
Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Real-Time Clustering of Large Geo-Referenced
Data for Visualizing on Map

Mohammad REZAEI, Pasi FRANTI
School of Computing, University of Eastern Finland, 80140, Joensuu, Finland

rezaei@cs.uef.fi

1Abstract—Displaying geo-referenced data in web mapping

systems has become popular. However, most existing systems
suffer from three annoying problems: (1) clutter when trying to
visualize large amount of data; (2) slowness of transferring
data over internet; (3) lack of support for dynamic queries. To
solve these problems, we propose a real-time system using
server-side clustering, transferring only the clustered data, and
client-side visualization using existing map tools. As far as we
know, there is no other scientific paper describing such real-
time system that allows dynamic database queries without
limiting to predefined queries. Experiments show that it can
handle up to 1 million objects whereas all existing systems are
either limited to pre-defined queries, or they support only a
very small number of free parameters in the query whereas the
proposed system has no such limitations.

Index Terms—data visualization, clustering methods, web
services, client-server systems, Internet.

I. INTRODUCTION

Rapid increase of cell phones and GPS devices has made
it easy to collect huge amount of location-based or
geospatial data. By location-based data, we mean photos or
other data attached with their physical locations. Geo-
visualization is a tool for better understanding, efficient
search, and well-organized management of data. It has
received considerable attention due to the rise of online
maps and advances in graphics and display technology [1].
A Web Mapping System (WMS) is a tool for geo-
visualization that standardizes the way of sharing geospatial
information on the Internet using interactive web maps [2].

However, in case of visualizing large amount of data,
most existing systems suffer from one of the following three
problems: clutter, slowness, and restriction to pre-defined
(static) queries. Fig. 1 shows a few examples found from
web. Most present the data either as a set of points, or as
small icons on the map. Only one web page shows the data
(orienteering maps) as polygons. In all cases, the amount of
data is relatively small and the selection of the data is
predefined. The ones where data is several thousands
(Jounin kauppa and Forenom) suffer from cluttering and
sometimes also from slowness. To overome these issues,
they allow user to select only a subset by filtering. Two
pages (Way.fi and Wayne’s coffee) use clustering provided
by GoogleMaps API (the earth quake icon) but they are also
limited to predefined data. None of the systems support
dynamic queries.

The clutter problem appears when trying to show large

number of items on the limited space of a display screen [

1This work was supported in part by MOPSI projects 70052/09 and
70010/12.

3].
Clutter reduction aims at reducing the overlap for better
information visualization. In cartographic generalization,
a minimum distance between adjacent items is defined to
avoid the overlap [4]. Zooming also helps to avoid
information overload but at the cost of losing the overall
view of the data [1],[4]. The data to be shown should
therefore be reduced, but so that it still represents the entire
selection. Filtering and sampling are other possible
approaches for the data reduction. However, they can bias
the distribution of the data, lose relevant data objects, and at
the same time, present outliers [5], see Fig. 2. Clustering, on
the other hand, aims at grouping the data based on
a similarity (or distance) criterion between the objects. All
the objects are still available by navigating through the
groups.

Clustering consists of two design questions: which
algorithm to use, and how to represent the clusters on the
map. A cluster can be represented simply by an icon such as
circles or point. For better usability, more information about
the content of the cluster can also be given, such as the
density or the distribution of the objects within the cluster.
Several visualization techniques are shown in Fig. 3, in
which we summarize six properties:

• Technique for data reduction
• Representation of cluster
• Showing density
• Showing distribution
• Opening (drilling down) a cluster
• Details-on-demand

Flickr and Panoramio filter data by random sampling.
Panoramio uses two levels of sub-sampling based on
popularity and proximity of the photos. All the other
visualization approaches are based on clustering.
Panoramio, Mopsi (http://cs.uef.fi/mopsi) and the system of
Delort [6] use a selected photo to represent a cluster. Tag
maps [7-8] represent a cluster by selected word whose size
depends on the size of the cluster.

The visual aggregate should also include some
information about the underlying data in the cluster [9].
Some systems show the cluster borders explicitly by
Voronoi [2],[6],[10], convex hulls [11], or cells [12]. This
helps to see the distribution of the data. However, the extra
lines and shapes can overwhelm the view. Voronoi can also
be misleading because it segments the entire area, also parts
that do not contain any data [2]. Simple icon is still the most
popular object to represent the clusters because of its
simplicity. Google MarkerClusterer API uses an icon that

 63
1582-7445 © 2018 AECE

Digital Object Identifier 10.4316/AECE.2018.04008

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Figure 1. Typical examples of existing web systems and how they deal with the problem

All data Filtered data Clustered data

Figure 2. Clutter of 1000 geo-referenced data on the map (left), filtered by random selection of 20 objects (middle) and clustering (right)

indicates the density by showing number, color, and size of
the icon. The data distribution and the covered region of the
cluster cannot be shown directly by an icon [2],[13], but the
area can be indirectly concluded from the overall
distribution. Additional information can also be embedded
into the icons [14-17]. For example, DICON uses a treemap
style icon that includes statistical distribution of the data in
the cluster [17]. Other representations include heat maps
[5],[13],[18], and Splatterplots [19].

Opening a cluster [9] means that when the user clicks a
cluster representative, an automatic zoom happens so that
the objects in the cluster are displayed on the map view (the
part of the map shown in a specified box in the interface).
Most of the systems support this functionality. Details-on-
demand indicates how the user can access the details of any
object in a cluster without opening the cluster or zooming in
[20]. In general, providing more information to help
ordinary users for better understanding the data is not trivial
[17].

For solving the clustering, a scalable algorithm is required
that is capable of handling large data sets in real-time
[4],[13],[21-22]. Downloading data and generating the
clusters on the client is still possible but it would cause a
high transmission load on the network, and therefore, is not
suitable for low speed internet connections. Especially if the
data contains images as in our case. To minimize data
transfer, clustering should therefore be performed on the
server, and send only the summary information of each
cluster to the client.

Several server-side clustering approaches exist such as
STING [23] and CLIQUE [24] but they pre-compute the

clusters on the server. They apply clustering off-line to the
entire data, and store the results on the server, which limits
their use for static predefined queries only. However, we
want to support also dynamic queries defined by the user in
real-time. The results of such queries cannot usually be
predicted beforehand because they are based on ad hoc
query parameters such as free text keyword and time period,
instead of just the location as in most existing systems [25].
To support dynamic queries, only a few approaches exist
such as imMens and nanocubes, which have been recently
proposed based on the idea of data cubes [5],[26]. A limited
set of attributes (dimensions) of data are stored as
aggregates on the server. The downside of this is the huge
need for memory.

