 
time for the experiments presented in Table IV and Table V 
is presented below. 

TABLE VIII. AVERAGE PROCESSING TIME, IN SECONDS 
Optimization 

algorithm 
FPA PSO 

Optimization type Combinatorial 
Priority 
based 

Combinatorial
Priority 
based 

Average processing 
time (sec) 

0.39 0.45 0.35 0.40 

By analysing the values in Table VIII, it is obvious that 
on the one hand PSO is faster than FPA and on the other 
hand the combinatorial versions are faster than the priority 
based versions. First, PSO is faster because in the evolution 
loop the particles new position computing is based on 
arithmetic operation only while in FPA the new position 
computing requires an exponential and a sine function 
evaluation. Concerning the difference between 
combinatorial and priority based optimization, it is caused 
by the fact that in the second case, each fitness function 
evaluation requires the priorities list to be sorted in order to 
compute the permutation of tasks. Even if the solution was 
known, in all experiments the stop condition of the 
algorithm was to reach the maximum number of iterations.  

In Fig. 5 and Fig. 6 the evolution of fitness during the 100 
iterations is presented for two problems with 30 tasks: 
J3006_2 and J3042_8. The minimum, maximum and 
average fitness of the 50 flowers / particles are presented. 

Analysing the results obtained for problem J3006_2, the 
following conclusions can be drawn: 
- the swarming tendency is obvious, excepting the case of 

priority based FPA; the fitness value of all individuals 
reaches the optimum value in iteration 91 for FPA-C, 
iteration 46 for PSO-C and iteration 29 for PSO-P; 
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a. FPA combinatorial optimization 

 

 
b. FPA priority based optimization 

 

 
c. PSO combinatorial optimization 

 

 
d. PSO priority based optimization 

Figure 5. Problem J3006_2, evolution of the minimum, maximum and 
average value of individuals fitness function, respectively 

 
- the optimum fitness is reached in iteration 51 by FPA-P, 

but many other individuals remain trapped up to end in 
other local solutions of the problem; 

- the three values are equal between iterations 8 and 40 of 
PSO-C but the value is not optimum; this demonstrates 
that it is not advisable to stop the algorithm before 
reaching the maximum number of iterations, at least in 
case of optimization problems in the discrete space;  

- PSO-P is the first algorithm that reaches the optimum 
value, in the 3rd iteration; 

- for this problem, it seems that PSO offers the best results. 
The results obtained for problem J3042_8 lead to the 

following conclusions: 
- the optimum solution of the problem is found by all 

algorithms in the first iteration; this is explained by the 
large number or optimum solutions, as can be seen in 
Table VII; 

 
a. FPA combinatorial optimization  

 

 
b. FPA priority based optimization 
 

 
c.PSO combinatorial optimization 

 

 
d. PSO priority based optimization 

Figure 6. he minimum, maxi um and 

- the optimum value is reached faster in case of PSO by all 

lem, it seems that PSO offers the best 

ysing the charts in Fig. 5 and Fig. 6 it can be 
co

ollowing paragraphs, some conclusions related to 
m

 Problem J3042_8, evolution of t m
average value of individuals fitness function, respectively 

 

individuals: iteration 5 for PSO-C, iteration 12 for PSO-P 
and iteration 35 for FPA-C; also in this case, after 100 
FPA-P iterations does not reach the optimal value with all 
individuals, even the average value is close to the 
optimum;  

- also for this prob
results; 
By anal
ncluded that the combinatorial versions of the two 

algorithms offer better results than the priority based 
versions. 

In the f
ore complex problems are presented. As it was mentioned 

above PSPLIB include RCPSP problems with 30, 60, 90 and 
120 tasks. We made some test with problem which contains 
120 tasks each one with at most 3 successors, and 4 
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resources which must be shared. In this case, the number of 
permutations is 120! which is about 6.69*10198. Besides the 
number of activities, the complexity of the problems arises 
from the number of required resources. If only one resource 
is required to complete a task, the scheduling can be 
computed using the four methods (FPA-C, FPA-P, PSO-C 
and PSO-P) with the same parameters as in the case of 
problems with 30 tasks (50 individuals and 100 iterations). 
Some examples of such problems are X04_8, X24_2 and 
X44_7 [25] whose results are presented in tables below. 

