
Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

Combinatorial versus Priority Based
Optimization in Resource Constrained Project

Scheduling Problems by Nature Inspired
Metaheuristics

Silviu-Ioan BEJINARIU1, Hariton COSTIN1,2, Diana COSTIN3
1Institute of Computer Science, Romanian Academy, Iaşi, 700481, Romania

2Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, Iaşi,
700454, Romania

3Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iași, 700115, Romania
hcostin@gmail.com

Abstract—This paper explores the behavior of the Flower

Pollination Algorithm (FPA) and Particle Swarm Optimization
(PSO) metaheuristic algorithm in resolving Resource
Constrained Project Scheduling Problems (RCPSP) that can
model certain practical issues in distributed applications. A
RCPSP type problem has at the input a set of activities between
which there are precedence relationships and for whose
execution it is necessary to allocate resources that are limited.
The solution determines the order of execution of the activities
with respect to the precedence relations between them and the
allocation of the available resources so that the total duration is
minimal. The experimental results showed that a near optimal
solution can be obtained faster than with other traditional
algorithms, mainly for optimization problems in the continuous
space. Two versions of FPA and PSO were used, namely
combinatorial and priority based optimization. Because during
evolution the individuals’ position changes do not guarantee
the precedence order preservation, a new tasks reordering
procedure is proposed in this paper.

Index Terms—biological information theory, evolutionary
computation, optimization, particle swarm optimization,
scheduling algorithms.

I. INTRODUCTION

In economy, one of the key issues to be optimally solved
is resources allocation in order to manage costs, working
time, broaden access and improve general efficiency. For
instance, an overview of recent Operating Research models
developed for home health care routing and scheduling
problem (HHCRSP) is presented in [1]. The HHCRSP is an
extension of the vehicle routing problem with constraints
that make it difficult to solve. The routes used by care
workers to provide care to patients who live in the same
geographic area and who must be treated at home have to be
optimized in HHCRSP. Different objectives, as travel costs
minimization or quality of services maximization, are used
in this class of problems.

The use of biological inspiration algorithms is a relatively
new approach to solve optimization problems. These
algorithms are inspired by the strategies of living beings in
the feeding process, for survival or perpetuation of the
species. Also, some algorithms in this class are inspired by
other phenomena or natural or artificial processes. Being
part of the metaheuristic algorithms, the biological

inspirational algorithms often allow a quick solution to be
obtained close to the optimal solution, in complexity
problems. So, a new research on using such algorithms in
Resource Constrained Project Scheduling Problem (RCPSP)
makes sense.

In [2] a novel Particle Swarm Optimization (PSO) based
approach for RCPSP is proposed. It is based on two rules:
delay local search rule and bidirectional scheduling rule
which facilitate finding global minimum. The first rule
enables some delayed activities by altering the starting time
being capable of escaping from local minimum. The second
rule combines forward and backward scheduling to expand
the searching area for obtaining potential optimal solution.
A hybrid combinatorial version of PSO is proposed in [3]. It
is designed for the flowshop scheduling problem in which
the makespan criterion has to be minimized. Different
priority rules defined by experimental studies and statistical
analysis are used in the initialization step of PSO. Another
PSO based approach for RCPSP solving is presented in [4].
In [5] it is proposed a Discrete Flower Pollination Algorithm
(DFPA) used to solve RCPSP. The DFPA is an adaptation
of FPA for solving combinatorial optimization problems. In
DFPA, some of the algorithm's core concepts, such as
flower, global pollination, Lévy flight, local pollination,
were redesigned.

The FPA [6] is used to solve various optimization
problems, including medical image processing, processes
optimization or structural engineering. A retinal blood
vessels localization approach which uses the multi-objective
version of FPA for image optimal clustering and Pattern
Searching algorithm for segmentation results enhancement
is proposed in [7]. In [8] FPA is used to find the optimal
thresholds by maximization of between-class variance for
multi-threshold image segmentation. A FPA-based approach
for structural design optimization is proposed in [9]. The
problems to be solved there have various design constraints
concerning structural security measures and are related to
pin-jointed plane frames, truss systems, deflection
minimization of I-beams, tubular columns, and cantilever
beams.

 17
1582-7445 © 2019 AECE

Digital Object Identifier 10.4316/AECE.2019.01003

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

In [10] the optimization objectives are: 1) minimizing
the total transportation, and 2) maximizing the satisfaction
of demand points (an interesting criterion).

Finally, it is worth to be mentioned the paper [11], which
introduces a novel metaheuristic framework that allows
multi-objective optimization of combinatorial problems, that
would be an useful tool for an extension of our proposed
work.

This paper is dedicated to the FPA and PSO metaheuristic
algorithm in resolving RCPSP, and an objective comparison
between them is made in order to better model certain
practical issues in distributed applications.

The work presented in this paper continues the research of
the authors in the nature-inspired (NI) optimization field.
Mainly, NI algorithms were used for image registration
procedures which require computing the parameters of a
geometric transform. In this case the number of parameters
is reduced and good results were obtained by applying the
Bacterial Foraging Optimization Algorithm [12-14], Cuckoo
Search and Bat algorithms [15]. Other approaches, as
multispectral image fusion using Particle Swarming, Cuckoo
Search and Fireworks algorithms were presented in [16]. A
study of the nature inspired algorithms performances is
presented in [17]. Because in image registration procedures
the fitness function computing is time consuming, the speed
can be improved by using parallel versions of the
optimization algorithms [12].

The objective of the RCPSP problem is to compute the
minimum time to complete a set of activities by respecting
the precedence relations between them and allocating the
required resources up to the limit of their availability.

The following information is used to define a RCPSP [5]:

 naaaA ,...,, 21 – a set of activities; and are

dummy activities representing the beginning and the end of
the project,

n 1a na

 ndddD ,...,, 21

01  nd

 – the duration of each activity;

obviously the duration of the dummy activities is
, d

  jinjiaaP ji  ,,1,,

ia

na

 – a set of precedence

relationships meaning that activity can be started only

after the is completed; obviously, has no predecessors

and has no successors. The set of precedence

relationships can be represented as a graph.

ja

1a

 qrrrR ,..., 21

iri 1,

 – a set of resources available in

quantities ,

q

q

    nqnq bbbbB ,...,...,... 1111 – the resources required to

complete each activity, where qjnibij  1,1, is the

quantity of resource required to complete activity i . The

dummy activities do not need resources.

j

The problem is to determine the execution order of
activities in A so that the total time is minimal, respecting
the precedence relations and allocating the resources within
the available limit, namely the set , where

is the planned time to start

 ntttT ,..., 21

ni 

 it

ai 1, . In fact, 01 t and

 is the total time, because . nt 0nd

The mathematical formulation of the RCPSP problem is:

 

 















 

)3(:

,1,,

)2(,,,
)1(min

iiiit

kAa ik

jiiij

n

dtttaA

whereqkkrb

Paawithjidtt
t

ti

where (1) is the objective function to be minimized, in
restrictions (2) the precedence relationships are encoded,
and (3) represents the set of restrictions related to the
available resources allocation, where is the set of

activities in progress at time
tA

ia t .