In this paper, we propose a solution that allows dynamic
queries without any such limitations. We formulate the
clutter removal of icons as a clustering problem. We
propose a server-side approach, which clusters the objects
dynamically on the server, and sends only the summary
information of each cluster to the client. The algorithm has
a grid-based structure, which provides high scalability. We
provide client-side and server-side APIs for the method. The
computational time of the clustering is less than one second
for 1,000,000 objects, where the download size is limited to
15 Kbytes in a machine with Intel Xeon E7-4860 v2, 2.60
GHz. To represent the clusters, we support both photos and
variable size user-defined icons. Clusters can be opened by
clicking the cluster representative. When opening a cluster,
the map is zoomed in automatically to cover the area where
all the objects of the selected cluster are located. The new
content is presented on the map, clustered again if the

 64

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Flickr Google maps

(a) Filtering
(b) Circle icon
(c) -
(d) -
(e) -
(f) Yes

(a) Clustering
(b) Circle icon
(c) Color, number
(d) -
(e) Yes
(f) -

Panoramio Voronoi [2]

(a) Filtering
(b) Image icon
(c) -
(d) Yes
(e) -
(f) Yes

(a) Clustering
(b) Voronoi
(c) Color
(d) Yes
(e) Yes
(f) -

Container shape [11] Heat map [13]

(a) Clustering
(b) Area, image
(c) -
(d) Yes
(e) Yes
(f) -

(a) Clustering
(b) Heat map
(c) Color
(d) Yes
(e) Yes
(f) -

Mopsi Cells [12]

(a) Clustering
(b) Image icon
(c) Number
(d) -
(e) Yes
(f) Yes

(a) Clustering
(b) Cell
(c) Color
(d) Yes
(e) Yes
(f) -

DICON [17] Taggram [27]
(a) Clustering

(b) Icon
(c) Color & shape
(d) -
(e) Yes
(f) Yes

(a) Clustering

(b) Word
(c) Color & size
(d) -
(e) Yes
(f) -

Figure 3. Several representations of geo-referenced data on maps, and their properties: (a) Technique for data reduction (b) Representation of cluster (c)
Showing density (d) Showing distribution (e) Opening a cluster (f) Details-on-demand

 65

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

amount of data still causes clutter. Starting the view of the
entire world, single photos are usually reached by 2-6 clicks.

The content of a cluster can also be accessible by details-
on-demand principle [20]. Since our system contains merely
photos, we open photo viewer where user can only go
through the photos in the cluster one by one using kind of
slideshow.

The rest of the paper is organized as follows. Clustering
problem is formulated in Section II. In Section III, several
clustering methods are analyzed for the purpose of the
clutter problem, and the detailed procedure of the proposed
grid-based clustering is presented in Section IV. Server-side
approaches including our proposed method are studied in
Section V. Experimental results are reported in Section VI,
and conclusions are drawn in Section VII.

II. CLUSTERING PROBLEM

Clustering for clutter removal differs from normal data
clustering. Instead of finding real clusters, we aim at
grouping data merely for visual clarity and better computer-
human interaction. Any overlap causes difficulty and
confusion when clicking an icon. For example, in Fig. 4,
there are three well-separated clusters A, B, and C. The goal
of normal data clustering would be to identify the three
clusters, see Fig. 4 (middle). Some methods might consider
the single object in cluster C as an outlier and identify only
two clusters. However, a clutter removal method should be
localized so that the sparse areas do not lose the details
[4],[21]. Clustering distant objects together misleads the
user about their real locations. The methods such as CLARA
and CLARANS [28] that apply the clustering on a sample of
data suffer from this problem. They assign non-selected
objects to the clusters according to a criterion, for example
to the nearest centroid. However, an object might be
assigned to a distant cluster. To avoid this problem in clutter
removal, it is therefore better to show more clusters as long
as their representatives do not overlap. In this way, the time
spent to access a photo would be shorter, see Fig. 4 (right).

A. Objective of clustering

Given a data set A R2 with N objects, the problem of
clustering is to group the objects into K clusters. Each object
must be assigned to a cluster, so that there are no outliers
and missing data. The clustering has two objectives:

1. Maximize the number of clusters without overlap
To avoid overlap of clusters i and j with rectangular icons

of sizes (Wi, Hi) and (Wj, Hj), see Fig. 5, one of the

following conditions should be met:

THHyy

TWWxx

jiji

jiji

2/)(

2/)(
 (1)

where (xi, yi) and (xj, yj) are the coordinates of the centroids
ci and cj. Value T=0 guarantees that there is no overlap, but a
bigger value (we use here T=5 pixels) is preferred to have
more space between the clusters. This leads to a more
readable map, which is less covered with cluster
representatives.

2. Minimize sum of squared error (SSE)

N

i
ii acaSSE

1

2
)((2)

where c(ai) is the centroid of the cluster that the object ai is
placed in. Several possible clusterings satisfy the conditions
in (1), from which the clustering that provides minimum
SSE is the optimal. This condition indicates that the overall
distance of the objects of a cluster to the centroid is
minimized, which provides least confusion about the real
location of the objects.

Ci

Cj
|yi-yj|

|xi-xj|

Wi

Hi

Wj

Hj

Figure 5. Overlap of the bounds of two icons

B. Number of clusters

The number of clusters is unknown. However, it has an
upper limit according to the average size of representative
icons (W, H) and the size of map view (W0, H0). Assume
that the map is filled with icons without any overlap. The
maximum number of icons that can be drawn on the map is:

H

H

W

W
K 00

max (3)

Figure 4. Different goals of normal clustering (middle) and clutter removal (right)

 66

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

C. Bounding box

We define the bounding box of a map view as the window
with the top-left and bottom-right coordinates of the view:
[(Latmax, Lonmin), (Latmin, Lonmax)], see Fig. 6. The bounding
box of a set of objects is defined in the same way but the
boundaries are derived from the objects in the set. To
display the set of objects on the map, a suitable map view
should be first determined, which is the part of the entire
map with the highest zoom level that contains the bounding
box of the objects, see Fig. 6. The bounding box of the
resulted map view can be wider than that of the objects
because of the discrete change of zoom level.

