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1Abstract—Photogrammetry is a well-studied and much-

used analysis tool. Typical use cases include area surveillance, 
flood monitoring and related tasks. Usually, an Unmanned 
Aerial System (UAS) is used as support for image acquisition 
from an a priori delimited region in a semi-automated manner 
(via a mix of ground control and autonomous trajectory 
tracking). This in turn has led to various algorithms which 
handle path trajectory generation under realistic constraints 
but still many avenues remain open. In this paper, we consider 
typical costs and constraints (UAS dynamics, total-path length, 
line inter-distance, turn points, etc.) in order to obtain, via 
optimization procedures, an optimal trajectory. To this end we 
make use of polyhedral set operations, flat trajectory 
generation and other similar tools. Additional work includes 
the study of non-convex regions and estimation of the number 
of photographs taken via Ehrhart polynomial computations. 
 

Index Terms—digital photography, optimization, path 
planning, position control, unmanned aerial vehicles. 

I. INTRODUCTION 

Among the methods for event detection, the interpretation 
of optical remote images is widely used and also gives the 
best results concerning price and accuracy. In order to detect 
events (like flood) by image analysis, three solutions usually 
appear in the literature: a) use of images from satellites [1-
2], b) use of images from fixed cameras on the ground [3-4] 
and c) use of images from aircrafts or UAVs [5]. To monitor 
and evaluate the area of disasters, concatenated images, 
created by photomosaic generation, can be useful. Thus, the 
gaps or duplications of regions, in different analyzed 
images, are avoided. In this case, the UAV solution is a 
cheaper and more flexible one which can ensure superior 
image resolution even under adverse weather conditions. In 
this direction, the authors in [6] developed a solution for 
detection and evaluation of the dynamic evolution of the 
flood based on a collaborative team of UAVs.  

More recently a multicopter-based photogrammetry 
procedure, was used to evaluate the effect of an earthquake 
on complex architectural landscapes [7]. Also, Feng et al. 
[8] used a UAV for urban flood monitoring thus showing 
that such platforms can provide accurate flood maps. In their 
proposed method, the authors show how the acquired 
images are ortho-rectified and combined into a single image.  

All the above image acquisition strategies impose strict 
constraints on the photographs' capture during the UAV 
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mission. I.e., photographs have to be captured: at a constant 
height (low/medium/high - the classification is relative, 
depending on context and application); such that there is a 
predefined overlap between neighboring photographs and 
there are no gaps in the area of interest (such that a photo-
mosaic image covering the entire area is computed). While 
there are many specialized software applications which can 
merge photographs with partial overlap to generate a 
continuous mapping and detect features of interest, there are 
still open issues in the generation, control and optimization 
of the flight path to be followed by a UAV [9]. This 
apparently simple problem has a number of intricacies: turn 
maneuvers of the UAV should not “cut” into the shape of 
the area under observation, maximal distance between 
consecutive path lines has to be respected and, not in the 
least, the UAV operational costs (energy, time of travel) 
should be minimized [10-11]. 

Assuming that all low-level control loops are already 
designed such that a predefined trajectory is followed 
accurately and the payload is stabilized, we can reduce the 
path generation problem to an optimization problem where 
various constraints, parameters and costs are taken into 
account.  

The constraints include inter-distance between 
consecutive path-lines, guarantees of shape coverage (i.e., 
through the addition of auxiliary turn points which assure 
that the UAV does not “cut” the shape under observation) 
and, if needed, course angle restrictions (if wind velocity is 
significant and the UAV's autopilot cannot accept a large 
deviation from the wind's vector or to limit brightness 
variations). The main parameter to be considered is the 
inter-distance between consecutive lines and directly 
depends on the photographs’ overlap coefficient, usable area 
covered by each photograph and desired resolution (the last 
two directly depend on the UAV cruise altitude). Lastly, 
various different cost functions may be minimized such as 
fuel consumption, flight time, total path length, etc. Taking 
into account all these elements, we can formulate an 
optimization problem whose output is the optimal path 
which, for every set of given parameters, respects the 
constraint and minimizes the chosen cost function.  

The first step is to define a convex shape over which the 
UAV has to fly. Moreover, the flight path needs to be 
chosen such that the photographs taken while flying cover 
the entire domain. The first issue of interest is the number of 
photographs which have to be taken. This can be assimilated 
to counting the number of integer points (each point 
represents a captured photograph) which lie inside a convex 
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shape. These notions can be described formally using the 
Ehrhart polynomial and the associated theory [12]. 

