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1Abstract—Displaying geo-referenced data in web mapping 

systems has become popular. However, most existing systems 
suffer from three annoying problems: (1) clutter when trying to 
visualize large amount of data; (2) slowness of transferring 
data over internet; (3) lack of support for dynamic queries. To 
solve these problems, we propose a real-time system using 
server-side clustering, transferring only the clustered data, and 
client-side visualization using existing map tools. As far as we 
know, there is no other scientific paper describing such real-
time system that allows dynamic database queries without 
limiting to predefined queries. Experiments show that it can 
handle up to 1 million objects whereas all existing systems are 
either limited to pre-defined queries, or they support only a 
very small number of free parameters in the query whereas the 
proposed system has no such limitations. 
 

Index Terms—data visualization, clustering methods, web 
services, client-server systems, Internet. 

I. INTRODUCTION 

Rapid increase of cell phones and GPS devices has made 
it easy to collect huge amount of location-based or 
geospatial data. By location-based data, we mean photos or 
other data attached with their physical locations. Geo-
visualization is a tool for better understanding, efficient 
search, and well-organized management of data. It has 
received considerable attention due to the rise of online 
maps and advances in graphics and display technology [1]. 
A Web Mapping System (WMS) is a tool for geo-
visualization that standardizes the way of sharing geospatial 
information on the Internet using interactive web maps [2]. 

However, in case of visualizing large amount of data, 
most existing systems suffer from one of the following three 
problems: clutter, slowness, and restriction to pre-defined 
(static) queries. Fig. 1 shows a few examples found from 
web. Most present the data either as a set of points, or as 
small icons on the map. Only one web page shows the data 
(orienteering maps) as polygons. In all cases, the amount of 
data is relatively small and the selection of the data is 
predefined. The ones where data is several thousands 
(Jounin kauppa and Forenom) suffer from cluttering and 
sometimes also from slowness. To overome these issues, 
they allow user to select only a subset by filtering. Two 
pages (Way.fi and Wayne’s coffee) use clustering provided 
by GoogleMaps API (the earth quake icon) but they are also 
limited to predefined data. None of the systems support 
dynamic queries. 

The clutter problem appears when trying to show large 

number of items on the limited space of a display screen [
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3]. 
Clutter reduction aims at reducing the overlap for better 
information visualization. In cartographic generalization, 
a minimum distance between adjacent items is defined to 
avoid the overlap [4]. Zooming also helps to avoid 
information overload but at the cost of losing the overall 
view of the data [1],[4]. The data to be shown should 
therefore be reduced, but so that it still represents the entire 
selection. Filtering and sampling are other possible 
approaches for the data reduction. However, they can bias 
the distribution of the data, lose relevant data objects, and at 
the same time, present outliers [5], see Fig. 2. Clustering, on 
the other hand, aims at grouping the data based on 
a similarity (or distance) criterion between the objects. All 
the objects are still available by navigating through the 
groups. 

Clustering consists of two design questions: which 
algorithm to use, and how to represent the clusters on the 
map. A cluster can be represented simply by an icon such as 
circles or point. For better usability, more information about 
the content of the cluster can also be given, such as the 
density or the distribution of the objects within the cluster. 
Several visualization techniques are shown in Fig. 3, in 
which we summarize six properties: 

 

• Technique for data reduction 
• Representation of cluster 
• Showing density 
• Showing distribution 
• Opening (drilling down) a cluster 
• Details-on-demand 
 

Flickr and Panoramio filter data by random sampling. 
Panoramio uses two levels of sub-sampling based on 
popularity and proximity of the photos. All the other 
visualization approaches are based on clustering. 
Panoramio, Mopsi (http://cs.uef.fi/mopsi) and the system of 
Delort [6] use a selected photo to represent a cluster. Tag 
maps [7-8] represent a cluster by selected word whose size 
depends on the size of the cluster. 

The visual aggregate should also include some 
information about the underlying data in the cluster [9]. 
Some systems show the cluster borders explicitly by 
Voronoi [2],[6],[10], convex hulls [11], or cells [12]. This 
helps to see the distribution of the data. However, the extra 
lines and shapes can overwhelm the view. Voronoi can also 
be misleading because it segments the entire area, also parts 
that do not contain any data [2]. Simple icon is still the most 
popular object to represent the clusters because of its 
simplicity. Google MarkerClusterer API uses an icon that  
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Figure 1. Typical examples of existing web systems and how they deal with the problem 

 

All data Filtered data Clustered data 

   
Figure 2.  Clutter of 1000 geo-referenced data on the map (left), filtered by random selection of 20 objects (middle) and clustering (right) 

indicates the density by showing number, color, and size of 
the icon. The data distribution and the covered region of the 
cluster cannot be shown directly by an icon [2],[13], but the 
area can be indirectly concluded from the overall 
distribution. Additional information can also be embedded 
into the icons [14-17]. For example, DICON uses a treemap 
style icon that includes statistical distribution of the data in 
the cluster [17]. Other representations include heat maps 
[5],[13],[18], and Splatterplots [19].  

Opening a cluster [9] means that when the user clicks a 
cluster representative, an automatic zoom happens so that 
the objects in the cluster are displayed on the map view (the 
part of the map shown in a specified box in the interface). 
Most of the systems support this functionality. Details-on-
demand indicates how the user can access the details of any 
object in a cluster without opening the cluster or zooming in 
[20]. In general, providing more information to help 
ordinary users for better understanding the data is not trivial 
[17]. 