(Latmax, Lonmin)

(Latmin, Lonmax)

Bounding box of the map view
Bounding box of the objects

Figure 6. The bounding box of map view and the bounding box of objects.
The map view for the given objects is corresponding to the highest possible
zoom level that contains all the objects. Zooming in more will cause some
of the objects move out of the display

III. CLUSTERING METHODS

In this section, we study clustering approaches including
divisive, density-based, agglomerative [28], and grid-based
methods [29]. We show how some of them can be modified
in order to be applicable to the clutter problem. We consider
K-means (divisive), DBSCAN (density-based), and centroid-
linkage (agglomerative) algorithms as examples of the first
three categories, and analyze their suitability for the
problem. A trivial overlap-based clustering algorithm is also
considered because it is likely to be applied to the problem
by many others due to its simplicity.

A. K-means

K-means is a partitional clustering algorithm in which K
centroids are initially selected in some way, for example
randomly chosen data objects. Two steps of the algorithm
are iteratively performed: assignment and update, for a fixed
number of iterations or until convergence. In the first step,
objects are assigned to their nearest centroid. In the second
step, new centroids are calculated by averaging the objects
in each cluster. Time complexity is O(IKN), where I is the
number of iterations [30]. K-means is not suitable for the
clutter problem as such because the number of clusters is
unknown. Moreover, the representative icons might still
overlap after clustering.

B. Overlap-based clustering

The first cluster is created from the first data object, and
all other objects within a given distance threshold are joined

to this cluster. The process then continues similarly for the
next object that has not yet joined to any cluster. The
algorithm is given below:

overlapBasedClustering(X, N, TH)
k = 1
FOR i=1 TO N
visited[i] = FALSE
label[i] = 0

FOR i = 1 TO N
IF NOT visited[i]
visited[i] = TRUE
createCluster(X, N, TH, label, visited, i, k)
k = k + 1

createCluster(X, N, TH, label, visited, i, k)
label[i] = k
FOR j=1 TO N
IF (NOT visited[j]) AND (distance(i, j) < TH)
label[j] = k
visited[j] = TRUE

The time complexity is O(KN), because the function
createCluster is called K times, where K≤N is the number of
clusters. The main disadvantage is that the clustering result
depends on the order of processing data.

C. DBSCAN

DBSCAN is a density-based clustering algorithm that
aims at finding arbitrary shape clusters. Its basic idea is to
create clusters from points whose neighborhood within a
given radius (eps) contain a minimum number (minPt) of
other points [31]. Using every such a point, the algorithm
grows a cluster by joining other points that are close to the
cluster. Time complexity of the original DBSCAN is O(N2)
but some efforts [32-33] have been made to reduce it close
to O(N). In clutter removal of icons, the minPt must be set to
1 because a single separated object should also be
considered as a cluster, and eps is set to the distance
threshold that guarantees no overlap. The cluster growing is
not needed because we do not aim at finding natural
clusters. Therefore, DBSCAN is not a suitable choice for the
clutter problem.

D. Centroid-linkage

Agglomerative clustering is a bottom-up approach in
which each object is initially considered as its own cluster.
Two closest clusters are then iteratively merged [34].
Several criteria have been proposed for selecting the next
two clusters to be merged such as single-linkage, average-
linkage, complete-linkage, centroid-linkage, and Ward’s
method. Both centroid-linkage and Ward’s method are
applicable to the clutter removal problem because the
overlap of representative icons is checked based on the
distance between cluster centroids. The merging process
continues until the distance between the centroids of the
next two clusters to be merged exceeds a threshold that
guarantees no overlap. The pseudo code of fast
implementation of the centroid-linkage algorithm based on
the solution introduced in [35] is shown in the next page.

Time complexity of the basic agglomerative clustering is
O(N3) but the above solution reduces it to O(αN2), where
α<<N in the above algorithm due to employing a nearest
neighbor table that uses only O(N) memory. The algorithm
can still be too slow for real-time applications. In [34], an
algorithm based on k-nearest neighbor graph is proposed in
order to improve the speed close to O(NlogN) with a slight

 67

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

decrease in accuracy. However, graph creation is the
bottleneck of the algorithm, and should be solved.
Otherwise, this step dominates the time complexity.

centroidLinkage(X, N, TH)
Set each object to its own cluster
k = N
iMin = createNNTable(X, N)
[i1, i2, dist] = findClosestClusters(iMin, k)
WHILE dist < TH
mergeAndUpdate(iMin, k, i1, i2)
k = k – 1
[i1, i2, dist] = findClosestClusters(iMin, k)

createNNTable(X, N) iMin
FOR i = 1 TO N
iMin[i] = i

FOR i = 1 TO N
FOR j = 1 TO N
IF distance(i, j) < distance(i, iMin[i])
iMin[i] = j

findClosestClusters(iMin, k) [i1, i2, dist]
i1 = 1
FOR i= 1 TO k
IF distance(i, iMin[i])<distance(i1, iMin[i1])
i1 = i

i2 = iMin[i1]
dist = distance(i1, i2)
mergeAndUpdate(iMin, k, i1, i2)
Merge cluster i2 in cluster i1
Update centroid of cluster i1
FOR i = 1 TO k
IF iMin[i] = i2
iMin[i] = i1
FOR j = 1 TO k
IF distance(i, j) < distance(i, iMin[i])
iMin[i] = j

Replace cluster i2 with the last cluster

distance(i, j) dist
dist = Euclidean distance between X(i) and X(j)
IF i = j
dist = MAX

E. Grid-based clustering

Grid-based clustering consists of three main steps: grid-
construction, initial clustering, and merge. The space
containing the objects is first segmented by dividing each
dimension into a predefined number of bins [29]. This
provides rectangular grid cells, see Fig. 7. In the second
step, initial clusters are formed by assigning each object to a
cell simply by indexing without any need for distance
calculation [36]. Each cell corresponds to one cluster.
Centroids and other summary information such as the
number of objects and density are then calculated for the
clusters. The rest of the process is performed only on the
non-empty cells that contain some objects.

 In the third step, final clusters are formed by merging the
neighboring cells according to some closeness criterion such
as density or connectedness, see Fig. 7. Finding a suitable
criterion for merging is not trivial because different criteria
can lead to different clustering results [29]. Pseudo code of
this overall algorithm is given below:

gridBasedClustering(X, N, cellSize)
// Step 1: Grid construction
region = bounding box of data X
Set grid for the region
Set indices of the cells
// Step 2: Initial clustering
K=0
FOR i=1 to N
Find the cell index (m, n) for the object X[i]
IF the cell[m, n] is empty
K=K+1
Create new cluster K

j = cluster index of the cell (m, n)
Update information of cluster j

// Step 3: Merge
FOR k=1 to K
Check neighbors of cluster k and merge if

needed

Figure 7. Some of neighboring cells should be merged to form natural
clusters

The grid construction step contains the setting of the
required parameters, which takes only O(1) time. The time
complexity of the assignment step is O(N) because every
object is processed. The third step is performed on the K
initial clusters: the cells that contain objects. Since K<<N
(especially in 2-D), the overall time complexity is O(N).
This makes the grid-based clustering a suitable choice for
the real-time clutter removal problem. Memory complexity
is O(N) and no distance calculation is required between the
objects.