Next, we discuss two alternative implementations of the 
constrained optimization problem. The first penalizes the 
length of the internal path (containing only the segments 
inside the shape under observation) and the second penalizes 
the entire path (including turn points). Lastly, we discuss the 
influence of wind [13] and the case of non-convex shapes 
(How should a non-convex area be covered such that the 
generated path is still optimal ?). 

The main novelties introduced in the path planning 
procedure are the offline analysis (which estimates the 
number of photographs which will be captured) and the 
consideration of explicit constraints in the path planning 
procedure (both intrinsic - consecutive lines inter-distance 
and extrinsic - wind direction). 

The problem that we are solving in this paper is the 
optimal coverage of the area to be monitored, from the point 
of view of energy consumption (a limiting factor, since the 
UAV is electrically powered trough a battery) and trajectory 
length. This problem is solved through new solutions 
concerning the path generation. Here, as a proxy for fuel 
consumption, we consider the total path-length. In order to 
create a path which respects the UAV dynamics we use flat 
trajectory constructions. This may prove to be useful when 
the area under coverage is short enough such that the UAV 
dynamics become significant. 

As support for aerial surveillance we propose a fixed-
wing type UAV system developed by the authors in the 
project MUROS [14] (Multisensory Robotic System for 
Aerial Monitoring of Critical Infrastructures), granted by the 
Romanian National Research Program STAR (Space 
Technology and Advanced Research) from ROSA 
(Romanian Space Agency). The system is completely 
autonomous, apart from the take-off stage where a human 
operator is needed. The area to be monitored is covered with 
the aid of a path, designed by a suitable optimization 
problem while the acquired images are analyzed in order to 
detect and assess the extent of disasters.  

II. METHOD FOR OPTIMAL AREA COVERAGE 

To automatically evaluate the extent of disasters in the 
monitored area, a single image without overlays or gaps is 
necessary. The camera mounted on the UAV takes photos 
which exhibit partial overlap and the photogrammetry 
algorithm has to process the data and output a continuous 
image which is then partitioned into smaller, non-
overlapping images which cover the observation area and 
can later be used by the segmentation algorithm.  

The photographs used for the segmentation procedure are 
captured along a path covering the area under surveillance. 
The resulting path planning procedure takes into account 
design constraints and various cost functions which lead to a 
constrained optimization problem. This is a typical approach 
in path/trajectory planning procedures [15] for either 
photogrammetric [10], [13] or other flight missions [9], [11]. 
In its simplest form, it means that an agent (i.e., the UAV) 
has to travel optimally across a predefined area such that a 
certain objective is fulfilled (e.g., observation of the area). 

The first step is to provide the bounds of the region of 
interest (where the flooded area is to be detected). This is 

done by the operator and may need to be re-assessed during 
the area coverage stage if the extent of the flooded area is 
larger than initially believed. Further we propose a 
constrained optimization problem which accounts for both 
intrinsic (e.g., distance between consecutive lines of the 
path, orientation of the UAV with respect to the area) and 
extrinsic constraints (e.g., wind direction). Lastly, the 
influence of external parameters and the extension to non-
convex areas are discussed. Additional constraints which 
describe UAV and payload limitations (UAV speed, camera 
snapshot speed, brightness variation, etc) have not been 
taken into account here but can certainly be added in a 
future work.  

As a framework we consider polyhedral sets which are a 
good choice for practical implementations. They can 
approximate arbitrarily well any convex shape and apply 
naturally to constrained optimization problems. This comes 
from their dual (half-space/vertex) representation [16].  

Let us consider a collection of vertices { }iv  which define 

a polyhedral shape:  
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to which corresponds the dual half-space representation 

   n
iii

T
i

n khkxhxP ,,:                (2) 

Note that x stands in both equations (1) and (2) as a 
variable which is inside of the polyhedron P. Under 
representation (1) this means that x can be expressed as a 

convex sum of the extreme vertices iv  of the polyhedron 

(via the weights i ) and under representation (2) it means 

that x verifies all the constraints defining the polyhedron 
(given by the pairs ),( ii kh ).  

A. Interior points 

An interesting question is how many snapshots have to be 
taken such that a pre-defined area is completely covered. 
We neglect partial overlapping and assume that some 
existing photogrammetry algorithm can be used to stitch 
together all the images in order to obtain a continuous 
mapping of the terrain. Assuming that each photo covers a 
square region of width 100 m the problem reduces to 
counting how many integer points (i.e., which have integer 
coordinates) are found inside the polyhedral set 
characterizing the area under observation. Formally this 
number is characterized by the Ehrhart polynomial (3): 

   tPxxtPL n  :,                                (3) 

which gives the number of integer points which lie inside or 
on the boundary of polytope tP - the t-fold dilation of P. 
Factor t serves here as a proxy for the operating altitude of 
the UAV. If the altitude is increased, the area covered by 
photo increases as well. This is equivalent with multiplying 
P with a sub-unitary scaling factor. The computation of (3) 
is done through specialized tools which exploit the 
associated theory [12]. The actual computation of the 
Ehrhart polynomial coefficients is done with the Latte 
package [17-18]. 