For solving the clustering, a scalable algorithm is required 
that is capable of handling large data sets in real-time 
[4],[13],[21-22]. Downloading data and generating the 
clusters on the client is still possible but it would cause a 
high transmission load on the network, and therefore, is not 
suitable for low speed internet connections. Especially if the 
data contains images as in our case. To minimize data 
transfer, clustering should therefore be performed on the 
server, and send only the summary information of each 
cluster to the client. 

Several server-side clustering approaches exist such as 
STING [23] and CLIQUE [24] but they pre-compute the 

clusters on the server. They apply clustering off-line to the 
entire data, and store the results on the server, which limits 
their use for static predefined queries only. However, we 
want to support also dynamic queries defined by the user in 
real-time. The results of such queries cannot usually be 
predicted beforehand because they are based on ad hoc 
query parameters such as free text keyword and time period, 
instead of just the location as in most existing systems [25]. 
To support dynamic queries, only a few approaches exist 
such as imMens and nanocubes, which have been recently 
proposed based on the idea of data cubes [5],[26]. A limited 
set of attributes (dimensions) of data are stored as 
aggregates on the server. The downside of this is the huge 
need for memory. 

In this paper, we propose a solution that allows dynamic 
queries without any such limitations. We formulate the 
clutter removal of icons as a clustering problem. We 
propose a server-side approach, which clusters the objects 
dynamically on the server, and sends only the summary 
information of each cluster to the client. The algorithm has 
a grid-based structure, which provides high scalability. We 
provide client-side and server-side APIs for the method. The 
computational time of the clustering is less than one second 
for 1,000,000 objects, where the download size is limited to 
15 Kbytes in a machine with Intel Xeon E7-4860 v2, 2.60 
GHz. To represent the clusters, we support both photos and 
variable size user-defined icons. Clusters can be opened by 
clicking the cluster representative. When opening a cluster, 
the map is zoomed in automatically to cover the area where 
all the objects of the selected cluster are located. The new 
content is presented on the map, clustered again if the  
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Flickr  Google maps  

 

(a) Filtering 
(b) Circle icon 
(c) - 
(d) - 
(e) - 
(f) Yes 

 

(a) Clustering 
(b) Circle icon 
(c) Color, number 
(d) - 
(e) Yes 
(f) - 

Panoramio  Voronoi [2]  

 

(a) Filtering 
(b) Image icon 
(c) - 
(d) Yes 
(e) - 
(f) Yes 

 

(a) Clustering 
(b) Voronoi 
(c) Color 
(d) Yes 
(e) Yes 
(f) - 

Container shape [11]  Heat map [13]  

 

(a) Clustering 
(b) Area, image  
(c) - 
(d) Yes 
(e) Yes 
(f) - 

 

(a) Clustering 
(b) Heat map 
(c) Color 
(d) Yes 
(e) Yes 
(f) - 

Mopsi   Cells [12]  

 

(a) Clustering 
(b) Image icon 
(c) Number 
(d) - 
(e) Yes 
(f) Yes 

 

(a) Clustering 
(b) Cell 
(c) Color 
(d) Yes 
(e) Yes 
(f) - 

DICON [17]  Taggram [27]  
(a) Clustering 

 

(b) Icon 
(c) Color & shape 
(d) - 
(e) Yes 
(f) Yes 

(a) Clustering 

 

(b) Word 
(c) Color & size 
(d) - 
(e) Yes 
(f) - 

Figure 3. Several representations of geo-referenced data on maps, and their properties: (a) Technique for data reduction (b) Representation of cluster (c)
Showing density (d) Showing distribution (e) Opening a cluster (f) Details-on-demand 

 

       65

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 18, Number 4, 2018 

amount of data still causes clutter. Starting the view of the 
entire world, single photos are usually reached by 2-6 clicks. 

The content of a cluster can also be accessible by details-
on-demand principle [20]. Since our system contains merely 
photos, we open photo viewer where user can only go 
through the photos in the cluster one by one using kind of 
slideshow. 

The rest of the paper is organized as follows. Clustering 
problem is formulated in Section II. In Section III, several 
clustering methods are analyzed for the purpose of the 
clutter problem, and the detailed procedure of the proposed 
grid-based clustering is presented in Section IV. Server-side 
approaches including our proposed method are studied in 
Section V. Experimental results are reported in Section VI, 
and conclusions are drawn in Section VII. 

II. CLUSTERING PROBLEM 

Clustering for clutter removal differs from normal data 
clustering. Instead of finding real clusters, we aim at 
grouping data merely for visual clarity and better computer-
human interaction. Any overlap causes difficulty and 
confusion when clicking an icon. For example, in Fig. 4, 
there are three well-separated clusters A, B, and C. The goal 
of normal data clustering would be to identify the three 
clusters, see Fig. 4 (middle). Some methods might consider 
the single object in cluster C as an outlier and identify only 
two clusters. However, a clutter removal method should be 
localized so that the sparse areas do not lose the details 
[4],[21]. Clustering distant objects together misleads the 
user about their real locations. The methods such as CLARA 
and CLARANS [28] that apply the clustering on a sample of 
data suffer from this problem. They assign non-selected 
objects to the clusters according to a criterion, for example 
to the nearest centroid. However, an object might be 
assigned to a distant cluster. To avoid this problem in clutter 
removal, it is therefore better to show more clusters as long 
as their representatives do not overlap. In this way, the time 
spent to access a photo would be shorter, see Fig. 4 (right). 

A. Objective of clustering 

Given a data set A  R2 with N objects, the problem of 
clustering is to group the objects into K clusters. Each object 
must be assigned to a cluster, so that there are no outliers 
and missing data. The clustering has two objectives: 

1. Maximize the number of clusters without overlap 
To avoid overlap of clusters i and j with rectangular icons 

of sizes (Wi, Hi) and (Wj, Hj), see Fig. 5, one of the 

following conditions should be met: 

THHyy

TWWxx

jiji

jiji
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2/)(
                 (1) 

where (xi, yi) and (xj, yj) are the coordinates of the centroids 
ci and cj. Value T=0 guarantees that there is no overlap, but a 
bigger value (we use here T=5 pixels) is preferred to have 
more space between the clusters. This leads to a more 
readable map, which is less covered with cluster 
representatives. 