A few challenges have been reported for grid-based
clustering methods such as finding clusters with variable
densities, determining the size of grid cells, limitation of
rectangular cells to fit the shape of clusters, and
dimensionality problem [24],[29],[36]. However, most of
the challenges are related to finding natural clusters or high
dimensional data. Finding a suitable size for grid cell is not
trivial because a small size leads to more cells, and therefore
more computations, while a coarse cell size results in lower
accuracy due to merging far away objects. However, in
clutter removal of icons, the cell size is concluded directly
from the size of the icons (for example maximum size). The
only remaining issue is that two close objects might be
clustered separately if located at the border of two cells.
This misleads the user about the real locations of these
objects.

TABLE I. COMPARISON OF CLUSTERING ALGORITHMS FOR CLUTTER REMOVAL OF ICONS

Clustering algorithm Item Memory complexity
Supporting large

data
Supporting parallel

processing

K-means O(IKN) O(N) No No

Overlap-based O(KN) O(N) Yes No

DBSCAN O(NlogN) O(N) No No

Centroid-linkage O(N2) O(N2) No No

Grid-based O(N) O(N) Yes Yes

 68

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Grid-based clustering is simple to implement, and its time
and memory complexities are better than those for other
methods, see Table I. Moreover, parallel processing in order
to increase the speed for large data can be perfectly applied
to grid-based clustering. We present next the technical
details of grid-based clustering for the clutter problem.

IV. GRID-BASED CLUSTERING FOR CLUTTER REMOVAL

This section presents the detailed procedure of grid-based
clustering in order for clutter removal of icons on the map.

A. Coordinates system

The location of a data object is represented by latitude
and longitude, which are measured in degrees, minutes, and
seconds of the globe sphere, or for computational purposes,
simply in decimal degree. In Mercator projection, the areas
far from the equator are exaggerated and it is not possible to
find a fixed height for the grid cells, and a single distance
threshold for avoiding overlap of icons, which have certain
width and height in pixels. Therefore, we construct the grid
in Cartesian coordinate system in pixel rather than degree,
and convert the latitude and longitude of the objects to pixel
for a certain zoom level as follows:

)sin(1

)sin(1

2
128

10128 6

lat

lat
Ln

Rm
y

lonRmx

 (4)

where m=6.3952×10-6 is a scaling factor, R=6.371×106 is
the earth radius, and lon and lat are in the range (-π, π) and
(-π/2, π/2) respectively. The value (x, y) represents the
coordinates of a point within a picture of size 256x256,
which corresponds to the lowest zoom level (zero) in
Google maps. For a higher zoom level z (up to 21), the
coordinates are derived from x and y as follows:

zz yyxx 2',2' (5)

B. Grid construction

For a given map view, the grid is usually built starting
from top-left corner, see Fig. 8 (left). However, this

approach has a drawback. When the user pans the map,
some new objects enter and some objects move out from the
map view, and therefore, a new clustering is applied.
Consider two clusters with 3 and 7 objects, respectively, in
Fig. 9 (left); then, after horizontal panning to the right by the
amount corresponding to 40% of the cell size, the objects
will divide into two other clusters with 6 and 4 objects,
respectively. This artifact happens because the new grid
does not match with the old one, and objects might be
assigned to different cells in the new grid. To avoid this
problem, we set a fixed grid starting from the beginning of
the whole world but consider only the cells which are
completely or partly in the current map view, see Fig. 8
(right). This makes the grid invariant of panning.

Figure 9. Horizontal panning to the right causes different clusters when
the grid is set according to the top-left of map view

The number of rows and columns in the map view are
calculated as:

c
column

c
row W

xx
n

H

yy
n minmaxminmax (6)

where (Wc, Hc) is the size of a grid cell, and the points (xmin,
ymin) and (xmax, ymax) are calculated according to the points p1
and p2 of the bounding box of the map view. A cell is then
identified according to its row and column indices, which
are in the range of [1, nrow] and [1, ncolumn], respectively, see
Fig. 8.

C. Initial clusters in cells

In this phase, the objects are assigned to the cells. We go
through the objects one by one and calculate its
corresponding cell. Row and column of the corresponding

Figure 8. Starting grid from the beginning of the map view (left), and fixed grid starting from the beginning of the whole world but considering only
the cells covering the map view

 69

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

cell of an object at the location (x, y) is calculated as:

cc W

xx
column

H

yy
row minmin (7)

The cells that contain some objects become the initial
clusters. The centroid of a cluster is calculated by averaging
the locations of all the objects in the cluster. The initial
clusters result in a fixed SSE for a certain input data. The
cluster information that is used in the rest of the process
includes the number of objects n, centroid (x, y) and cluster
representative. We calculate the size of the icon for each
cluster i from the size of the cluster ni using the following
logarithmic function:

 log

)(log

10min

10min

ii

ii

nHH

nWW

)(

 (8)

where [.] is the rounding function, Wmin and Hmin are the
minimum width and minimum height of the icons and α is
the increase rate for the width and height. There is a trade
off in the choice of α. Large increase rate can lead to very
big icons whereas small increase rate makes the difference
of cluster sizes unnoticeable. In this work, we fix α=8.

D. Merging overlapping clusters

The representative icons of the clusters in neighboring
cells may overlap when the distance between the centroids
of the clusters is small, see Fig. 10. The overlap can be
eliminated either by spatial distortion of representative icons
or by merge. Spatial distortion is performed by moving the
centroid location of a cluster away from the overlapping
cluster [13],[21]. If the icon moves far, an arrow can be used
to point from the icon to the original location. In case of
many overlapping icons, the problem of finding good places
for the icons becomes complicated. We therefore use the
merge approach. After merging two clusters, their new
centroid might place in anywhere within the two cells, or
even move into a third cell, see Fig. 10. However, we keep
the index of the first cluster for simplicity. This has no side
effect to the clustering results, and it is needed for the
server-side clustering; where the indices of initial cells are
required for accessing the objects in a cluster.