This is the simplest formulation of a RCPSP, in which the
duration of each activity is specified by a single value
(Single Time Estimate). In practice, the duration of activities
is not fixed, so that the minimum, maximum and most
probable time required to complete each activity are
considered (Triple Time Estimate). The classical methods of
RCPSP solving are part of graph theory: CPM (Critical Path
Method) or PERT (Program Evaluation and Review
Technique).

RCPSP can be solved as a combinatorial problem by
computing the permutation of  nzzzZ ,..., 21  n,...2,1

ka

which specifies the launching order of the activities in set A
with the following meaning: if then activity is in

the position in the launching order. Obviously, the
dummy activities and keep their original positions

kzi 

n

thi

1
1a a

1 z and nzn  . The moment when each activity is

launched  ntt ,...2t ,1T  can be determined by a single

parsing of the list of activities in the order specified by Z as
it will be described in the following sections. Obviously,
there are possible solutions for a RCPSP, value which
can be enough large in case of a great number of activities,
so, the usage of nature-inspired metaheuristics is justified.

!n

II. OPTIMIZATION BY NATURE INSPIRED METAHEURISTICS

In the following paragraphs it is analysed the usage of
two nature-inspired (NI) optimization algorithms for RCPSP
solving. The NI algorithms are inspired form the nature
intelligence and model the strategies used by life forms for
survival, feeding or species perpetuation. Other NI
algorithms are inspired from natural or artificial phenomena.
Most of these algorithms were initially developed for
optimization problems in the continuous space, where they
are able to find near optimal solutions faster than classical
algorithms [18]. For most of the NI algorithms, versions for
multi-objective optimization, integer and binary
programming were also developed.

In case of the single-objective optimization, the general
form of the problem is

  d

Sx
RSxf 


,min , (4)

where is the problem domain and it can also specify a set
of constraints. The domain number of dimensions is
given by the number of parameters of the objective function

S
d

f .

The structure of NI optimization algorithms is similar to
most evolutionary algorithms (Fig. 1):

Initialize the set of possible solutions
Initialize the value of the best solution

 18

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

while stop condition is not met perform
evolution loop

 build the next generation of solution
candidates by applying the evolution
strategy

evaluate the value of the objective function
for all new solution candidates

 apply the selection strategy to build the next
generation of possible solutions

 update the value of the best solution
end while

Figure 1. General structure of nature-inspired algorithms

The NI algorithms are based on a set of individuals
(possible solutions) which evolve in the problem domain
using the evolution strategy that models the evolutionary
strategy of the species from which the algorithm is inspired.
The optimization problem’s parameters are encoded as
position of individuals. The objective function is evaluated
in all the positions achieved by individuals during the
evolutionary process. The algorithm continues until the stop
condition is met. The solution of the problem is the position
in which the best value of the objective function was
reached. Usually, during evolution, the individuals move in
the problem domain trying to optimize the objective. In
some algorithms new individuals (descendants) are created
in new positions so a selection strategy is applied to keep
the populations size constant.

A. Particle Swarm Algorithm

The Particle Swarm Optimization (PSO) algorithm is one
of the most efficient nature-inspired metaheuristic which is
derived from the bird or fish swarming intelligence [19].
The evolution strategy is collaborative and individuals tend
to move together toward the solution of the problem. This is
done by using the personal and global experience when the
moving direction is computed. In every step the particles
move in directions which are mainly random, but
components which direct them toward their personal best
and global best positions are used.

Let be the position of the particle in the

iteration. The new position is computed as:

t
ix thi Sxi 

tht

11   t
i

t
i

t
i vxx (5)

   t
i

best
i

t
i

t
i xxrcvwv 11

1

  t
i

best xxrc  22 , (6)

where is the displacement of the particle in the

iteration, is the moving inertia coefficient, and are

the local (personal) and global (social) learning coefficients,

respectively, is the best position reached by the

particle, is the best position reached by any particle in
the population and , are random values. Using this

strategy, the particles tend to swarm towards the solution of
the problem. Multi Swarm Optimization [20] is an extension
of PSO which is useful for multi-modal optimization
problems. The particles are organized into swarms and the
experience of the group is also used in the evolution
strategy.

t
iv

x

thi tht

thi

w

best

1c 2c

best
ix

1r 2r

B. Flower Pollination Algorithm (FPA)

The FPA, proposed in [21] is inspired by the pollination
process of flowering plants. Pollination can be achieved by

self-pollination (pollen of the same flower or another flower
of the same plant) or cross-pollination (pollen of another
plant). The cross-pollination can be biotic when it is
achieved by pollen vectors (insects or birds which fly a long
distance), or abiotic when the pollination is helped by wind
or water, usually on short distances. The pollination process
was modelled [21-22] by the following rules used in FPA:
- biotic cross-pollination is considered as global

pollination in which the vectors perform Lévy flight;
- self-pollination and abiotic pollination are considered as

local pollination;
- the reproduction probability (flower constancy) is

proportional to the similarity of the two flowers;
- local and global pollination is controlled by a switch

probability.