2. Minimize sum of squared error (SSE) 





N

i
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where c(ai) is the centroid of the cluster that the object ai is 
placed in. Several possible clusterings satisfy the conditions 
in (1), from which the clustering that provides minimum 
SSE is the optimal. This condition indicates that the overall 
distance of the objects of a cluster to the centroid is 
minimized, which provides least confusion about the real 
location of the objects. 

Ci

Cj
|yi-yj|

|xi-xj|

Wi

Hi

Wj

Hj

 
Figure 5.   Overlap of the bounds of two icons 

 

B. Number of clusters 

The number of clusters is unknown. However, it has an 
upper limit according to the average size of representative 
icons (W, H) and the size of map view (W0, H0). Assume 
that the map is filled with icons without any overlap. The 
maximum number of icons that can be drawn on the map is: 











H

H

W
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Figure 4.   Different goals of normal clustering (middle) and clutter removal (right) 
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C. Bounding box 

We define the bounding box of a map view as the window 
with the top-left and bottom-right coordinates of the view: 
[(Latmax, Lonmin), (Latmin, Lonmax)], see Fig. 6. The bounding 
box of a set of objects is defined in the same way but the 
boundaries are derived from the objects in the set. To 
display the set of objects on the map, a suitable map view 
should be first determined, which is the part of the entire 
map with the highest zoom level that contains the bounding 
box of the objects, see Fig. 6. The bounding box of the 
resulted map view can be wider than that of the objects 
because of the discrete change of zoom level. 

(Latmax, Lonmin)

(Latmin, Lonmax)

Bounding box of the map view
Bounding box of the objects

 
Figure 6.   The bounding box of map view and the bounding box of objects. 
The map view for the given objects is corresponding to the highest possible 
zoom level that contains all the objects. Zooming in more will cause some 
of the objects move out of the display 

 

III. CLUSTERING METHODS 

In this section, we study clustering approaches including 
divisive, density-based, agglomerative [28], and grid-based 
methods [29]. We show how some of them can be modified 
in order to be applicable to the clutter problem. We consider 
K-means (divisive), DBSCAN (density-based), and centroid-
linkage (agglomerative) algorithms as examples of the first 
three categories, and analyze their suitability for the 
problem. A trivial overlap-based clustering algorithm is also 
considered because it is likely to be applied to the problem 
by many others due to its simplicity. 

A. K-means 

K-means is a partitional clustering algorithm in which K 
centroids are initially selected in some way, for example 
randomly chosen data objects. Two steps of the algorithm 
are iteratively performed: assignment and update, for a fixed 
number of iterations or until convergence. In the first step, 
objects are assigned to their nearest centroid. In the second 
step, new centroids are calculated by averaging the objects 
in each cluster. Time complexity is O(IKN), where I is the 
number of iterations [30]. K-means is not suitable for the 
clutter problem as such because the number of clusters is 
unknown. Moreover, the representative icons might still 
overlap after clustering. 

B. Overlap-based clustering 

The first cluster is created from the first data object, and 
all other objects within a given distance threshold are joined 

to this cluster. The process then continues similarly for the 
next object that has not yet joined to any cluster. The 
algorithm is given below: 

 
overlapBasedClustering(X, N, TH) 
k = 1 
FOR  i=1 TO N 
visited[i] = FALSE 
label[i] = 0 

FOR  i = 1 TO N 
IF NOT visited[i] 
visited[i] = TRUE 
createCluster(X, N, TH, label, visited, i, k) 
k = k + 1 
 

createCluster(X, N, TH, label, visited, i, k) 
label[i] = k 
FOR  j=1 TO N 
IF (NOT visited[j]) AND (distance(i, j) < TH)  
label[j] = k 
visited[j] = TRUE 

 

The time complexity is O(KN), because the function 
createCluster is called K times, where K≤N is the number of 
clusters. The main disadvantage is that the clustering result 
depends on the order of processing data. 

C. DBSCAN 

DBSCAN is a density-based clustering algorithm that 
aims at finding arbitrary shape clusters. Its basic idea is to 
create clusters from points whose neighborhood within a 
given radius (eps) contain a minimum number (minPt) of 
other points [31]. Using every such a point, the algorithm 
grows a cluster by joining other points that are close to the 
cluster. Time complexity of the original DBSCAN is O(N2) 
but some efforts [32-33] have been made to reduce it close 
to O(N). In clutter removal of icons, the minPt must be set to 
1 because a single separated object should also be 
considered as a cluster, and eps is set to the distance 
threshold that guarantees no overlap. The cluster growing is 
not needed because we do not aim at finding natural 
clusters. Therefore, DBSCAN is not a suitable choice for the 
clutter problem. 

D. Centroid-linkage 

Agglomerative clustering is a bottom-up approach in 
which each object is initially considered as its own cluster. 
Two closest clusters are then iteratively merged [34]. 
Several criteria have been proposed for selecting the next 
two clusters to be merged such as single-linkage, average-
linkage, complete-linkage, centroid-linkage, and Ward’s 
method. Both centroid-linkage and Ward’s method are 
applicable to the clutter removal problem because the 
overlap of representative icons is checked based on the 
distance between cluster centroids. The merging process 
continues until the distance between the centroids of the 
next two clusters to be merged exceeds a threshold that 
guarantees no overlap. The pseudo code of fast 
implementation of the centroid-linkage algorithm based on 
the solution introduced in [35] is shown in the next page. 