We process as follows. First, we go through all clusters
one by one to determine overlapping clusters according to
(1). For every overlapping clusters i and j, we calculate their
merge cost as the increase in the total SSE:

2

ji
ji

ji cc
nn

nn
SSE

 (9)

We select the clusters to be merged that result in
minimum increase in the SSE, which is similar to the idea of
Ward’s criterion in agglomerative clustering [37]. The size
of the representative icon of the new cluster is updated using
(8). After the merge, the new cluster is checked for possible
overlap to other clusters and the process then continues until
no overlap remains. This merging approach does not
guarantee the global optimal but it merely removes all
overlaps by locally minimizing SSE in each step.

V. REAL-TIME CLUSTERING ON SERVER-SIDE

Our goal is to apply clustering on server-side in order to
limit the download size. Moreover, we want to support

dynamic queries to the data without limiting to a small
predefined set of queries. In this section, we first compare

ver-side and client-side approaches, and study existing
server-side solutions and their limitations. We then propose
a server-side approach based on grid-based clustering. We
first need to define two types of queries that the user
requests to see the desired results on the map: spatial and
non-spatial.

ser

Figure 10. Overlap of two representative icons in neighboring cells (left)
and merging clusters (right)

Spatial query: The user selects the map view and requests
to see all data in this area. No other parameters are needed to
specify which objects. The entire data can be clustered
offline on the server if only this type of query is requested.
The corresponding clusters in the region are then extracted
from the pre-computed clustering. Zooming, panning, and
opening a cluster are examples of how spatial query is
initiated by the user. In the cases of zooming and panning,
the map view is set directly using the map API tool. For
opening a cluster, a new map view is calculated and set
according to the bounding box of the objects in the cluster.

Non-spatial query: Instead of showing all the objects, the
user selects a subset to be displayed based on other
properties. For example, the user might want to see the
pictures by a given person within a given time period, or the
objects containing a given keyword. We refer to this as non-
spatial query in contrast to spatial query. Pre-computing the
clusters is possible but only for a predefined set of queries
such as accessing all the data in the year 2015. However, in
general, these types of queries are dynamic, and clustering
must be performed real-time. This is because the set of data
is dynamically retrieved based on the input parameters given
by the user; the objects that match the query cannot be
predicted in general.

A. Server-side vs. client-side

The main advantage of server-side clustering approach is
that it limits download size by sending only the summary
information of clusters to the client. In client-side clustering,
all the data are sent to the client, which provides two
advantages. First, processing data on client relieves the
server from overwhelming clustering requests. Second, no
additional request to the server is needed for interactions
such as zooming in the map or opening a cluster. However,
obtaining the entire results from the server can cause high
traffic load on the network. Suppose that 100,000 data
objects are transferred to the client and 12 bytes are required
for id, latitude, and longitude per object. The transmission
load would sum up to 1.2 Mbytes, which is considerable
amount for a low speed internet.

In server-side approach, the transmission load is limited
by sending only the information of clusters. Since the

 70

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

number of clusters is limited according to the sizes of
display and icon, there is an upper limit for the transmission
load, which is independent on the number of objects.
Several server-side clustering APIs have been developed in
recent years [25],[38].

B. Existing methods

The existing methods that deal with visualization of large
data on maps can be classified into two groups:

1. Hierarchical clustering on the server by pre-computing
the clusters

 2. Using data cubes

The first group [2],[13],[23],[25],[39] clusters entire data
on the server by employing a hierarchical structure such as
KD-tree or R-tree. Querying for a region is then performed
in O(logN) time by finding the target clusters in the suitable
level of the hierarchy. The hierarchical structure can also
provide scalable visual representations [2],[9]. However,
clustering of entire data does not support non-spatial
queries. Elmqvist and Fekete [9] provide an overview on
hierarchical aggregation of data to support visualization
requirements such as panning, zooming, and opening a
cluster.

To address non-spatial queries for large data sets and to
support quick exploration, several researchers use data
cubes [5],[26]. Data cubes are structures that build
aggregations across every possible set of dimensions of data
[26]. imMens [5] decomposes multi-dimensional data cubes
into binned data tiles of reduced dimensionality and
performs accelerated query processing and rendering on the
GPU. For real-time interaction, the binned data tiles are pre-
computed. imMens visualizes the aggregates on the map as
geographic heatmaps which are 2-D binned plots. However,
data cubes do not allow queries to individual record like
traditional databases and they need considerable amount of
memory. For example, in [26], after using the nanocubes for
reducing memory, 45 Gbytes is needed for 210 million
points (214 Mbytes for 1 million points). Moreover, this can
be applied only to a limited (up to 5) number of data
dimensions. As the number of dimensions increase, the
required memory becomes quickly impractical. We note that
data cubes can be used jointly with grid-based clustering if
so wanted. These two approaches do not exclude each other.

C. Proposed approach

Fig. 11 shows the flow of our server-side clustering
approach both for non-spatial and spatial queries. The sizes
of the grid cell and the map container box in the interface
are sent to the server as parameters. In a non-spatial query,
the map view that contains all the resulting data objects is
obtained. In contrast, in a spatial query, the map view is
specified by the user and sent to the server. The objects
inside the map view resulted from the query are selected.
The rest of the process is the same for both types of queries,
where the objects and map view are inputs to the initial
clustering. In a spatial query, we first apply the
corresponding non-spatial query to retrieve the results from
database. However, this is not needed if a faster approach is
used to store the results of the last non-spatial query on the
server so that the corresponding results for the given region
specified by a spatial query are extracted. The following

information of each cluster is collected:
1. Centroid of cluster: (x,y)
2. Number of objects: (n)
3. Bounding box: (xmin,ymin) and (xmax,ymax)
4. Cluster representative

The information of each cluster representative is also sent
to the client. For example, for photo collection, the filename
of the representative photo is sufficient for displaying image
thumbnail, see Mopsi cluster representation in Fig. 3.

Figure 11. The proposed server-side clustering approach

D. Interactions using bounding box

The bounding box of a cluster is needed for opening, and
accessing the objects inside the cluster. To open a cluster,
the map view is set using the bounding box of the cluster
and a new spatial query is applied to retrieve the objects in
the map view. To access the information of the mth object in
the cluster, a query is applied to retrieve the identifiers (id)
of the objects in the bounding box. We always sort the
results in the same order so that the mth id in the list of
results would correspond to the mth object. The object’s id
can then be used to retrieve its information. The same
approach can be used to obtain the information of k
consequent objects of a cluster. This scenario applies only
when the bounding box does not overlap with other clusters.
However, overlap might happen when merging clusters.
Next, we demonstrate the problem and explain our solution
to solve it.