Let  nixX i ,...,1,  the individuals in the population,

in this case flowering plants which are specified by their

position in the optimization problem domain, ,

where is equal to the number of parameters of the
objective function. As it is described in the algorithm in Fig.
2, during a number of generations, each individual is

replaced by a new individual whose position is computed
using the local or global pollination model, the selection
being made using the switch probability, only if the value of
the objective function in the new position is better. Global
pollination is modelled [21] by:

d
i RSx 

ix

d

 t
i

bestt
i

t
i xxLxx 1 , (7)

where şi are positions of the individual in the

and iterations respectively, is the position in

which the best value of the objective function was computed
and is the step length computed using the Lévy
distribution [21]:

t
ix

t 1

L

1t
ix thi

bestx

tht
th)(

   

1

2sin



 


s

L . (8)

In (8),  is the gamma function,  is constant and
is a constant used to establish the step length. The local
pollination is described by:

0s

  t
k

t
j

t
i

t
i xxxx  1 , (9)

where  is a random value with uniform distribution,

and are two randomly chosen individuals with

jx

kx kj  . In

Fig. 2 the general structure of the FPA is described.

generate X the initial population in

random positions
compute the objective function for each

individual
compute the best solution in the initial

population
for t =1 to number of generations
 for each individual
 if random < selection likelihood
 compute L step length with Lévy

distribution
 Global pollination:
 else
 generate a random value with

uniform distribution
 randomly choose 2 individuals şi
 Local pollination:
 end if

 19

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

 evaluate the new solutions
 if the new solutions are better
 update the elements in
 end if
 end for
 update the best solution
end for

Figure 2. General structure of Flower Pollination algorithm [21]

The FPA was developed mainly for global optimization in
the continuous space and it proved to be more efficient than
PSO and Genetic Algorithms (GA). In literature, multiple
variants of FPA are presented, including versions for integer
or binary programming.

C. Combinatorial optimization using Particle Swarm
algorithm

In [23-24] it is proposed an extension of PSO for solving
combinatorial problems, named CPSO. Bellow, the
proposed changes in the standard PSO are briefly presented.

In CPSO, each possible solution is a permutation

of and it is accompanied by a status vector

defined as follows for each of its components:

Xxi 
 n,...2,1  iy

















,0

,11

1

1

otherwise

xxxifrandomlyor

xxif

xxif

y
best
j

best
ijij

best
ijij

best
jij

ij (10)

where is the component of best global

position, and is the component of , the best

position of the particle. The position update is performed
for each component of the position vector using (11), (12)
and (13). First, the velocity is computed for each particle:

best
jx thj bestx

xbest
ijx

thi

thj best
i

    t
ij

t
ij

t
ij

t
ij yrcyrcvwv  121 211

1   (11)

Then, the values of are adjusted to compute the new

position:












 





,0

1

1
1

1

1

otherwise

vxif

vxif

y t
ij

t
ij

t
ij

t
ij

t
ij 


 (12)

where  is a parameter used for intensification and
diversification. For small values of  , the components of
the best global position or best personal position are used
(intensification). For larger values of  new random values
are used (diversification). Finally, the new position is
computed by:












 





otherwiserandom

yifx

yifx

x t
ij

best
ij

t
ij

best
j

t
ij 1

1
1

1

1 (13)

It is obvious that in the new position computing step, care
should be taken to ensure that it is a permutation of

 and the precedence relations are verified.  n,...,2,1 
D. Combinatorial optimization using Flower Pollination
algorithm

One FPA-based RCPSP solving method is the Discrete
Flower Pollination Algorithm (DFPA) proposed in [5].

Below, the differences between FPA and DFPA are shortly
presented. Concerning the model used for individuals
evolution in the problem‘s domain, the following operators
are defined: swap mutation (the position of two randomly
chosen activities are switched), multiple swap mutation,
inverse mutation (the positions of all activities between two
randomly selected activities are switched) and crossover
(combines two randomly selected flowers) [5]. The local
pollination is accomplished by applying the crossover
operator: a sequence of tasks from the first flower is selected
to create a new flower and all missing tasks are added in the
free positions with respect of their order in the second
flower. The global pollination requires a step length

 1;0s to be computed using the Lévy distribution. The

interval  1;0 is divided in subintervals of equal length. If k

 ks 1;0 then a swap mutation is executed. If

   2,...1,)1(;  kikikis then a multiple swap which

consists of  1i swap mutations, is executed. For the

larger values of the step length,  1;)1(kks  an inverse

mutation is executed.
It must be noticed that in DFPA, in the global pollination

a single individual is involved, unlike the standard FPA,
which uses also the current best position to compute
the new solution candidate.

E. Precedence relations in solutions candidates

During the evolutionary process, it is obvious that not all
possible solutions (permutations) are generated. Some
solutions are generated more than once and there are also
solutions which do not check the precedence relations. Since
these solutions do not solve the problem, it can be assumed
that in these cases the execution time of the project is
without modifying the algorithm. But as it will be seen in
the following paragraphs, the number of these invalid
solutions is large enough, which reduces the possibility to
find the optimal solution of the RCPSP problem.

The problem is to sort the elements of the input
permutation to obtain a valid permutation which meets the
precedence conditions, using a minimum number of changes
in the original permutations so that the elements that are not
related keep as much as possible their relative order. The
classical sorting algorithms can’t be used for such ordering
because the precedence relation is not a total order relation.
It is not defined for tasks located on different paths on the
associated directed graph. In this case, a topological
ordering (Kahn’s algorithm) has to be applied.
Unfortunately, the topological ordering leads always to the
same solution if the successors of an activity are not
processed in the order specified by the processed
permutation. Even if in the algorithm the successors are
processed in the order of their occurrence in the
permutation, this is considerably altered, making it difficult
to obtain the known solution. To solve these issues, an
original sorting procedure is proposed in this paragraph (Fig.
3). It is based on the usage of a temporary array which
contains the position of each task in the permutation. All the
pairs of tasks between which there is a precedence relation
are checked and swapped if their order is incorrect in the
permutation. The procedure is resumed from the new

 20

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

position of the current element, which is a position prior to
the original one.

SortByPrecedence
Build the array which contains for each
activity its position in the permutation
for i=1 to n

 for each -successor of
 if
 swap and in the permutation

 spawn the corresponding elements in the
index array

 end if
 end for
 if

 end if
end for

Figure 3. Sort algorithm for permutation validity checking and reordering

The proposed sorting method allows obtaining a valid

permutation in which the precedence conditions are met,
using a minimum number of changes in the original
permutations.

F. Transforming the permutations into solutions

Each permutation specifies the order in which the
activities are started. The starting time of each activity is
then computed according to the completion of previous
activities and resources availability. During the solution
computing, a list of events is built up. Each event contains
information about the current time, the list of current
activities which includes their status in relation to the event
time (start, end, ongoing) and the resources availability at
that time. A single parsing of the activities in the order
specified by the permutation allows the solution to be
determined by building the events list (Fig. 4).

