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1Abstract—Electric vehicles (EVs) fall in line with a new 

ideology of less waste and more conscious usage of resources, 
slowly picking up speed. In this context, energy storage is of 
paramount importance, making batteries a key element in the 
architecture of the electric vehicles. The state of the battery 
pack must be thoroughly monitored to prolong lifetime and 
extend vehicle range. For this, measurable physical quantities 
(i.e. terminal voltage, charge/discharge current, temperature) 
must be monitored and processed, while the inferred 
parameters (e.g. state-of-charge (SoC), state-of-health (SoH)) 
are computed and continuously updated. Whether we are 
talking about control of a noisy system, ill-defined decision-
making processes or data analysis, estimation theory comes 
into play on a regular basis. The estimation algorithm is critical 
for appropriate usage of all available power, therefore, 
research effort is required to allow development of an optimum 
for a given application, by exploring design alternatives and 
their effects. This paper evaluates graphically an extended 
Kalman filter (EKF) for determining the SoC of lithium-ion 
batteries (LIBs) considering various cell models, initial 
conditions and charge/discharge profiles. The results are 
qualitatively and quantitatively assessed by extracting and 
visualizing the dynamics of the internal variables of the filter 
during operation. 
 

Index Terms—battery management systems, electric 
vehicles, Kalman filters, Lithium batteries, parameter 
estimation. 

I. INTRODUCTION 

As the internal combustion engine (ICE) vehicle is a 
stable market, with fewer prospects of game-changing 
improvements, future development trends target alternative 
transportation solutions. Electric vehicles (EVs) play an 
important role in sustainable mobility thanks to high energy 
efficiency and zero-emissions when in use. Moreover, many 
of the countries that acknowledge climate change promote 
projects to drastically reduce harmful emissions and 
improve fuel efficiency for new vehicles [1]. The rising 
popularity of EVs led to new battery chemistries, capable of 
high energy densities, while satisfying the increasingly 
stringent safety requirements [2]. To meet EV specific 
power demands, series/parallel cell assemblies are organized 
in customized scalable modules, enabling design and service 
flexibility [3]. As batteries of the same chemical and 
physical characteristics differ in terms of performance 
parameters (e.g. capacity, internal resistance), charge 
imbalance is likely to occur within the module, especially 
during erratic usage. The nonuniformity of elements in a 

stack poses various problems, from performance limitation 
(e.g. the capacity of the entire string is restricted by the 
lowest capacity cell in the string) to safety concerns [4-5], 
thus battery management systems (BMS) for cell balancing 
come in handy [6]. The main input parameter driving the 
system is the state-of-charge (SoC) of the batteries, which 
gauges the amount of available charge relative to the 
nominal capacity of each cell. As the SoC of the battery 
represents a condition rather than a measurable quantity, its 
precise deduction is a real challenge for engineers. Several 
estimation methods were proposed throughout industry, 
ranging from plain, but less effective solutions (e.g. 
integration of charge/discharge current [7]), to more 
efficient, yet computationally heavy algorithms (e.g. 
nonlinear variants of the Kalman filter (KF) [8-10]). The 
growing computing power of automotive grade MCU 
families allows running of highly-advanced applications, 
ergo intricate solutions become progressively approachable.  

 
 

While an ideal capacitor develops charge on its plates 
linearly with the voltage applied across it (i.e. Q = C·V), 
lithium ion batteries (LIBs) pose a highly nonlinear open 
circuit voltage (OCV) vs. SoC characteristic (Fig. 1). Hence, 
the BMS needs its SoC estimator to be able to deal with the 
nonlinear behavior of the battery. The extended Kalman 
filter (EKF) [11] puts forth a means to handle nonlinearities 
while speculating the main benefit of its linear peer: the 
inherent predictor-corrector mechanism. Albeit not optimal, 
the EKF provides a potential solution for a variety of tasks, 
from tracking of moving objects [12-13] to control and 
decision-making systems or energy management [14-16]. 