Time complexity of the basic agglomerative clustering is 
O(N3) but the above solution reduces it to O(αN2), where 
α<<N in the above algorithm due to employing a nearest 
neighbor table that uses only O(N) memory. The algorithm 
can still be too slow for real-time applications. In [34], an 
algorithm based on k-nearest neighbor graph is proposed in 
order to improve the speed close to O(NlogN) with a slight 
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decrease in accuracy. However, graph creation is the 
bottleneck of the algorithm, and should be solved. 
Otherwise, this step dominates the time complexity. 

 
centroidLinkage(X, N, TH) 
Set each object to its own cluster 
k = N 
iMin = createNNTable(X, N) 
[i1, i2, dist] = findClosestClusters(iMin, k) 
WHILE dist < TH 
mergeAndUpdate(iMin, k, i1, i2) 
k = k – 1 
[i1, i2, dist] = findClosestClusters(iMin, k) 

createNNTable(X, N)  iMin 
FOR i = 1 TO N 
iMin[i] = i 

FOR i = 1 TO N 
FOR j = 1 TO N 
IF  distance(i, j) < distance(i, iMin[i]) 
iMin[i] = j 

findClosestClusters(iMin, k)  [i1, i2, dist] 
i1 = 1 
FOR i= 1 TO k  
IF distance(i, iMin[i])<distance(i1, iMin[i1]) 
i1 = i 

i2 = iMin[i1] 
dist = distance(i1, i2) 
mergeAndUpdate(iMin, k, i1, i2) 
Merge cluster i2 in cluster i1 
Update centroid of cluster i1  
FOR i = 1 TO k  
IF iMin[i] = i2 
iMin[i] = i1 
FOR j = 1 TO k 
IF  distance(i, j) < distance(i, iMin[i]) 
iMin[i] = j 

Replace cluster i2 with the last cluster 
 
distance(i, j)  dist 
dist = Euclidean distance between X(i) and X(j) 
IF i = j 
dist = MAX 

E. Grid-based clustering 

Grid-based clustering consists of three main steps: grid-
construction, initial clustering, and merge. The space 
containing the objects is first segmented by dividing each 
dimension into a predefined number of bins [29]. This 
provides rectangular grid cells, see Fig. 7. In the second 
step, initial clusters are formed by assigning each object to a 
cell simply by indexing without any need for distance 
calculation [36]. Each cell corresponds to one cluster. 
Centroids and other summary information such as the 
number of objects and density are then calculated for the 
clusters. The rest of the process is performed only on the 
non-empty cells that contain some objects. 

 In the third step, final clusters are formed by merging the 
neighboring cells according to some closeness criterion such 
as density or connectedness, see Fig. 7. Finding a suitable 
criterion for merging is not trivial because different criteria 
can lead to different clustering results [29]. Pseudo code of 
this overall algorithm is given below: 

 
 

gridBasedClustering(X, N, cellSize) 
// Step 1: Grid construction 
region = bounding box of data X 
Set grid for the region 
Set indices of the cells 
// Step 2: Initial clustering 
K=0 
FOR i=1 to N 
Find the cell index (m, n) for the object X[i] 
IF the cell[m, n] is empty 
K=K+1 
Create new cluster K 

j = cluster index of the cell (m, n)  
Update information of cluster j 

// Step 3: Merge 
FOR k=1 to K 
Check neighbors of cluster k and merge if 

needed 
 

 
Figure 7.   Some of neighboring cells should be merged to form natural 
clusters 

 

The grid construction step contains the setting of the 
required parameters, which takes only O(1) time. The time 
complexity of the assignment step is O(N) because every 
object is processed. The third step is performed on the K 
initial clusters: the cells that contain objects. Since K<<N 
(especially in 2-D), the overall time complexity is O(N). 
This makes the grid-based clustering a suitable choice for 
the real-time clutter removal problem. Memory complexity 
is O(N) and no distance calculation is required between the 
objects. 

A few challenges have been reported for grid-based 
clustering methods such as finding clusters with variable 
densities, determining the size of grid cells, limitation of 
rectangular cells to fit the shape of clusters, and 
dimensionality problem [24],[29],[36]. However, most of 
the challenges are related to finding natural clusters or high 
dimensional data. Finding a suitable size for grid cell is not 
trivial because a small size leads to more cells, and therefore 
more computations, while a coarse cell size results in lower 
accuracy due to merging far away objects. However, in 
clutter removal of icons, the cell size is concluded directly 
from the size of the icons (for example maximum size). The 
only remaining issue is that two close objects might be 
clustered separately if located at the border of two cells. 
This misleads the user about the real locations of these 
objects.  

TABLE I. COMPARISON OF CLUSTERING ALGORITHMS FOR CLUTTER REMOVAL OF ICONS 

Clustering algorithm Item Memory complexity 
Supporting large 

data 
Supporting parallel 

processing 

K-means O(IKN) O(N) No No 

Overlap-based O(KN) O(N) Yes No 

DBSCAN O(NlogN) O(N) No No 

Centroid-linkage O(N2) O(N2) No No 

Grid-based O(N) O(N) Yes Yes 
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Grid-based clustering is simple to implement, and its time 
and memory complexities are better than those for other 
methods, see Table I. Moreover, parallel processing in order 
to increase the speed for large data can be perfectly applied 
to grid-based clustering. We present next the technical 
details of grid-based clustering for the clutter problem. 

IV. GRID-BASED CLUSTERING FOR CLUTTER REMOVAL 

This section presents the detailed procedure of grid-based 
clustering in order for clutter removal of icons on the map.  