Build_Solution
Create an event at time and add the dummy
 activity with start and end status, the
 resources are not changed
for each activity in the order specified by
 the permutation
 find with the maximum time at which a

predecessor activity of is completed
 while required resources for activity are not

free go to next event in the list
 end while
 add activity in the list of current event
 with status and update resources
 find whose time is equal to the end time
 of activity
 if such an event does not exist, a new _2
 is created in the proper position
 add activity in the list of with
 status and update resources
 add activity with status ongoing to all
 events between and and update
 resources
end for
for each event in the list of events are

identified the activities with status ;
 the time of the event is the starting time for
 these activities
end for
the time required to complete the project is the
 starting time of the last activity.

Figure 4. Algorithm for transforming a permutation of activities into the
solution

It is obvious that the solution computed using the
proposed algorithm is not unique. There may be situations
when the resources required for an activity are available for
a longer period than the duration of the activity. In this case,
the activity may be delayed, but the change is local and does
not affect the overall duration of the project.

III. EXPERIMENTS AND RESULTS

First, the proposed permutation sorting method to solve
RCPSP using PSO and FPA was validated and then the
results obtained by the two optimization methods were
compared to those reported in [5]. The RCPSP library
available on the PSPLIB site of TUM School of
Management, Technical University of Munich was used in
experiments [25].

A. Validation of the permutation sorting procedure

The “Patterson” set [25], which includes 100 problems,
each with up to 51 tasks and up to 3 resources to be shared,
was used to validate the permutation sorting method
proposed in the previous sections. In the next paragraphs,
the results obtained for three RCPSP problems (Table I)
which were considered representative are presented.

TABLE I. RCPSP PROBLEMS USED FOR VALIDATION
RCPSP
problem

Number of tasks
Number of
resources

Solution

pat1 14 3 19
pat100 27 3 33
pat110 51 3 50

Considering that the permutations generated by the

algorithm can be invalid in the sense that they do not
necessarily check the precedence conditions, two tests were
carried out, with and without applying the sorting procedure.
The results obtained by applying FPA are presented in Table
II and Table III. The following parameters of FPA were
used: number of iterations – 2000, number of individuals
(flowers) – 20 and switch probability – 0.8.

Concerning the contents of the two tables, it should be
mentioned that:
- the optimal solution of the problems is known [25];
- the number of optimal permutations of the activities set is

not necessarily equal to that of the optimal solutions
because for different permutations, identical time
allocations of activities can be obtained (case when more
activities start simultaneously);

- the valid permutations are those for which the precedence
conditions are met.

TABLE II. RESULTS OBTAINED IN CASE OF UNSORTED PERMUTATIONS

Number of
generated

permutations

Number of
generated
optimal

permutations

RCPSP
problem

Num
-ber
of

tasks

Total number
of

permutations
total unique valid total unique

Known
solution

pat1 14 479.001.600 40020 8047 1091 31883 1024 19
pat100 27 ~1.55e+25 40020 38550 - - - 33*
pat110 51 ~6.08e+62 40020 39276 - - - 50*

The following conclusions can be drawn by analysing the

results obtained without applying the sorting procedure
(Table II):
- in case of a reduced number of tasks (pat1), the algorithm

is able to generate valid permutations, including some

 21

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

permutations which correspond to the optimal solutions;
- if the number of tasks is greater (pat100 and pat110) the

set of generated permutations does not even include a
valid permutation. However there is the possibility to
obtain solutions by modifying the parameters of the
algorithm (a greater number of iterations and/or
individuals).
In the second experiment (Table III), because the sorting

procedure was applied, all the generated permutations are
also valid from the precedence relations point of view.

TABLE III. RESULTS OBTAINED IN CASE OF SORTED PERMUTATIONS

Number of
generated

permutations

Number of
generated
optimal

permutations

RCPSP
problem

Number
of tasks

Total
number of

permutations
total unique total unique

Solu-
tion

pat1 14 479.001.600 40020 1335 39705 1181 19
pat100 27 ~1.55e+25 40020 11196 33119 8860 33
pat110 51 ~6.08e+62 40020 19129 33760 15935 50

In this case, the proposed method allows obtaining the
optimal solution for all three RCPSP problems, even if the
number of tasks is greater. Also the number of unique
optimal permutations is enough great, which leads to the
idea that the algorithm can be used to solve more complex
problems. The optimal solution was obtained for all 110
RCPSP problems in the “Patterson” set with the notice that
for some of them it was necessary to increase the number of
iterations from 2000 to 5000.

B. Comparison of results obtained by using PSO and FPA

In the experiment presented below the results obtained by
using FPA and PSO are compared, using both optimization
methods: combinatorial and priority based. The priority
based optimization is performed in the continuous space.
The coordinates of individual’s positions are real numbers in
the hyper-interval, where n is the number of tasks in
the optimization problem. The value of each coordinate is
considered as the priority of the corresponding task in the
project. More specifically, for each solution the coordinates
are sorted in increasing order to obtain a permutation of
tasks. As in the combinatorial optimization, the obtained
permutation does not necessarily verify the precedence
conditions, so the sorting by precedence procedure has to be
applied.

To compare the results to those reported in [5], the same
set of 10 optimization problems from [25] was used. In [25]
a large amount of benchmarks with 30, 60, 90 and 120 tasks
is available. In all these, the number of resources is 4 and
each task has no more than 3 successors. In the last part of
this section, some results obtained in case of problems with
120 tasks are presented.

The two optimization algorithms were applied using the
following parameters:
- FPA combinatorial (FPA-C): #flowers=50,

#iterations=100, switch probability=0.8;
- FPA priority based (FPA-P): #flowers=50,

#iterations=100, switch probability=0.8;
- PSO combinatorial (PSO-C): #particles=50,

#iterations=100, inertia weight 75.0w , personal
cognitive weight 2.01 c , social cognitive weight

8.02 c ;

- PSO priority based (PSO-P): #particles=50,
#iterations=100, inertia weight 729.0w , personal
cognitive weight 49445.11 c , social cognitive weight

49445.12 c ;

The number of individuals and iterations was determined
by experiments and they were chosen so that the number of
objective function evaluations is similar in all cases. The
other parameter of FPA-C and FPA-P was determined by
experiments. The weights used in PSO-C are those proposed
in [24] and the weights used in PSO-P are those proposed in
[26]. Because the number of iterations and individuals
(flowers / particles) have a great impact on the required
computing resources, especially on the processing time,
their values were chosen to allow obtaining the known
solution for most of the test problems. In the case of more
complex problems, these values need to be increased, as will
be outlined in the next paragraphs. The other parameters
influence the convergence speed. For each optimization
problem 100 runs of each algorithm were performed, with
the results presented in Table IV and Table V. The column
Known solution contains the optimal solution as it is
specified in [25]. The columns Min, Max and Avg show the
minimum, maximum and average optimal solutions
respectively, determined as results of the 100 runs of each
algorithm. The column Err% contains the percentage
deviation of the average solution from the optimal solution
and it is computed using (14) [5].