Consider the three clusters in Fig. 12. Clusters 1 and 2
should be merged because of the overlap of their
representatives. To open the merged cluster when the user
clicks on its representative, a spatial query is applied to the
bounding box of the objects in the cluster. However, a
problem appears that the bounding box of the merged cluster
contains some objects from the cluster 3. We solve this by
applying spatial queries for the initial cells of the merged
cluster. We therefore send initial clusters in cells without
any merge to the client. Merge step is performed on client,
and the initial clusters and the order of merging are stored.
To retrieve the information of an object x in a cluster, its
corresponding initial cluster C and the index of x in C are
determined. The id of x is then obtained by applying a
spatial query for the bounding box of C, and the information

 71

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

of x is retrieved by applying another query using the id.

E. Scalability

In this section, we discuss the time and memory
scalabilities of the proposed server-side approach. In
general, grid-based clustering allows high scalability
regarding both memory and time, and our method is no
exception. The initial clustering is the most time consuming
step with time complexity of O(N), see Section III.

Initial clustering can be performed independently for
every cell. We can query for the data inside a cell and
calculate the information of the cluster. The data in each cell
can be queried part by part if there is too much data in it.
Two clusters resulted from two parts of data can iteratively
be merged to provide the overall cluster for the cell. The
information of the merged cluster is calculated from the
information of two clusters. The number of objects is the
sum of the number of objects of the two clusters, and the
bounding box is the union of the two bounding boxes. The
representative is taken from the first cluster, and the centroid
is calculated as:

)

/()(

)/()(

212211

212211

nnynyny

nnxnxnx

 (10)

where (x1,y1) and (x2,y2) are the centroids, and n1 and n2 are
the number of objects of the two clusters. Therefore, there is
no limitation regarding memory. However, in our current
implementation, we load the whole data from the database at
once, which limits the memory scalability with the current
hardware to about 100 Mbytes.

The processing time on our server is 0.25 second for one
Mbytes data. Assuming that 1 second is acceptable for a
real-time interaction, the processing time limits the
scalability of the current implementation to 4 Mbytes data.
This excludes the time for loading data from database. There
are many techniques to improve the interactions with the
database but it is out of the focus of this paper.

Time scalability can be further improved according to the
above-mentioned properties of the grid-based clustering by
applying parallel or multi-thread processing, which require
more investments on hardware. The subsets of the cells or
even every cell can be processed in parallel.

VI. EXPERIMENTS

To evaluate the performance of the proposed server-side
clustering and compare it with client-side clustering, we
have provided a web page (http://cs.uef.fi/mopsi/
markerClustering) that uses photos from Mopsi
(http://cs.uef.fi/mopsi). We have implemented the server-

side approach in C programming language. We have also
implemented a client-side API in Javascript to compare with
our server-side approach. Firefox 34.0.5 has been used as
the web browser. The server and client specifications are as
follow:

Client:
1. Windows 7, 64-bit
2. CPU: Inter(R) Core(TM) i3-2100, 3.10 GHz
3. Memory: 8 GB RAM

Server:
1. RedHat Enterprise Linux 7
2. Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz
3. Memory: 1000 GB RAM

To have 1,000,000 photos, we duplicated 20,000 of
Mopsi photos, 50 times each, by randomly distributing their
locations all over the world. For each photo, we have its id,
location, title, and filename. We created 4 subsets (as txt
files) containing 1000 (1K), 10,000 (10K), 100,000 (100K),
and 1,000,000 (1M) photos. In the following experiments,
we report the time taken for the clustering process only,
excluding the time for reading the files. In practice, the
photo data is retrieved from database and different
techniques could be used to speed up the queries. However,
they are out of the focus of this study. Note that for every
task such as opening a cluster or accessing the information
of the objects in a cluster, the files should also be read. We
set the cell size equal to 60x50, and the distance threshold to
T=5 pixels.

A. Comparison of clustering algorithms

In this experiment, we compare the proposed grid-based
clustering algorithm to overlap-based and centroid-linkage
algorithms. The processing time of clustering is reported in
Table II for several sizes of input data. Grid-based and
overlap-based clustering provide reasonable time for real-
time interaction, whereas centroid-linkage needs 15.5
seconds for clustering of only 10 Kbytes data, and it
becomes impractical for 100 Kbytes and more. Overlap-
based clustering is slightly slower than grid-based clustering
as expected because their time complexities are O(KN) and
O(N), respectively. Grid-based clustering is preferred
because it is suitable for parallel processing, and it provides
details on demand and opening cluster functionalities using
the bounding box of a cluster. Google MarkerClusterer v3,
which is a client-side clustering API, uses a method similar
to overlap-based clustering, but for variable size icons, that
makes it more time consuming. Table III reports the time for
the clustering process and adding representative icons to the

Three initial clusters
Overlap of

representative icons
After merging 1 and 2

Two separate
bounding boxes

Figure 12. Bounding box of the merged clusters 1 and 2 overlaps cluster 3 and therefore two separated bounding boxes are used

 72

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

map in the proposed client-side solution and Google
MarkerClusterer. As the size of data increases, the proposed
API outperforms MarkerClusterer, where for 1,000,000
items, it is almost 100 times faster.

We evaluate the clustering result by calculating sum-of-
squared errors (SSE), i.e. the total (squared) distance
between the data points and their corresponding cluster
centroid, see Equation (2). We then normalize the values
and report mean squared error (MSE):

MSE = SSE / N (11)
where N is the number of data objects. The value measures
the average variance of the clusters. The smaller the number,
the more compact and therefore better, is the clustering. The
results are reported in Table IV for the subset of size
N=1000.

The parameters for all the algorithms are set so that no
cluster overlap appears. Each algorithm provides different
number of clusters (K). For example, centroid-linkage
results in K=54, overlap-based in K=47, and grid-based in
K=45 clusters. Usually, the more clusters we have, the lower
is the MSE-value. For fair comparison, we therefore tuned
the parameters of the algorithms so that they all would result
in exactly K=45 clusters. From the results we make the
following observations.

Overlap-based and grid-based algorithms provided almost
the same MSE-values (713 vs. 716), while centroid-linkage
gave the best result (605). Considering all aspects such as
quality, running time, memory requirement, and suitability
for parallel processing, we conclude that grid-based
clustering is the best overall choice for the problem.