A. Coordinates system 

The location of a data object is represented by latitude 
and longitude, which are measured in degrees, minutes, and 
seconds of the globe sphere, or for computational purposes, 
simply in decimal degree. In Mercator projection, the areas 
far from the equator are exaggerated and it is not possible to 
find a fixed height for the grid cells, and a single distance 
threshold for avoiding overlap of icons, which have certain 
width and height in pixels. Therefore, we construct the grid 
in Cartesian coordinate system in pixel rather than degree, 
and convert the latitude and longitude of the objects to pixel 
for a certain zoom level as follows: 

















 

)sin(1

)sin(1

2
128

10128 6

lat

lat
Ln

Rm
y

lonRmx

  (4) 

where m=6.3952×10-6 is a scaling factor, R=6.371×106 is 
the earth radius, and lon and lat are in the range (-π, π) and 
(-π/2, π/2) respectively. The value (x, y) represents the 
coordinates of a point within a picture of size 256x256, 
which corresponds to the lowest zoom level (zero) in 
Google maps. For a higher zoom level z (up to 21), the 
coordinates are derived from x and y as follows: 

zz yyxx 2',2'                       (5) 

B. Grid construction 

For a given map view, the grid is usually built starting 
from top-left corner, see Fig. 8 (left). However, this 

approach has a drawback. When the user pans the map, 
some new objects enter and some objects move out from the 
map view, and therefore, a new clustering is applied. 
Consider two clusters with 3 and 7 objects, respectively, in 
Fig. 9 (left); then, after horizontal panning to the right by the 
amount corresponding to 40% of the cell size, the objects 
will divide into two other clusters with 6 and 4 objects, 
respectively. This artifact happens because the new grid 
does not match with the old one, and objects might be 
assigned to different cells in the new grid. To avoid this 
problem, we set a fixed grid starting from the beginning of 
the whole world but consider only the cells which are 
completely or partly in the current map view, see Fig. 8 
(right). This makes the grid invariant of panning. 

 

   
Figure 9.    Horizontal panning to the right causes different clusters when 
the grid is set according to the top-left of map view 

 

The number of rows and columns in the map view are 
calculated as: 








 








 


c
column

c
row W

xx
n

H

yy
n minmaxminmax  (6) 

where (Wc, Hc) is the size of a grid cell, and the points (xmin, 
ymin) and (xmax, ymax) are calculated according to the points p1 
and p2 of the bounding box of the map view. A cell is then 
identified according to its row and column indices, which 
are in the range of [1, nrow] and [1, ncolumn], respectively, see 
Fig. 8. 

C. Initial clusters in cells 

In this phase, the objects are assigned to the cells. We go 
through the objects one by one and calculate its 
corresponding cell. Row and column of the corresponding 

Figure 8.    Starting grid from the beginning of the map view (left), and fixed grid starting from the beginning of the whole world but considering only 
the cells covering the map view 

 

       69

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 08:03:15 (UTC) by 3.235.186.149. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 18, Number 4, 2018 

cell of an object at the location (x, y) is calculated as: 
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The cells that contain some objects become the initial 
clusters. The centroid of a cluster is calculated by averaging 
the locations of all the objects in the cluster. The initial 
clusters result in a fixed SSE for a certain input data. The 
cluster information that is used in the rest of the process 
includes the number of objects n, centroid (x, y) and cluster 
representative. We calculate the size of the icon for each 
cluster i from the size of the cluster ni using the following 
logarithmic function: 
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                     (8) 

where [.] is the rounding function, Wmin and Hmin are the 
minimum width and minimum height of the icons and α is 
the increase rate for the width and height. There is a trade 
off in the choice of α. Large increase rate can lead to very 
big icons whereas small increase rate makes the difference 
of cluster sizes unnoticeable. In this work, we fix α=8. 

D. Merging overlapping clusters 

The representative icons of the clusters in neighboring 
cells may overlap when the distance between the centroids 
of the clusters is small, see Fig. 10. The overlap can be 
eliminated either by spatial distortion of representative icons 
or by merge. Spatial distortion is performed by moving the 
centroid location of a cluster away from the overlapping 
cluster [13],[21]. If the icon moves far, an arrow can be used 
to point from the icon to the original location. In case of 
many overlapping icons, the problem of finding good places 
for the icons becomes complicated. We therefore use the 
merge approach. After merging two clusters, their new 
centroid might place in anywhere within the two cells, or 
even move into a third cell, see Fig. 10. However, we keep 
the index of the first cluster for simplicity. This has no side 
effect to the clustering results, and it is needed for the 
server-side clustering; where the indices of initial cells are 
required for accessing the objects in a cluster. 

We process as follows. First, we go through all clusters 
one by one to determine overlapping clusters according to 
(1). For every overlapping clusters i and j, we calculate their 
merge cost as the increase in the total SSE: 

2

ji
ji

ji cc
nn

nn
SSE 


                        (9) 

We select the clusters to be merged that result in 
minimum increase in the SSE, which is similar to the idea of 
Ward’s criterion in agglomerative clustering [37]. The size 
of the representative icon of the new cluster is updated using 
(8). After the merge, the new cluster is checked for possible 
overlap to other clusters and the process then continues until 
no overlap remains. This merging approach does not 
guarantee the global optimal but it merely removes all 
overlaps by locally minimizing SSE in each step. 