100



solutionoptimal

solutionoptimalsolutionaverage
Err . (14)

The last column, Err%*, contains the deviation percent
reported in [5]. These values were obtained using DFPA
with 20 individuals in the population and 1000 iterations
which means that about four times more solution candidates
were generated.

TABLE IV. RESULTS OBTAINED USING FPA

Solutions -
combinatorial

Solutions – Priority
based Problem

Known
solution

Min Max Avg Err% Min Max Avg Err%
Err%*

J3006_2 51 51 51 51.00 0 51 51 51.00 0 1.06
J3015_4 48 48 48 48.00 0 48 48 48.00 0 0.29
J3020_1 57 57 57 57.00 0 57 57 57.00 0 0.24
J3026_6 53 53 54 53.66 1.25 54 55 54.10 2.07 0.34
J3029_4 103 104 104 104.00 0.97 104 105 104.22 1.18 0.47
J3034_4 67 67 67 67.00 0 67 67 67.00 0 0.42
J3039_3 54 54 54 54.00 0 54 54 54.00 0 0.22
J3042_8 82 82 82 82.00 0 82 82 82.00 0 0.41
J3045_2 125 125 125 125.00 0 125 126 125.01 0.01 0.56
J3048_2 54 54 54 54.00 0 54 54 54.00 0 0.33

TABLE V. RESULTS OBTAINED USING PSO

Solutions -
combinatorial

Solutions – Priority
based Problem

Known
solution

Min Max Avg Err% Min Max Avg Err%
Err%*

J3006_2 51 51 52 51.18 0.35 51 52 51.13 0.25 1.06
J3015_4 48 48 48 48.00 0 48 48 48.00 0 0.29
J3020_1 57 57 57 57.00 0 57 57 57.00 0 0.24
J3026_6 53 53 55 54.07 2.02 53 55 54.04 1.96 0.34
J3029_4 103 104 105 104.15 1.11 104 105 104.16 1.12 0.47
J3034_4 67 67 67 67.00 0 67 67 67.00 0 0.42
J3039_3 54 54 54 54.00 0 54 54 54.00 0 0.22
J3042_8 82 82 82 82.00 0 82 82 82.00 0 0.41
J3045_2 125 125 126 125.08 0.06 125 126 125.06 0.05 0.56
J3048_2 54 54 54 54.00 0 54 54 54.00 0 0.33

 22

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

By analysing the results presented in Table IV and Table
V the following conclusions can be drawn:
- The optimal solution was reached by FPA-C, PSO-C and

PSO-P for 9 benchmark problems and by FPA-P for 8
problems;

- The optimal solution was obtained in all 100 executions of
the algorithm by FPA-C for 8 problems and by FPA-P for
7 problems;

- For 6 problems, PSO-C and PSO-P have obtained the
optimal solutions in all 100 executions of the optimization
algorithm;

- For the J3029_4 problem, the optimal solution was never
obtained.

- The results obtained in all 4 experiments are better than
those reported in [5] in terms of percentage of the
deviation for 8 benchmark problems.

For problems J3026_6 and J3029_4 the results were

improved by increasing the number of iterations (Table VI)
and in case of FPA-C, the error became lower than that
reported in the mentioned paper. Unfortunately, none of
FPA-P, PSO-C and PSO-P was able to obtain the known
optimal solution for problem J3029_4.

TABLE VI. RESULTS OBTAINED AFTER THE NUMBER OF ITERATIONS WAS

INCREASED TO 400
Solutions -

combinatorial
Solutions – Priority

based Alg Problem
Known
solution

Min Max Avg Err% Min Max Avg Err%

Err
%*

J3026_6 53 53 54 53.10 0.19 53 54 53.80 1.51 0.34
FPA

J3029_4 103 103 104 103.99 0.96 104 104 104.00 0.97 0.47
J3026_6 53 53 55 53.72 1.35 53 55 53.84 1.58 0.34

PSO
J3029_4 103 104 105 104.09 1.05 104 105 104.10 1.07 0.47

In Table VII an analysis on the number of unique (U),
optimal (O) and unique optimal (OU) solutions generated
during the evolution by all four algorithms used in the
experiment is presented. The unicity was considered in
terms of the time established to start each task, not of
generated permutations, because different permutations can
lead to the same solution. Because the number of individuals
(50) and iterations (100) was the same in all cases, the total
number of generated solutions was 5050 and is not shown.
The permutation sort procedure was applied, so, all
solutions are valid. It must be mentioned also that all the
values in the Table VII were obtained for a single execution
of the algorithms.

TABLE VII. UNIQUE, OPTIMAL AND UNIQUE OPTIMAL SOLUTIONS
 FPA-C FPA-P PSO-C PSO-P

Problem U O OU U O OU U O OU U O OU
J3006_2 288 3411 14 394 198 8 438 4062 7 657 1439 13
J3015_4 936 5025 927 746 4976 736 170 5044 64 1157 4875 1021
J3020_1 1 5050 1 1 5050 1 1 5050 1 1 5050 1
J3026_6 374 253 2 411 10 1 608 3450 7 2334 339 7
J3029_4 600 2848 206 601 204 10 1230 3622 67 4373 68 14
J3034_4 10 4951 3 10 4966 3 11 4995 3 14 2817 3
J3039_3 23 4761 1 21 4283 1 27 4854 1 55 1355 1
J3042_8 964 4834 848 704 4351 542 358 4813 139 2835 1704 531
J3045_2 1398 3811 955 1235 17 1 1551 3704 284 4241 824 451
J3048_2 1 5050 1 1 5050 1 1 5050 1 1 5050 1

The following conclusions can be also drawn:
- First of all, there is no rule linking the number of solutions

to the algorithm used. Rather it seems that the number of
solutions depends on the optimization problem and on

how favourable or not are the possible solutions generated
during the execution of the algorithms;

- Comparing the number of solutions generated by the
combinatorial and priority based versions of the two
algorithms it seems that the second one generates less
optimal solutions even if in some cases the number of
unique optimal solution is greater than in the first case;

- For the problems J3020_1 and J3048_2, all the 5050
generated solutions are optimal and there is only one
unique solution which is also optimal. From this, we can
conclude that for each of these optimization problems the
precedence conditions lead to a unique solution which is
optimal. In fact for all generated sequences of tasks, the
sorting procedure offers always the same result;

- Concerning the problem J3029_4 for which the known
optimal solution was not obtained, we can conclude that
the optimization processes are trapped in some local
solutions and the result can be improved only by a better
adjustment of the algorithms parameters.
All the algorithms were implemented in C++ and the

experiments were made using a Core i3 2.4 GHz processor
based computer with 6 GB RAM. The average processing
time for the experiments presented in Table IV and Table V
is presented below.