TABLE II. PROCESSING TIME (SECONDS) OF THREE SLUSTERING

ALGORITHM IN CLIENT-SIDE APPROACH

Data size 1K 10K 100K 1M

Centroid-linkage 0.09 15.5 - -

Overlap-based 0.01 0.02 0.10 0.93

Proposed
Grid-based

<0.01 <0.01 0.01 0.08

TABLE III. THE OVERALL PROCESSING TIME (SECONDS) IN THE PROPOSED

CLIENT-SIDE API AND GOOGLE MARKERCLUSTERER API

Data size 1K 10K 100K 1M

Proposed
grid-based

0.23 0.34 0.64 2.4

Google maps API 0.30 1.7 20 229

B. Server-side vs. client-side

Running time of the client-side and server-side
approaches has linear dependency on the size of data. The
initial clustering and the merge step are very fast in both
approaches. In the client-side approach, the time taken for
downloading data is the bottleneck even with a high speed
internet (400 Kbytes/sec). In the server-side approach, the
download time is independent on the size of data. The
overall time grows at a significantly slower rate in the
server-side approach than in the client-side approach, see
Table V. This makes it possible to use the server-side
approach in real-time applications even with a large data of
size 1,000,000 items. In the client-side approach, the

clustering is run by the internet browser, which uses
interpreted language such as Javascript. In the server-side
approach, however, faster programming languages such as C
and Java can be used.

In the client-side approach, the download size is
proportional to the size of data set, see Table VI. In case of
1,000,000 data objects, the time needed to download data is
around 26 seconds even using a high speed internet, which
means that the client-side approach is not suitable for real-
time applications of this magnitude.

The download size in the server-side approach is
independent on the size of data, and it depends only on the
number of the initial clusters in grid cells, which are
produced by the grid-based clustering algorithm. This
property makes the real-time interaction possible for the
users with different internet speeds.

TABLE IV. CLUSTERING QUALITY (MSE) WITH THE SUBSET OF SIZE

N=1000

Same parameters
Same number

of clusters Clustering
algorithm

MSE # Clusters MSE # Clusters

Centroid-linkage 500 54 605 45

Overlap-based 643 47 713 45

Proposed
Grid-based

716 45 716 45

TABLE V. PROCESSING TIME (SECONDS) OF CLUSTERING IN CLIENT-SIDE

AND SERVER-SIDE APPROACHES

Data size 1K 10K 100K 1M

Initial
clustering

0.000 0.003 0.012 0.077

Merge 0.004 0.006 0.007 0.010

Downloading data 0.019 0.062 1.6 26

Displaying
representatives

0.21 0.32 0.62 2.2

Client-side

Total 0.233 0.391 2.239 28.287

Initial
clustering

0.000 0.001 0.060 0.059

Merge 0.004 0.006 0.007 0.010

Downloading data 0.002 0.002 0.002 0.002

Displaying
representatives

0.19 0.33 0.60 2.15

Server-side

Total 0.196 0.339 0.669 2.221

TABLE VI. DOWNLOAD SIZE (KILOBYTES) IN CLIENT-SIDE AND SERVER-

SIDE APPROACHES

Data size 1K 10K 100K 1M

Client-side 74 780 7,700 77,000

Server-side 13.4 14.7 14.8 14.8

VII. CONCLUSION

We have proposed a novel web mapping system based on
clustering. It allows users to make dynamic queries and

 73

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

 74

access the result in real-time. The system is unique, as we
are unaware of any other similar server-side systems that
allow presenting query results up to 1M objects. Most
existing systems are limited to static predefined queries, or
they only have client-side solution. For example,
GoogleMaps can handle data real-time only up to few
thousands only because of bandwidth limitation of the data
transfer.

The proposed system consists of a server-side clustering
algorithm, and client-side functionalities to allow real-time
access to zoom in the clusters. The system is suitable for
real-time applications even in low bandwidth environment.
It is also highly scalable as it easily extends to parallel
processing. The results can be verified using our freely
available API, which includes both server-side and client-
side implementations.

REFERENCES
[1] M. Nöllenburg, "Geographic visualization," in Human-centered

visualization environments, pp. 257-294, 2007. doi:10.1007/978-3-
540-71949-6

[2] J. Delort, "Hierarchical cluster visualization in web mapping
systems," 19th Int. Conf. World Wide Web, pp. 1241-1244, 2010.
doi:10.1145/1772690.1772892

[3] J. K. Rayson, "Aggregate towers: Scale sensitive visualization and
decluttering of geospatial data," IEEE Symposium on Information
Visualization (Info Vis' 99), pp. 92-99, 1999.
doi:10.1109/INFVIS.1999.801863

[4] J. Korpi, P. Ahonen-Rainio, "Clutter reduction methods for point
symbols in map mashups," The Cartographic Journal, vol. 50, no. 3,
pp. 257-265, 2013. doi:10.1179/1743277413Y.0000000065

[5] Z. Liu, B. Iiang, J. Heer, "imMens: Real-time visual querying of big
data," Computer Graphics Forum, vol. 32, no. 3pt4, pp. 421-430,
2013. doi:10.1111/cgf.12129

[6] J.-Y. Delort, "Vizualizing large spatial datasets in interactive maps,"
Advanced Geographic Information Systems, Applications, and
Services (GEOPROCESSING), pp. 33-38, 2010.
doi:10.1109/GEOProcessing.2010.13

[7] A. Jaffe, M. Naaman, T. Tassa, M. Davis, "Generating summaries and
visualization for large collections of geo-referenced photographs," 8th
ACM Int. Workshop on Multimedia Information Retrieval, pp. 89-98,
2006. doi:10.1145/1178677.1178692

[8] S. Ahern, M. Naaman, R. Nair, J. H. Yang, "World explorer:
visualizing aggregate data from unstructured text in geo-referenced
collections," 7th ACM/IEEE-CS Conf. Digital Libraries, pp. 1-10,
2007. doi:10.1145/1255175.1255177

[9] N. Elmqvist, J.-D. Fekete, "Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines," IEEE
Trans. on Visualization and Computer Graphics, vol. 16, no. 3, pp.
439-454, 2010. doi:10.1109/TVCG.2009.84

[10] I. Peca, H. Zhi, K. Vrotsou, N. Andrienko, G. Andrienko, "Kd-
photomap: Exploring photographs in space and time," IEEE Conf.
Visual Analytics Science and Technology (VAST), pp. 291-292,
2011. doi:10.1109/VAST.2011.6102479

[11] M. Cristani, A. Perina, U. Castellani, V. Murino, "Content
visualization and management of geo-located image databases,"
CHI'08 Extended Abstracts on Human Factors in Computing Systems,
pp. 2823-2828, 2008. doi:10.1145/1358628.1358768