V. REAL-TIME CLUSTERING ON SERVER-SIDE 

Our goal is to apply clustering on server-side in order to 
limit the download size. Moreover, we want to support 

dynamic queries to the data without limiting to a small 
predefined set of queries. In this section, we first compare 

ver-side and client-side approaches, and study existing 
server-side solutions and their limitations. We then propose 
a server-side approach based on grid-based clustering. We 
first need to define two types of queries that the user 
requests to see the desired results on the map: spatial and 
non-spatial. 

ser

 
Figure 10. Overlap of two representative icons in neighboring cells (left) 
and merging clusters (right) 

 

Spatial query: The user selects the map view and requests 
to see all data in this area. No other parameters are needed to 
specify which objects. The entire data can be clustered 
offline on the server if only this type of query is requested. 
The corresponding clusters in the region are then extracted 
from the pre-computed clustering. Zooming, panning, and 
opening a cluster are examples of how spatial query is 
initiated by the user. In the cases of zooming and panning, 
the map view is set directly using the map API tool. For 
opening a cluster, a new map view is calculated and set 
according to the bounding box of the objects in the cluster.  

Non-spatial query: Instead of showing all the objects, the 
user selects a subset to be displayed based on other 
properties. For example, the user might want to see the 
pictures by a given person within a given time period, or the 
objects containing a given keyword. We refer to this as non-
spatial query in contrast to spatial query. Pre-computing the 
clusters is possible but only for a predefined set of queries 
such as accessing all the data in the year 2015. However, in 
general, these types of queries are dynamic, and clustering 
must be performed real-time. This is because the set of data 
is dynamically retrieved based on the input parameters given 
by the user; the objects that match the query cannot be 
predicted in general. 

A. Server-side vs. client-side 

The main advantage of server-side clustering approach is 
that it limits download size by sending only the summary 
information of clusters to the client. In client-side clustering, 
all the data are sent to the client, which provides two 
advantages. First, processing data on client relieves the 
server from overwhelming clustering requests. Second, no 
additional request to the server is needed for interactions 
such as zooming in the map or opening a cluster. However, 
obtaining the entire results from the server can cause high 
traffic load on the network. Suppose that 100,000 data 
objects are transferred to the client and 12 bytes are required 
for id, latitude, and longitude per object. The transmission 
load would sum up to 1.2 Mbytes, which is considerable 
amount for a low speed internet. 

In server-side approach, the transmission load is limited 
by sending only the information of clusters. Since the 
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number of clusters is limited according to the sizes of 
display and icon, there is an upper limit for the transmission 
load, which is independent on the number of objects. 
Several server-side clustering APIs have been developed in 
recent years [25],[38]. 

B. Existing methods 

The existing methods that deal with visualization of large 
data on maps can be classified into two groups: 

1. Hierarchical clustering on the server by pre-computing 
the clusters 

 2. Using data cubes 
 

The first group [2],[13],[23],[25],[39] clusters entire data 
on the server by employing a hierarchical structure such as 
KD-tree or R-tree. Querying for a region is then performed 
in O(logN) time by finding the target clusters in the suitable 
level of the hierarchy. The hierarchical structure can also 
provide scalable visual representations [2],[9]. However, 
clustering of entire data does not support non-spatial 
queries. Elmqvist and Fekete [9] provide an overview on 
hierarchical aggregation of data to support visualization 
requirements such as panning, zooming, and opening a 
cluster. 

To address non-spatial queries for large data sets and to 
support quick exploration, several researchers use data 
cubes [5],[26]. Data cubes are structures that build 
aggregations across every possible set of dimensions of data 
[26]. imMens [5] decomposes multi-dimensional data cubes 
into binned data tiles of reduced dimensionality and 
performs accelerated query processing and rendering on the 
GPU. For real-time interaction, the binned data tiles are pre-
computed. imMens visualizes the aggregates on the map as 
geographic heatmaps which are 2-D binned plots. However, 
data cubes do not allow queries to individual record like 
traditional databases and they need considerable amount of 
memory. For example, in [26], after using the nanocubes for 
reducing memory, 45 Gbytes is needed for 210 million 
points (214 Mbytes for 1 million points). Moreover, this can 
be applied only to a limited (up to 5) number of data 
dimensions. As the number of dimensions increase, the 
required memory becomes quickly impractical. We note that 
data cubes can be used jointly with grid-based clustering if 
so wanted. These two approaches do not exclude each other. 

C. Proposed approach 

Fig. 11 shows the flow of our server-side clustering 
approach both for non-spatial and spatial queries. The sizes 
of the grid cell and the map container box in the interface 
are sent to the server as parameters. In a non-spatial query, 
the map view that contains all the resulting data objects is 
obtained. In contrast, in a spatial query, the map view is 
specified by the user and sent to the server. The objects 
inside the map view resulted from the query are selected. 
The rest of the process is the same for both types of queries, 
where the objects and map view are inputs to the initial 
clustering. In a spatial query, we first apply the 
corresponding non-spatial query to retrieve the results from 
database. However, this is not needed if a faster approach is 
used to store the results of the last non-spatial query on the 
server so that the corresponding results for the given region 
specified by a spatial query are extracted. The following 

information of each cluster is collected: 
1. Centroid of cluster: (x,y)  
2. Number of objects: (n) 
3. Bounding box: (xmin,ymin)  and (xmax,ymax) 
4. Cluster representative 
 

The information of each cluster representative is also sent 
to the client. For example, for photo collection, the filename 
of the representative photo is sufficient for displaying image 
thumbnail, see Mopsi cluster representation in Fig. 3. 