TABLE VIII. AVERAGE PROCESSING TIME, IN SECONDS
Optimization

algorithm
FPA PSO

Optimization type Combinatorial
Priority
based

Combinatorial
Priority
based

Average processing
time (sec)

0.39 0.45 0.35 0.40

By analysing the values in Table VIII, it is obvious that
on the one hand PSO is faster than FPA and on the other
hand the combinatorial versions are faster than the priority
based versions. First, PSO is faster because in the evolution
loop the particles new position computing is based on
arithmetic operation only while in FPA the new position
computing requires an exponential and a sine function
evaluation. Concerning the difference between
combinatorial and priority based optimization, it is caused
by the fact that in the second case, each fitness function
evaluation requires the priorities list to be sorted in order to
compute the permutation of tasks. Even if the solution was
known, in all experiments the stop condition of the
algorithm was to reach the maximum number of iterations.

In Fig. 5 and Fig. 6 the evolution of fitness during the 100
iterations is presented for two problems with 30 tasks:
J3006_2 and J3042_8. The minimum, maximum and
average fitness of the 50 flowers / particles are presented.

Analysing the results obtained for problem J3006_2, the
following conclusions can be drawn:
- the swarming tendency is obvious, excepting the case of

priority based FPA; the fitness value of all individuals
reaches the optimum value in iteration 91 for FPA-C,
iteration 46 for PSO-C and iteration 29 for PSO-P;

 23

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

a. FPA combinatorial optimization

b. FPA priority based optimization

c. PSO combinatorial optimization

d. PSO priority based optimization

Figure 5. Problem J3006_2, evolution of the minimum, maximum and
average value of individuals fitness function, respectively

- the optimum fitness is reached in iteration 51 by FPA-P,

but many other individuals remain trapped up to end in
other local solutions of the problem;

- the three values are equal between iterations 8 and 40 of
PSO-C but the value is not optimum; this demonstrates
that it is not advisable to stop the algorithm before
reaching the maximum number of iterations, at least in
case of optimization problems in the discrete space;

- PSO-P is the first algorithm that reaches the optimum
value, in the 3rd iteration;

- for this problem, it seems that PSO offers the best results.
The results obtained for problem J3042_8 lead to the

following conclusions:
- the optimum solution of the problem is found by all

algorithms in the first iteration; this is explained by the
large number or optimum solutions, as can be seen in
Table VII;

a. FPA combinatorial optimization

b. FPA priority based optimization

c.PSO combinatorial optimization

d. PSO priority based optimization

Figure 6. he minimum, maxi um and

- the optimum value is reached faster in case of PSO by all

lem, it seems that PSO offers the best

ysing the charts in Fig. 5 and Fig. 6 it can be
co

ollowing paragraphs, some conclusions related to
m

 Problem J3042_8, evolution of t m
average value of individuals fitness function, respectively

individuals: iteration 5 for PSO-C, iteration 12 for PSO-P
and iteration 35 for FPA-C; also in this case, after 100
FPA-P iterations does not reach the optimal value with all
individuals, even the average value is close to the
optimum;

- also for this prob
results;
By anal
ncluded that the combinatorial versions of the two

algorithms offer better results than the priority based
versions.

In the f
ore complex problems are presented. As it was mentioned

above PSPLIB include RCPSP problems with 30, 60, 90 and
120 tasks. We made some test with problem which contains
120 tasks each one with at most 3 successors, and 4

 24

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

resources which must be shared. In this case, the number of
permutations is 120! which is about 6.69*10198. Besides the
number of activities, the complexity of the problems arises
from the number of required resources. If only one resource
is required to complete a task, the scheduling can be
computed using the four methods (FPA-C, FPA-P, PSO-C
and PSO-P) with the same parameters as in the case of
problems with 30 tasks (50 individuals and 100 iterations).
Some examples of such problems are X04_8, X24_2 and
X44_7 [25] whose results are presented in tables below.

TABLE IX. RESULTS OBTAINED FOR PROBLEMS WITH 120 TASKS

Solutions -
c

Solutions – Priori
ombinatorial

ty
based Alg. Pr

Min rr% M
oblem

Known
solution

 Max Avg E in Max Avg Err%
X04_8 90 90 90 90.00 0 90 90 90.00 0
X24_2 91 91 94 93.60 2. 86 91 95 93.94 3.23FPA
X44_7 98 98 98 98.00 0 98 99 98.03 0.03
X04_8 90 90 90 90.00 0 90 90 90.00 0
X24_2 91 91 95 93.82 3. 10 91 95 93.69 2.96PSO
X44_7 98 98 98 98.00 0 98 102 98.08 0.08

UTABLE UNIQUE, OPTIMAL AND NIQUE OPTIMAL OLUTIONS X. S

DETERMINED DURING A SINGLE RUN
 FPA-C FPA-P PSO-C PSO-P

Problem U U U U U U U UO O O O O O O O
X04_8 2515 4987 2478 3080 4917 3002 336 5018 311 69 5027 50
X24_2 994 2638 352 858 182 7 504 4686 342 276 45 3
X44_7 1804 2925 939 1428 176 24 997 4562 781 236 3625 47

By analysing the values presented in Table IX and Table
X

results obtained for a problem in which
al

 it is obvious that none of the methods used can be
considered as the best. The second problem (X24_2) for
which the error percent in not 0, the fewest unique solutions
were determined, except for PSO-C. However it must be
noticed that the values in Table X refer a single run of the
algorithms which are based on randomly chosen initial
possible solutions.