 
Figure 1. OCV vs. SoC characteristic far a LiFePO4 battery after one hour 
resting period after each applied load pulse 
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II. THE EQUIVALENT CIRCUIT BATTERY MODEL 

To perform properly, the estimator requires a precise 
battery model to mimic the physical behavior of the part, 
viz. to relate the measurable quantities to the available 
charge. Fig. 2 illustrates a 2nd order RC equivalent circuit 
model (ECM) and the typical voltage response of LIBs to a 
discharge current pulse. The transient response of the battery 
has two components, a fast one and a sluggish one, emulated 
by R1C1 and R2C2, respectively. The purely resistive 
component, R0, relates any sudden change in the load profile 
to the steep edges of the measured voltage. As one can 
notice, once the battery has reached chemical equilibrium 
(i.e. VR1C1 = VR2C2 = 0) the OCV and terminal voltage are 
similar (Vt = OCV). 

 
Figure 2. 2nd order RC battery model and the voltage response to a 
discharge current pulse 

Besides offering an intuitive alternative to mathematical 
models [17], ECMs provide a set of equations, depicting the 
operation of the circuit (i.e. Kirchhoff’s current (1) and 
voltage (2) laws), which are relatively easy to integrate into 
the structure of the filter, once discretized [18]. 
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As the above circuit state equations do not provide any 
direct insight on the battery’s SoC, an additional relationship 
(i.e. Coulomb counting (3)) is required to plug-in the 
parameter into the structure of the estimation algorithm: 
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where: 
- SoC(t) represents the battery SoC at initial time t; 
- Cn is the nominal capacity of the part [A·h]; 
- I(t) is the load current (positive for discharge) [A]; 
- η is the Coulombic efficiency (unity for discharge). 

III. THE EXTENDED KALMAN FILTER ESTIMATOR 

Fig. 3 shows a complete one-step-forward Kalman 
filtering cycle. The specific equations are organized in two 
distinct steps: 

- the prediction (a priori) step, forecasts the mean 
value of the state vector (…, xp

k+1, …) and error 
covariance matrix estimates (…, Pp

k+1, …) at each 
time index (…, k+1, …). This is done according to 
the process model and by accounting for the 
measurement update during the previous time index: 
xp

k+1 ← xo
k; 

- the correction (a posteriori) step, adjusts the previous 
estimation based on measured data, such that a new, 
improved state (…, xo

k+1, …) will be propagated 
through the algorithm. 

 
Figure 3. The Kalman filter algorithm diagram 

The EKF process (4) and output (5) models are driven by 
the nonlinear, differentiable vector functions, f(·) and g(·), 
where xk+1 is the unknown system state vector at time index 
k+1, yk depicts the observation or output vector, uk is the 
control vector and the random variables wk and vk (6) 
represent the process and measurement additive, zero-mean 
noise samples. The two noise signals are uncorrelated, with 
covariance matrices Q and R, respectively. 
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f(·) and g(·) are linearized about each sample point by 
Taylor series expansion, taking into account only the first-
order terms, also known as Jacobians. These terms are 
mathematically expressed in (7), where Ak, Ck represent the 
first partial derivatives of f(·) and g(·) with respect to xk, 
whereas Bk, Dk are the Jacobian matrices of the same 
functions with respect to uk. A detailed derivation of the 
Jacobians is done in [18]. 
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The estimator starts running relying on the initial state (8) 
and error covariance (9) information available at step zero. 
Even though the Kalman filter turns out to be robust when 
poorly initialized, a proximal to reality input will reduce the 
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number of steps required to converge towards the real value. 
Pursuant to the aforementioned process and algorithm 

diagram, the estimation steps are mathematically described 
below: 

Initialization: 
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The performance of the filter is strongly influenced by the 
ability of the ECM to closely emulate the real behavior of 
the battery. An adaptive battery model keeps track of its 
parameters over the entire SoC interval, hence boosting the 
model accuracy. Fig. 4 plots the extracted parameters of the 
ECM and their corresponding fit functions across the SoC 
interval for a 2nd order RC battery model, as in [19]. 
Subsequently, the derived curve fitting equations will be 
integrated into the structure of the estimator. 