 

 
Figure 11.    The proposed server-side clustering approach 

 

D. Interactions using bounding box 

The bounding box of a cluster is needed for opening, and 
accessing the objects inside the cluster. To open a cluster, 
the map view is set using the bounding box of the cluster 
and a new spatial query is applied to retrieve the objects in 
the map view. To access the information of the mth object in 
the cluster, a query is applied to retrieve the identifiers (id) 
of the objects in the bounding box. We always sort the 
results in the same order so that the mth id in the list of 
results would correspond to the mth object. The object’s id 
can then be used to retrieve its information. The same 
approach can be used to obtain the information of k 
consequent objects of a cluster. This scenario applies only 
when the bounding box does not overlap with other clusters. 
However, overlap might happen when merging clusters. 
Next, we demonstrate the problem and explain our solution 
to solve it. 

Consider the three clusters in Fig. 12. Clusters 1 and 2 
should be merged because of the overlap of their 
representatives. To open the merged cluster when the user 
clicks on its representative, a spatial query is applied to the 
bounding box of the objects in the cluster. However, a 
problem appears that the bounding box of the merged cluster 
contains some objects from the cluster 3. We solve this by 
applying spatial queries for the initial cells of the merged 
cluster. We therefore send initial clusters in cells without 
any merge to the client. Merge step is performed on client, 
and the initial clusters and the order of merging are stored. 
To retrieve the information of an object x in a cluster, its 
corresponding initial cluster C and the index of x in C are 
determined. The id of x is then obtained by applying a 
spatial query for the bounding box of C, and the information  
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of x is retrieved by applying another query using the id. 

E. Scalability 

In this section, we discuss the time and memory 
scalabilities of the proposed server-side approach. In 
general, grid-based clustering allows high scalability 
regarding both memory and time, and our method is no 
exception. The initial clustering is the most time consuming 
step with time complexity of O(N), see Section III.  

Initial clustering can be performed independently for 
every cell. We can query for the data inside a cell and 
calculate the information of the cluster. The data in each cell 
can be queried part by part if there is too much data in it. 
Two clusters resulted from two parts of data can iteratively 
be merged to provide the overall cluster for the cell. The 
information of the merged cluster is calculated from the 
information of two clusters. The number of objects is the 
sum of the number of objects of the two clusters, and the 
bounding box is the union of the two bounding boxes. The 
representative is taken from the first cluster, and the centroid 
is calculated as: 

)
 

/()(

)/()(
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212211

nnynyny

nnxnxnx




                    (10) 

where (x1,y1) and (x2,y2) are the centroids, and n1 and n2 are 
the number of objects of the two clusters. Therefore, there is 
no limitation regarding memory. However, in our current 
implementation, we load the whole data from the database at 
once, which limits the memory scalability with the current 
hardware to about 100 Mbytes. 

The processing time on our server is 0.25 second for one 
Mbytes data. Assuming that 1 second is acceptable for a 
real-time interaction, the processing time limits the 
scalability of the current implementation to 4 Mbytes data. 
This excludes the time for loading data from database. There 
are many techniques to improve the interactions with the 
database but it is out of the focus of this paper. 

Time scalability can be further improved according to the 
above-mentioned properties of the grid-based clustering by 
applying parallel or multi-thread processing, which require 
more investments on hardware. The subsets of the cells or 
even every cell can be processed in parallel. 

VI. EXPERIMENTS 

To evaluate the performance of the proposed server-side 
clustering and compare it with client-side clustering, we 
have provided a web page (http://cs.uef.fi/mopsi/ 
markerClustering) that uses photos from Mopsi 
(http://cs.uef.fi/mopsi). We have implemented the server-

side approach in C programming language. We have also 
implemented a client-side API in Javascript to compare with 
our server-side approach. Firefox 34.0.5 has been used as 
the web browser. The server and client specifications are as 
follow: 

 

Client: 
1. Windows 7, 64-bit 
2. CPU: Inter(R) Core(TM) i3-2100, 3.10 GHz 
3. Memory: 8 GB RAM 

Server: 
1. RedHat Enterprise Linux 7 
2. Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz  
3. Memory: 1000 GB RAM 
 

To have 1,000,000 photos, we duplicated 20,000 of 
Mopsi photos, 50 times each, by randomly distributing their 
locations all over the world. For each photo, we have its id, 
location, title, and filename. We created 4 subsets (as txt 
files) containing 1000 (1K), 10,000 (10K), 100,000 (100K), 
and 1,000,000 (1M) photos. In the following experiments, 
we report the time taken for the clustering process only, 
excluding the time for reading the files. In practice, the 
photo data is retrieved from database and different 
techniques could be used to speed up the queries. However, 
they are out of the focus of this study. Note that for every 
task such as opening a cluster or accessing the information 
of the objects in a cluster, the files should also be read. We 
set the cell size equal to 60x50, and the distance threshold to 
T=5 pixels. 

A. Comparison of clustering algorithms 

In this experiment, we compare the proposed grid-based 
clustering algorithm to overlap-based and centroid-linkage 
algorithms. The processing time of clustering is reported in 
Table II for several sizes of input data. Grid-based and 
overlap-based clustering provide reasonable time for real-
time interaction, whereas centroid-linkage needs 15.5 
seconds for clustering of only 10 Kbytes data, and it 
becomes impractical for 100 Kbytes and more. Overlap-
based clustering is slightly slower than grid-based clustering 
as expected because their time complexities are O(KN) and 
O(N), respectively. Grid-based clustering is preferred 
because it is suitable for parallel processing, and it provides 
details on demand and opening cluster functionalities using 
the bounding box of a cluster. Google MarkerClusterer v3, 
which is a client-side clustering API, uses a method similar 
to overlap-based clustering, but for variable size icons, that 
makes it more time consuming. Table III reports the time for 
the clustering process and adding representative icons to the 

Three initial clusters 
Overlap of 

representative icons 
After merging 1 and 2 

Two separate 
bounding boxes 

Figure 12.    Bounding box of the merged clusters 1 and 2 overlaps cluster 3 and therefore two separated bounding boxes are used 
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map in the proposed client-side solution and Google 
MarkerClusterer. As the size of data increases, the proposed 
API outperforms MarkerClusterer, where for 1,000,000 
items, it is almost 100 times faster. 