Fig. 7 shows the
most all tasks require all four resources to can be

completed.

a. FPA combinatorial optimization

b. PSO combinatorial optimization

Figure 7. e minimum, maxi um and

terations and

in

NIQUE, OPTIMAL AND UNIQUE OPTIMAL SOLUTIONS

 Problem X15_3, evolution of th m
average value of individuals fitness function, respectively

To obtain these results the number of i

dividuals were increased as follows: FPA-C: 500 iterations
and 100 individuals; PSO-C: 1000 iterations and 100
individuals. FPA-C reaches the best solution in iteration 205
and PSO-C in iteration 915. Also for this problem, PSO-C
has a large number of iterations, between 511 and 914 in
which all the individuals have the same best fitness value.
So, for more than 400 iterations the value of all individual
best fitness is not enhanced without being equal to the
problem’s solution. It must be mentioned also that for FPA-
C, the personal best fitness of all individuals became equal
to the best fitness in iteration 293, but this does not happen
in 1000 iterations of PSO-C. In Table XI the numbers of
unique, optimal and unique optimal solutions are presented,
respectively. The number of generated possible solutions is:
500.000 in FPA-C and 100.000 in PSO-C. As in previous
problems, FPA-C generates more unique optimal solutions
than PSO-C.

TABLE XI. U
DETERMINED DURING A SINGLE RUN

 FPA-C PSO-C
Problem OU U OU U O O

15_3 3657 1 47802 3846 201 447 29

Conce t x e t p zation
pr

 SECONDS
Optimiz

rning he e ecution tim of he o timi
ocedures for RCPSP problems with 120 tasks, as it can be

seen in Table XII, it is much higher than in case of problems
with 30 tasks. This is caused by the fact that each generated
possible solution (permutation of 120 values) requires to be
reordered to meet the precedence relations.

TABLE XII. AVERAGE PRO SSING TIME, INCE

ation
FPA PSO

algorithm
Optimization

type
Combinatorial

Priority
Combinatorial

Priority
based based

Iterations 500 1000 5 0 5 000 100 500 1000 00 100
A verage time

(sec)
26.32 49.75 31.75 63.23 26.86 54.21 29.28 58.85

In the table above, the processing time is presented for all
fo

also that for some RCPSP problems
w

IV. CONCLUSIONS

In this p o Nature-Inspired
al

ur methods with both 500 and 1000 iterations even if not
all these combinations led to the known optimal solution.
Also, the execution time was obtained using a sequential
implementation in C++ of the algorithms, as Windows
application and the processing unit was shared with other
running applications.

It must be noticed
ith 120 tasks which are more complex, the number of

iterations and individuals should be greatly increased
making the algorithms difficult to execute on a usual
computer. Optimal implementations of the algorithms
should be considered in this case.

aper, the capability of tw
gorithms - Flower Pollination and Particle Swarm

Optimisation - for RCPSP problems solving is studied. The
advantage of these NI algorithms is that a near optimal
solution can be obtained faster than for other classical
algorithms. Mainly this is true for optimization problems in
the continuous space. For optimization in the discrete space
or combinatorial optimization problems, these algorithms
require some modification not only in data encoding and
storage but also in the evolutionary strategies used. In the

 25

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 19, Number 1, 2019

 26

is lower, in fact the optimal so

ed

ms, in which the number o

 as being t

 by optimizing the procedur
to

REFERENCES
[1] M. Cissé, S. Yalçındağ . Şahin, C. Lenté, A. Matta

m

d

n algorithm in structural engineering”, in X.-S. Yang et al.

ization algorithm for capacitated vehicle routing problem in

networks based on

age

strategy”, Computer Science Journal of

national Journal of

optimization algorithms”,

roc. of the 2016 International

 Proc. of

8 9780124167438.

ustralia, Vol.

dinburgh,

,

mputer Science, Vol. 18, pp.

ustering problem”,

g multi-mode resource-constrained

lib/main.html (Accessed 4 December

in particle swarm optimization”, Proc. of the Congress on

experiments, two versions of FPA and PSO were used,
namely: combinatorial and priority based optimization,
respectively. When applied for RCPSP problems, in the
individual’s position it is encoded the launching order of the
tasks. Because during evolution the individuals’ position
change does not guarantee the precedence order
preservation, a tasks reordering procedure is proposed in this
paper. The comparison with other results presented in
literature has revealed that at least for small RCPSP
problems with 30 tasks, the proposed procedure offers
clearly better results:
- the deviation error lution competitive conditions”, International Journal of Artificial

Intelligence, vol. 16, no. 1, pp. 88-112, Mar. 2018.
[11] J. Ruiz-Rangel, C. J. Ardila Hernandez, L. M. Gonzalez, D. J.

Molinares, “ERNEAD: training of artificial neural

was obtained in all executions of the optimization
algorithm for 8 problems by FPA-C, for 7 problems by
FPA-P, and for 6 problems by PSO-C and PSO-P;

- for the other problems the results were improv by
a g

increasing the number of individuals and / or iterations;
- sometimes the minimum and maximum fitness values are re

equal for all the solution candidates in a large number of
consecutive iterations and then the fitness value begins to
decrease again to the best solution; this demonstrates that
it is not advisable to stop the algorithm before reaching
the maximum number of iterations – at least in case of
combinatorial optimization;

- for higher dimensional proble f

Com

each task required resources is higher, the number of
individuals / iterations has to be increased, case in which
the processing time increases significantly;

- none of the methods used can be considered he

P

best; it seems that FPA is a little bit more precise, and also
the priority based versions are slower due to the required
conversions from floating point representation of
individuals positions (priorities) into integer values that
specifies the permutations.

The work will be continued es

t

 allow faster processing in case of higher dimensional
problems and also by studying other nature inspired
algorithms capabilities for RCPSP problem solving.

, Y. Kergosien, E ,

Sco

“OR problems related to home health care: a review of relevant
routing and scheduling problems”, Operations Research for Health
Care, Vols. 13-14, pp. 1–22, 2017, doi:10.1016/j.orhc.2017.06.001.

[2] R. M. Chen, C. L. Wub, C. M. Wang, S. T. Lo, “Using novel particle
swarm optimization scheme to solve resource-constrained scheduling
problem in PSPLIB”, Expert Systems with Applications, Vol. 37, pp.
1899–1910, 2010, doi:10.1016/j.eswa.2009.07.024.