[12] F. Girardin, F. Calabrese, F. Dal Fiore, C. Ratti, J. Blat, "Digital
footprinting: Uncovering tourists with user-generated content," IEEE
Pervasive Computing, vol. 7, no. 4, 2008.
doi:10.1109/MPRV.2008.71

[13] C. Lu, C. Chen, P. Cheng, "Clustering and visualizing geographic
data using geo-tree," IEEE/WIC/ACM Int. Conf. Web Intelligence
and Intelligent Agent Technology-Volume 01, pp. 479-482, 2011.
doi:10.1109/WI-IAT.2011.171

[14] D. A. Keim, H. Kriegel, "VisDB: Database exploration using
multidimensional visualization," IEEE Computer Graphics and
Applications, vol. 14, no. 5, pp. 40-49, 1994. doi:10.1109/38.310723

[15] F. H. Post, F. J. Post, T. Van Walsum, D. Silver, "Iconic techniques
for feature visualization," 6th IEEE Conf. Visualization'95, p. 288,
1995. doi:10.1109/VISUAL.1995.485141

[16] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, S. Sirowy, "Intelligent
icons: Integrating lite-weight data mining and visualization into GUI

operating systems," 6th Int. Conf. Data Mining, pp. 912-916, 2006.
doi:10.1109/ICDM.2006.90

[17] N. Cao, D. Gotz, J. Sun, H. Qu, "Dicon: Interactive visual analysis of
multidimensional clusters," IEEE Trans. on Visualization and
Computer Graphics, vol. 17, no. 12, pp. 2581-2590, 2011.
doi:10.1109/TVCG.2011.188

[18] D. Fisher, "Hotmap: Looking at geographic attention," IEEE Trans.
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1184-
1191, 2007. doi:10.1109/TVCG.2007.70561

[19] A. Mayorga, M. Gleicher, "Splatterplots: Overcoming overdraw in
scatter plots," IEEE Trans. on Visualization and Computer Graphics,
vol. 19, no. 9, pp. 1526-1538, 2013. doi:10.1109/TVCG.2013.65

[20] B. Shneiderman, "The eyes have it: A task by data type taxonomy for
information visualizations," IEEE Symposium on Visual Languages,
pp. 336-343, 1996. doi:10.1109/VL.1996.545307

[21] G. Ellis, A. Dix, "A taxonomy of clutter reduction for information
visualisation," IEEE Trans. on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1216-1223, 2007. doi:10.1109/TVCG.2007.70535

[22] J.-D. Fekete, C. Plaisant, "Interactive information visualization of a
million items," IEEE Symposium on Information Visualization,
INFOVIS, pp. 117-124, 2002. doi:10.1109/INFVIS.2002.1173156

[23] W. Wang, J. Yang, R. Muntz, "STING: A statistical information grid
approach to spatial data mining," VLDB, vol. 97, pp. 186-195, 1997.
doi: doi:10.1.1.106.7154

[24] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, "Automatic
subspace clustering of high dimensional data for data mining
applications," ACM SIGMOD Int. Conf. Management of Data, vol.
27, no. 2, pp. 94-105, 1998. doi:10.1145/276304.276314

[25] J. Dabernig, "Geocluster: server-side clustering for mapping in Drupal
based on Geohash," M.Sc. Thesis, Faculty of Informatics, TU Wien
University, Austria, 2013.

[26] L. Lins, J. T. Klosowski, C. Scheidegger, "Nanocubes for real-time
exploration of spatiotemporal datasets," IEEE Trans. on Visualization
and Computer Graphics, vol. 19, no. 12, pp. 2456-2465, 2013.
doi:10.1109/TVCG.2013.179

[27] D. Nguyen, H. Schumann, "Taggram: Exploring geo-data on maps
through a tag cloud-based visualization," 14th Int. Conf. Information
Visualisation (IV), pp. 322-328, 2010. doi:10.1109/IV.2010.52

[28] R. T. Ng, J. Han, "CLARANS: A method for clustering objects for
spatial data mining," IEEE Trans. on Knowledge and Data
Engineering, vol. 14, no. 5, pp. 1003-1016, 2002.
doi:10.1109/TKDE.2002.1033770

[29] D. R. Edla, P. K. Jana, "A grid clustering algorithm using cluster
boundaries," World Congress on Information and Communication
Technologies (WICT), pp. 254-259, 2012.
doi:10.1109/WICT.2012.6409084

[30] S. Na, L. Xumin, G. Yong, "Research on k-means clustering
algorithm: An improved k-means clustering algorithm," Intelligent
Information Technology and Security Informatics (IITSI), pp. 63-67,
2010. doi:10.1109/IITSI.2010.74

[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, "A density-based algorithm
for discovering clusters in large spatial databases with noise," KDD,
vol. 96, no. 34, pp. 226-231, 1996. doi: 10.1.1.121.9220

[32] B. Liu, "A fast density-based clustering algorithm for large
databases," Int. Conf. Machine Learning and Cybernetics, pp. 996-
1000, 2006. doi:10.1109/ICMLC.2006.258531

[33] L. Zhao, J. Yang, J. Fan, "A fast method of coarse density clustering
for large data sets," 2nd Int. Conf. Biomedical Engineering and
Informatics, BMEI'09, pp. 1-5, 2009.
doi:10.1109/BMEI.2009.5305132

[34] P. Franti, O. Virmajoki, V. Hautamaki, "Fast agglomerative clustering
using a k-nearest neighbor graph," IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 28, no. 11, pp. 1875-1881, 2006.
doi:10.1109/TPAMI.2006.227

[35] P. Franti, T. Kaukoranta, D. Shen, K. Chang, "Fast and memory
efficient implementation of the exact PNN," IEEE Trans. on Image
Processing, vol. 9, no. 5, pp. 773-777, 2000. doi:10.1109/83.841516

[36] M. Steinbach, L. Ertöz, V. Kumar, "The challenges of clustering high
dimensional data," New Directions in Statistical Physics: Springer,
pp. 273-309, 2004. doi:10.1007/978-3-662-08968-2_16

[37] J. H. Ward Jr, "Hierarchical grouping to optimize an objective
function," J. American Statistical Association, vol. 58, no. 301, pp.
236-244, 1963. doi:10.1080/01621459.1963.10500845

[38] W. Meert, "Clustering maps," M.Sc. Thesis, Faculty of Engineering,
University of Leuven, Belgium, 2006.

[39] T. Zhang, R. Ramakrishnan, M. Livny, "BIRCH: an efficient data
clustering method for very large databases," ACM Sigmod Record,
vol. 25, no. 2, pp. 103-114, 1996. doi:10.1145/235968.233324

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]