 
Figure 4. 2nd order battery model parameters fit (black – discharge, grey – 
charge) 

The initial state vector accounts for a half-depleted 
battery and no voltage drop across the two RC branches → 
the battery is in chemical equilibrium (15). Also, the initial 
error covariance matrix was chosen as in (16), but only for 
the sheer pulsed charge/discharge patterns (Fig. 5). 

 Tox 005.00  


    (15) 

 01.0,01.0,10 diagPo     (16) 

The Q matrix is a rather holistic parameter which includes 
all modeling errors (unknown errors inclusively). Large 
values of Q show that the picked model performs poorly in 

predicting the process. On the other hand, R acts like a 
weighting factor on the contribution of the measurements to 
the estimation. A small R means that the measurements are 
close to reality, therefore reliable. Out of the two 
parameters, the filter performance is more responsive to the 
error covariance matrix of the process, Q. For this 
application Q and R were empirically determined: 

 1.0R      (17) 

 001.0,001.0,00001.0diagQ   (18) 

Once implemented, the EKF application was validated 
against real data, using the same load profiles as for ECM 
parameterization in [19] in a first instance (i.e. 30 pulses of 
19.5A each: 102% of SOC → 10/6% of SOC → 10/2% of 
SOC, Cn = 19.5Ah) – see Fig. 5 for discharge pattern. 

 
Figure 5. EKF performance – discharge pattern (one hour resting span) 

Subsequently, the filter performance was confirmed 
against two random load profiles, accounting for an initially 
fully charged and a pre-discharged sample, as per Fig. 6 and 
Fig. 7, respectively. 

 
Figure 6. EKF performance – random load profile (fully charged battery) 
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Figure 7. EKF performance – random load profile (pre-discharged battery) 

As can be seen, the filter performed properly during any 
of the three applied load patterns, displaying a maximum 
error slightly below 3%, in relation to the random profile 
pictured in Fig. 6. 

IV. EKF TUNING 

A. EKF generic parameters 

Besides the circuit model of the battery, the estimation 
accuracy is strongly influenced by the initial values of the 
state vector (xo

0) and error covariance matrix (Po
0). All the 

examples in this paper consider an initially half depleted cell 
at chemical equilibrium in terms of the state vector. Fig. 8 
points out the effect of different initial error covariance 
matrices on the performance of the filter when a random 
load profile is applied to a partially pre-discharged battery. 
The convergence of the filter towards the real SoC value is 
strongly dependent on this matrix. 

 
Figure 8. The effect of the initial covariance matrix on estimation quality 

The elements of the initial error covariance matrix, Po
0, 

affect the performance of the filter, mainly at start-up, but 
with considerable impact over the entire load profile. 
According to the process and observation models, the 

estimator will consider the prediction as being correct, even 
if not the case, and will rely mostly on the current 
integration from then on (Fig. 9). Basically, the estimator 
follows closely the real SoC shape relying solely on the 
Coulomb counting feature, but with a gap determined by the 
time it takes for the estimated terminal voltage to match the 
real one, as illustrated in the enlarged portions of Fig. 9. 

 
Figure 9. The relationship between the convergence of estimated and 
measured voltage and locking of estimated SoC (Po

0=diag[1,0.01,0.01]) 

The process and measurement error covariance matrices, 
Q and R respectively, pose a serious impact on the 
performance of the EKF and are rather difficult to determine 
optimally [20-21]. Hence, not seldom, it is more convenient 
to find their elements by trial and error, than to compute 
them. The top window in Fig. 10 shows the evolution of the 
filter when running two different values of Q, whereas the 
bottom one plots the same effect due to R (only one matrix 
was handled at a time, to isolate their impact on the filter). 
As noticed, both matrices influence radically the operation 
of the filter and moderate shifts in their values result in 
serious performance degradation. 

 
Figure 10. The impact of the matrices Q and R on the estimation accuracy 
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B. Application specific parameters 

One other critical aspect, to be mentioned when running 
the estimator, is the OCV hysteresis effect due to 
insufficient resting after a charge/discharge event. As 
depicted in Fig. 11, the charge-discharge OCV hysteresis is 
decreasing with the relaxation period, although for LiFePO4 
olivine there is not much of a difference between relaxation 
intervals of five minutes or one hour, relative to the OCV 
value. 