[3] M. Eddaly, B. Jarboui, P. Siarry, “Combinatorial particle swarm
optimization for solving blocking flowshop scheduling problem”,
Journal of Computational Design and Engineering, Vol. 3, pp. 295–
311, 2016, doi:10.1016/j.jcde.2016.05.001.

[4] H. Zhang, H. Li, C.M. Tam, “Particle swarm optimization for
projresource-constrained project scheduling”, International Journal of

Project Management, Vol. 24, pp. 83–92, 2006,
doi:10.1016/j.ijproman.2005.06.006.

[5] K. Bibiks, J. P. Li, F. Hu, ”Discrete flower pollination algorithm for [25]

resource constrained project scheduling problem”, International
Journal of Computer Science and Information Security, Vol. 13(7),
pp. 8-19, 2015.

[6] X.-S. Yang, “Flower pollination algorithm for global optimization”, in
Unconventional Computation and Natural Computation, Lecture
Notes in Computer Science, Vol. 7445, pp. 240-249, 2012,
doi:10.1007/978-3-642-32894-7_27.

[7] E. Emary, H. M. Zawbaa, A. E. Hassanien, B. Parv, “Multi-objective
retinal vessel localization using flower pollination search algorith

with pattern search”, Advances in Data Analysis and Classification,
Vol. 11, No. 3, pp. 611-627, 2017, doi:10.1007/s11634-016-0257-7.

[8] R. Wang, Y. Zhou, C. Zhao, H. Wu, “A hybrid flower pollination
algorithm based modified randomized location for multi-threshol
medical image segmentation”, Bio-Medical Materials and
Engineering, Vol. 26, pp. 1345-1351, 2015, doi:10.3233/BME-
151432.

[9] S. M. Nigdeli, G. Bekdaş, X.-S. Yang, “Application of the flower
pollinatio
(Eds.), Metaheuristics and Optimization in Civil Engineering,
Modeling and Optimization in Science and Technologies, Vol. 7,
Springer, pp. 25-42, 2016, http://doi.org/10.1007/978-3-319-26245-
1_2.

[10] A. Goli, A. Aazami, A. Jabbarzadeh, “Accelerated cuckoo
optim

enetic algorithm and finite automata theory”, International Journal
of Artificial Intelligence, vol. 16, no. 1, pp. 214-253, Mar. 2018.

[12] S.-I. Bejinariu, H. Costin, F. Rotaru, R. Luca, C. Niţă, C. Lazăr,
“Parallel processing and bio-inspired computing for biomedical im

gistration”, Computer Science Journal of Moldova, Vol. 22, No.
2(65), pp. 253-277, 2014.

[13] H. Costin, S.-I. Bejinariu, “Medical image registration by means of a
bio-inspired optimization
Moldova, Vol. 20, No. 2(59), pp. 178-202, 2012.

[14] H. Costin, S.-I. Bejinariu, D. Costin, “Biomedical image registration
by means of bacterial foraging paradigm”, Inter

puters, Communications & Control, Vol. 11, No. 3, pp. 329-345,
2016, doi:doi:10.15837/ijccc.2016.3.1860.

[15] S.-I. Bejinariu, H. Costin, F. Rotaru, R. Luca, C. Niţă, “Image
processing by means of some bio-inspired

roc. of the IEEE 5th Int. Conference on E-Health and
Bioengineering – EHB 2015, Iaşi, România, 2015, pp. 1-4,
doi:10.1109/EHB.2015.7391356.

[16] S.-I. Bejinariu, R. Luca, H. Costin, “Nature-inspired algorithms based
multispectral image fusion”, P
Conference and Exposition on Electrical and Power Engineering, Iaşi,
România, pp. 1-5, 2016, doi:10.1109/ICEPE.2016.7781293.

[17] S.-I. Bejinariu, H. Costin, F. Rotaru, R. Luca, C. Niţă, “Performance
analysis of artificial bee colony optimization algorithm”, in
he 13-th Int. Symposium on Signals, Circuits and Systems, ISSCS

2017, Iaşi, România, pp. 1-4, 2017,
doi:10.1109/ISSCS.2017.8034903.

[18] X.-S. Yang, Nature-Inspired Optimization Algorithms. Elsevier Inc.,
pp. 23-173, 2014, ISBN: 012416743

[19] J. Kennedy, R. Eberhart, “Particle swarm optimization”, Proc. of the
IEEE Int. Conference on Neural Networks, Perth, WA, A
4, pp. 1942-1948, 1995, doi:10.1109/ICNN.1995.488968 .

[20] T. Hendtlass, “WoSP: a multi-optima particle swarm algorithm”,
Proc. of the IEEE Congress on Evolutionary Computation, E

tland, UK, pp. 727–734, 2005, doi:10.1109/CEC.2005.1554755.
[21] X.-S. Yang, M. Karamanoglu, X.S. He, “Flower pollination

algorithm: a novel approach for multiobjective optimization”
Engineering Optimization, Vol. 46, No. 9, pp. 1222-1237, 2014,
doi:10.1080/0305215X.2013.832237.

[22] X.-S. Yang, M. Karamanoglu, X.S. He, “Multi-objective flower
algorithm for optimization”, Procedia Co
861-868, 2013, doi:10.1016/j.procs.2013.05.251.

[23] B. Jarboui, M. Cheikh, P. Siarry, A. Rebai, “Combinatorial particle
swarm optimization (CPSO) for partitional cl
Applied Mathematics and Computation, Vol. 192, pp. 337–345, 2007,
doi:10.1016/j.amc.2007.03.010.

[24] B. Jarboui, N. Damak, P. Siarry, A. Rebai, “A combinatorial particle
swarm optimization for solvin

ect scheduling problems”, Applied Mathematics and
Computation, Vol. 195, pp. 299-308, 2008,
doi:10.1016/j.amc.2007.04.096.

 PSPLIB, Project Scheduling Problem Library – PSPLIB,
http://www.om-db.wi.tum.de/psp
2017).

[26] R. C. Eberhart. Y. Shi, “Comparing inertia weights and constriction
factors
Evolutionary Computation, La Jolla, CA, USA, Vol. 1, pp. 84-88,
2000, doi:10.1109/CEC.2000.870279.

[Downloaded from www.aece.ro on Tuesday, July 08, 2025 at 08:28:38 (UTC) by 172.69.58.11. Redistribution subject to AECE license or copyright.]