 
TABLE IX. RESULTS OBTAINED FOR PROBLEMS WITH 120 TASKS 

Solutions - 
c  

Solutions – Priori
ombinatorial

ty 
based Alg. Pr

Min rr% M
oblem 

Known 
solution 

 Max Avg E in Max Avg Err%
X04_8 90 90 90 90.00 0 90 90 90.00 0 
X24_2 91 91 94 93.60 2.  86 91 95 93.94 3.23FPA 
X44_7 98 98 98 98.00 0 98 99 98.03 0.03
X04_8 90 90 90 90.00 0 90 90 90.00 0 
X24_2 91 91 95 93.82 3.  10 91 95 93.69 2.96PSO 
X44_7 98 98 98 98.00 0 98 102 98.08 0.08

 
UTABLE  UNIQUE, OPTIMAL AND NIQUE OPTIMAL OLUTIONS X. S

DETERMINED DURING A SINGLE RUN 
 FPA-C FPA-P PSO-C PSO-P 

Problem U U U U U U U UO O O O   O O  O O
X04_8 2515 4987 2478 3080 4917 3002 336 5018 311 69 5027 50
X24_2 994 2638 352 858 182 7 504 4686 342 276 45 3 
X44_7 1804 2925 939 1428 176 24 997 4562 781 236 3625 47

 

By analysing the values presented in Table IX and Table 
X

results obtained for a problem in which 
al

 it is obvious that none of the methods used can be 
considered as the best. The second problem (X24_2) for 
which the error percent in not 0, the fewest unique solutions 
were determined, except for PSO-C. However it must be 
noticed that the values in Table X refer a single run of the 
algorithms which are based on randomly chosen initial 
possible solutions. 

Fig. 7 shows the 
most all tasks require all four resources to can be 

completed. 
 

 
a. FPA combinatorial optimization 

 

 
b. PSO combinatorial optimization 

Figure 7. e minimum, maxi um and 

terations and 

in

 
NIQUE, OPTIMAL AND UNIQUE OPTIMAL SOLUTIONS 

 Problem X15_3, evolution of th m
average value of individuals fitness function, respectively 
 

To obtain these results the number of i

dividuals were increased as follows: FPA-C: 500 iterations 
and 100 individuals; PSO-C: 1000 iterations and 100 
individuals. FPA-C reaches the best solution in iteration 205 
and PSO-C in iteration 915. Also for this problem, PSO-C 
has a large number of iterations, between 511 and 914 in 
which all the individuals have the same best fitness value. 
So, for more than 400 iterations the value of all individual 
best fitness is not enhanced without being equal to the 
problem’s solution. It must be mentioned also that for FPA-
C, the personal best fitness of all individuals became equal 
to the best fitness in iteration 293, but this does not happen 
in 1000 iterations of PSO-C. In Table XI the numbers of 
unique, optimal and unique optimal solutions are presented, 
respectively. The number of generated possible solutions is: 
500.000 in FPA-C and 100.000 in PSO-C. As in previous 
problems, FPA-C generates more unique optimal solutions 
than PSO-C.  

TABLE XI. U
DETERMINED DURING A SINGLE RUN 

  FPA-C PSO-C 
Problem  OU U OU U O O 

15_3 3657 1  47802  3846 201 447  29 

Conce  t x e t p zation 
pr

 SECONDS 
Optimiz

rning he e ecution tim  of he o timi
ocedures for RCPSP problems with 120 tasks, as it can be 

seen in Table XII, it is much higher than in case of problems 
with 30 tasks. This is caused by the fact that each generated 
possible solution (permutation of 120 values) requires to be 
reordered to meet the precedence relations. 

 
TABLE XII. AVERAGE PRO SSING TIME, INCE

ation 
FPA PSO 

algorithm 
Optimization 

type 
Combinatorial

Priority 
Combinatorial

Priority 
based based 

Iterations 500 1000 5 0 5 000 100 500 1000 00 100
A  verage time

(sec) 
26.32 49.75 31.75 63.23 26.86 54.21 29.28 58.85

 

In the table above, the processing time is presented for all 
fo

also that for some RCPSP problems 
w

IV. CONCLUSIONS 

In this p o Nature-Inspired 
al

ur methods with both 500 and 1000 iterations even if not 
all these combinations led to the known optimal solution. 
Also, the execution time was obtained using a sequential 
implementation in C++ of the algorithms, as Windows 
application and the processing unit was shared with other 
running applications. 

It must be noticed 
ith 120 tasks which are more complex, the number of 

iterations and individuals should be greatly increased 
making the algorithms difficult to execute on a usual 
computer. Optimal implementations of the algorithms 
should be considered in this case. 

aper, the capability of tw
gorithms - Flower Pollination and Particle Swarm 

Optimisation - for RCPSP problems solving is studied. The 
advantage of these NI algorithms is that a near optimal 
solution can be obtained faster than for other classical 
algorithms. Mainly this is true for optimization problems in 
the continuous space. For optimization in the discrete space 
or combinatorial optimization problems, these algorithms 
require some modification not only in data encoding and 
storage but also in the evolutionary strategies used. In the 
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is lower, in fact the optimal so

ed 

ms, in which the number o

 as being t

 by optimizing the procedur
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