 
Figure 11. OCV charge-discharge hysteresis dynamics with the relaxation 
period 

The hysteresis effect is more visible for lower SoC 
values, as a higher relaxation time is required for the battery 
to achieve chemical equilibrium. When running the filter 
this will come out as abrupt overturns in the estimated 
signal, causing severe deviations relative to the reference 
trace, as displayed in Fig. 12, and conversely altering the 
overall performance of the filter. 

 
Figure 12. OCV hysteresis effects on SoC estimation 
 

To eliminate the inconveniences due to OCV hysteresis, 
only one OCV fit expression was employed within the EKF 
structure, without discerning between charge/discharge 

events. The discharge OCV function in (19) was considered 
most appropriate, as during normal operation the battery will 
mostly discharge, excepting seldom circumstances like 
braking or coasting when energy is recovered by the vehicle. 
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where the subscript d stands for discharge and the indexed 
coefficients values are given in Table I: 

TABLE I. THE VALUES OF OCV(SOC) COEFFICIENTS FOR DISCHARGE  
a1 3.42 a4 1.051 a7 0.22 a10 -0.8151 
a2 154.5 a5 0.05668 a8 -0.229 a11 46.48 
a3 -140.8 a6 -21.15 a9 167.8 a12 0.0891 

V. EKF INTRINSIC BEHAVIOR DURING OPERATION 

The operation of the Kalman filter resembles in some way 
that of a negative feedback operational amplifier: it keeps 
adjusting its internal parameters such that the estimated 
response of the system/battery fits the measured one. This 
mechanism depicts the negative feedback of the filter: when 
the estimated and measured battery terminal voltages fit 
together, the correction step impact on the state vector will 
be insignificant due to the contracting innovation term in 
(13), analogue to the differential voltage at the inputs of the 
op-amp. As shown in Fig. 13, except for the inceptive 
fragment and the load transients, the innovation term is 
approaching zero. As part of the state vector, the estimated 
state-of-charge is directly affected by the reduction of the 
innovation term. 

 
Figure 13. Dynamics of the innovation term during a random load profile 
(left zoom – initial convergence, right zoom – behavior during load 
transients)
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Figure 14. Evolution of the implemented EKF for two different Po

0 (random profile applied to a pre-discharged cell) 
 

Fig. 14 reveals in a graphical manner the evolution of the 
filter when initialized with two distinct error covariance 
matrices: as one can notice, the incipient OCV and terminal 
voltage estimations are similar in both cases (i.e. 3.292 V) 
and correspond to a loading state of 0.5 – the two values are 
given by the employed OCV vs. SoC relationship in (19) 
which is illustratively represented by the OCV vs. SoC inset. 

Once the calculated terminal voltage approaches the 
measured one, the theoretical SoC will no longer converge 
towards the real value and the estimation algorithm will 
closely track the OCV vs. SoC function – the 0.139 of SoC 
corresponds to an OCV value of 3.211 V according to (19), 
which is also reflected in the resulted OCV waveforms. The 
SoC traces meet near the depletion point. Unlike the voltage 
gap between the OCV signals, which is still significant, its 
SoC correspondent is much narrower, since the OCV curve 
is changing dramatically in the extreme SoC regions. After 
merging, the two estimates will track firmly the real SoC for 
a while, but will softly start to drift away during the last 
charge event (the kickoff point of the scattering is around 
0.3 of SoC). 

Table II provides further explanations on Fig. 14: the first 
row emphasizes the close connection between the initial 
values of the estimated battery terminal voltage, Vt_est, and 
OCV, due to requisite filter initialization at t0. The first 
value of the two calculated voltages is similar, being given 
solely by the initial value of the SoC as the voltage drop 
across the RC branches is considered zero (15). On the other 
hand these values differ from the real signal, Vt_meas, as the 

filter did not have the time to converge towards the real 
signal (the negative feedback did not come into play yet). 