We evaluate the clustering result by calculating sum-of-
squared errors (SSE), i.e. the total (squared) distance 
between the data points and their corresponding cluster 
centroid, see Equation (2). We then normalize the values 
and report mean squared error (MSE): 

MSE = SSE / N                    (11) 
where N is the number of data objects. The value measures 
the average variance of the clusters. The smaller the number, 
the more compact and therefore better, is the clustering. The 
results are reported in Table IV for the subset of size 
N=1000. 

The parameters for all the algorithms are set so that no 
cluster overlap appears. Each algorithm provides different 
number of clusters (K). For example, centroid-linkage 
results in K=54, overlap-based in K=47, and grid-based in 
K=45 clusters. Usually, the more clusters we have, the lower 
is the MSE-value. For fair comparison, we therefore tuned 
the parameters of the algorithms so that they all would result 
in exactly K=45 clusters. From the results we make the 
following observations. 

Overlap-based and grid-based algorithms provided almost 
the same MSE-values (713 vs. 716), while centroid-linkage 
gave the best result (605). Considering all aspects such as 
quality, running time, memory requirement, and suitability 
for parallel processing, we conclude that grid-based 
clustering is the best overall choice for the problem. 

 
TABLE II. PROCESSING TIME (SECONDS) OF THREE SLUSTERING 

ALGORITHM IN CLIENT-SIDE APPROACH 

Data size 1K 10K 100K 1M 

Centroid-linkage 0.09 15.5 - - 

Overlap-based 0.01 0.02 0.10 0.93 

Proposed 
Grid-based 

<0.01 <0.01 0.01 0.08 

 
TABLE III. THE OVERALL PROCESSING TIME (SECONDS) IN THE PROPOSED 

CLIENT-SIDE API AND GOOGLE MARKERCLUSTERER API 

Data size 1K 10K 100K 1M 

Proposed 
grid-based 

0.23 0.34 0.64 2.4 

Google maps API 0.30 1.7 20 229 

B. Server-side vs. client-side 

Running time of the client-side and server-side 
approaches has linear dependency on the size of data. The 
initial clustering and the merge step are very fast in both 
approaches. In the client-side approach, the time taken for 
downloading data is the bottleneck even with a high speed 
internet (400 Kbytes/sec). In the server-side approach, the 
download time is independent on the size of data. The 
overall time grows at a significantly slower rate in the 
server-side approach than in the client-side approach, see 
Table V. This makes it possible to use the server-side 
approach in real-time applications even with a large data of 
size 1,000,000 items. In the client-side approach, the 

clustering is run by the internet browser, which uses 
interpreted language such as Javascript. In the server-side 
approach, however, faster programming languages such as C 
and Java can be used. 

In the client-side approach, the download size is 
proportional to the size of data set, see Table VI. In case of 
1,000,000 data objects, the time needed to download data is 
around 26 seconds even using a high speed internet, which 
means that the client-side approach is not suitable for real-
time applications of this magnitude. 

The download size in the server-side approach is 
independent on the size of data, and it depends only on the 
number of the initial clusters in grid cells, which are 
produced by the grid-based clustering algorithm. This 
property makes the real-time interaction possible for the 
users with different internet speeds. 

 
TABLE IV. CLUSTERING QUALITY (MSE) WITH THE SUBSET OF SIZE 

N=1000 

Same parameters 
Same number  

of clusters Clustering 
algorithm 

MSE # Clusters MSE # Clusters 

Centroid-linkage 500 54 605 45 

Overlap-based 643 47 713 45 

Proposed 
Grid-based 

716 45 716 45 

 
TABLE V. PROCESSING TIME (SECONDS) OF CLUSTERING IN CLIENT-SIDE 

AND SERVER-SIDE APPROACHES 

Data size 1K 10K 100K 1M 

Initial  
clustering 

0.000 0.003 0.012 0.077 

Merge 0.004 0.006 0.007 0.010 

Downloading data 0.019 0.062 1.6 26 

Displaying 
representatives 

0.21 0.32 0.62 2.2 

Client-side

Total 0.233 0.391 2.239 28.287 

Initial  
clustering 

0.000 0.001 0.060 0.059 

Merge 0.004 0.006 0.007 0.010 

Downloading data 0.002 0.002 0.002 0.002 

Displaying 
representatives 

0.19 0.33 0.60 2.15 

Server-side

Total 0.196 0.339 0.669 2.221 

 
TABLE VI. DOWNLOAD SIZE (KILOBYTES) IN CLIENT-SIDE AND SERVER-

SIDE APPROACHES 

Data size 1K 10K 100K 1M 

Client-side 74 780 7,700 77,000 

Server-side 13.4 14.7 14.8 14.8 

VII. CONCLUSION 

We have proposed a novel web mapping system based on 
clustering. It allows users to make dynamic queries and 
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access the result in real-time. The system is unique, as we 
are unaware of any other similar server-side systems that 
allow presenting query results up to 1M objects. Most 
existing systems are limited to static predefined queries, or 
they only have client-side solution. For example, 
GoogleMaps can handle data real-time only up to few 
thousands only because of bandwidth limitation of the data 
transfer.  

The proposed system consists of a server-side clustering 
algorithm, and client-side functionalities to allow real-time 
access to zoom in the clusters. The system is suitable for 
real-time applications even in low bandwidth environment. 
It is also highly scalable as it easily extends to parallel 
processing. The results can be verified using our freely 
available API, which includes both server-side and client-
side implementations.  
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