TABLE II. DYNAMICS OF IMPLEMENTED EKF (RELATIVE TO FIG. 14) 
OCV vs. SoC (19) Po

0=diag[1,0.01,0.01] Po
0=diag[8,0.01,0.01] 

SoC OCV Vt_meas SoC OCV Vt_est OCV SoC 
0.5 3.292 3.333 0.5 3.292 3.292 3.292 0.5 

0.354 3.276 - - - - 3.276 0.354 
0.139 3.211 - 0.139 3.211 - - - 

0 2.784 - -0.001 2.774 - 2.879 0.011 
0.296 3.265 - 0.296 3.265 - 3.265 0.296 

The next two rows in the table approach the t1 moment, 
separately for each variant of Po

0, as the two SoC traces 
differ significantly from each other at that time instant. 
Taking a closer look on the cell values reveals one 
fundamental aspect of the EKF operation: the estimated SoC 
value is a strong function of calculated OCV. Although 
different, the two estimates returned approximately similar 
SoC values corresponding to identical OCV magnitudes (see 
dashed connection lines inside Fig. 14). The value of the 
battery terminal voltage was registered only for the first 
step, as the three waveforms plotted in the upper window 
(i.e. the measured one and the two computed by the filter) 
overlay for the rest of the simulation profile. Finally, the last 
two rows are more or less similar, as the real and the 
estimated signals match closely. The dashed cells were 
considered not relevant for this explanation. 

Fig. 15 depicts the individual voltage contribution of the 
ECM branches to the calculated OCV value. The voltage 
drop across each branch is strongly influenced by the value 
of the associated circuit elements as a function of SoC. This 
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can be easily noticed in the upper section of the figure: the 
two voltage waveforms are dissimilar for a good part of the 
load profile, although the same current pattern is applied. 
This is because of different values of internal resistance, R0, 
corresponding to distinct loading states of the battery. 
Though not as intuitive as in the case of the purely resistive 
component, the same is valid for the other two RC branches. 
Once the two SoC estimations fit to each other, the 
computed voltage traces are matching closely. 

 
Figure 15. The estimated voltage drops across the ECM branches 

Further on, a graphical representation of (2) is given in 
Fig. 16, considering a discharge current pulse applied to a 
fully rested cell (i.e. the OCV and terminal voltage, Vt, 
overlap just before the load pulse is applied). 

 
Figure 16. Graphical representation of (2) for a discharge current pulse 

The top window in Figure 16 depicts the arrangement of 
the three voltage signals calculated for each passive branch 
of the circuit model: R0, R1C1 and R2C2. The computation of 

the three waveforms is done in such a way that the resulted 
terminal voltage fits the measured one. The bottom section 
of the figure displays the calculated terminal voltage, Vt, and 
the resulted OCV after (2) is applied. 

VI. EKF VS. NONLINEARITY 

A closer look on the evolution of the Kalman gain unveils 
a rather unexpected behavior: unlike the innovation term, 
which displays no sharp transitions during stationary load 
regimes, the elements of the Kalman gain matrix exhibit a 
peculiar oscillation, with no apparent link to the load 
transients: 

 
Figure 17. Numerical oscillation within the elements of the Kalman gain 
matrix 

According to Fig. 17, the ‘noisy’ behavior of the Kalman 
gain matrix, is deterministic and starts when entering the 
0.1 – 0 SoC region. The same behavior is valid within the 
1 – 0.95 SoC range. Both intervals correspond to the highly 
nonlinear sections of the OCV vs. SoC characteristic of the 
lithium cell. 

Fig. 18 provides an additional explanation of the 
phenomenon discussed above. As already pointed out, the 
Kalman gain oscillations occur over the highly nonlinear 
regions of the OCV vs. SoC curve. This fact is highlighted 
by the plot of the first derivative of the OCV as a function of 
SoC, which poses an abruptly increasing trait reflecting the 
strong nonlinear dynamics of the OCV. The root cause of 
this phenomenon lies within the elements of the error 
covariance matrix. Over these regions the first order Taylor 
approximation performs poorly and hence the estimation 
precision is altered (viewed solely from the nonlinearity 
standpoint) increasing the value of these elements. The noise 
effect is amplified by the multiplication of the matrix by the 
transpose of Ck (Ck is the Jacobian matrix containing the 
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derivative of OCV as a function of SoC element), when 
computing the Kalman gain matrix in (12). Further on, the 
hum will propagate cyclically through the filter. 
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