B. Path generation 

While the use of the Ehrhart polynomial gives a 
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qualitative understanding of the task ahead (i.e., many 
interior points means a long path), the actual cost which has 
to be minimized is the length of the path taken by the UAV 
(hereafter we simply assume that the photographs are taken 
along straight lines at predefined time intervals). The length 
of the path (for now we neglect the parts exterior to the 
polyhedral shape) consists of parallel line segments whose 
end points lie on the polytope boundary and which are not 
separated by more than d units (we consider that the photos 
taken along the path cover a square of dimension d×d units). 

Let us assume that the path lines are parallel with the 
horizontal (always possible through a suitable rotation) and 
that the i-th segment is defined by the pair of end-points 

)),(( ii yyx , )),(( ii yyx . Then we can write the optimization 

problem (5) which returns the set of vertical coordinates iy : 

min))()(( 
i

ii yxyx                              (5a) 

yyyyts ii    1..                     (5b) 

dyy ii 1                                                 (5c) 

2
,

21
d

yy
d

yy N                                (5d) 

where:  
- the sum from (5a) is the cost which sums the segment 

lengths. Note that because the end-points of the segment 
have the same height, we can simplify the distance to a 
linear term. 

- (5b) forces the variables iy  to increase monotonically 

between the inferior vertical bound 


T

Py ]10[min  and the superior vertical bound 


T

Py ]10[max   of P (i.e., the minimum and the 

maximum of the projection of P on the vertical axis). 
- (5c) and (5d) force that two consecutive segments are 

not further apart than d and that the first and respectively the 
last line from the sequence are not further away from the 

polytope than
2

d
. 

- Mappings ],[:, yyxx  denote the left-most and, 

respectively, right-most value of the x-coordinate of a point 
from inside P which has the y-coordinate fixed. 

- N denotes the number of parallel lines composing the 
path. 

Note that N has to be computed a priori. Since we wish to 
cover the entire polytope, the value is obtained from (6): 

yy
d

dN 
2

2)1(                                (6) 

The constraint in (6) states that for N lines, the N-1 inter-
line distances have to be less or equal to d and that the two 
end lines (the first and last) have to be less than d/2 from the 
end-points of the polytope. This comes from noting that 
along each line, the photos taken cover d/2 on the top part 
and d/2 on the bottom part. 

Mappings xx,  partition the boundary of the polytope 

into two subsets: the one visible from the left and the one 
visible from the right. Hence, these mappings are piecewise 
affine (as each of them is a collection of facets of the 

polytope) and need to be reformulated into an optimization 
problem solvable with existing software. Specifically, they 
can be modeled via mixed integer programming techniques 
which lead to an MILP (mixed integer linear problem) 
which has to be solved with specialized solvers (e.g., 
Gurobi, CPLEX etc.). 
1) Remark  

The above discussions hold for the general case of higher 

dimensions. Mappings xx,  can be seen as lower and upper 

level projections along a subspace with domain defined over 
the projection of the polytope on the perpendicular 
subspace. 

The external path has, in addition to the previously 
discussed components, external points which serve as 
guidance return points for the UAV. That is, for i odd, after 

following the line )(),( ii yxyx , the UAV will go towards 

),)(( iei ydyx  . Similarly, for i even, after following line 

)(),( ii yxyx , the UAV will go towards ),)(( iei ydyx  . 

These external steps permit to change direction and 
approach in a timely manner the next line 

))(),(( 11  ii yxyx . Using the notation of (5a)-(5d) we can 

then write optimization problem (7): 

min)],
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        (7a) 

yyyyts ii    1..                     (7b) 

dyy ii 1                                                 (7c) 

2
,

21
d

yy
d

yy N                                (7d) 

The modification of the optimization problem with 
respect to (5a)-(5d) appears in the design of the cost. Since 
we also take into account the external parts, we need to add 
them into the cost (the 2nd and 3rd terms respectively). Note 
that at this point the problem becomes an MIQP (mixed 
integer quadratic problem) since the cost has a quadratic 
component (i.e., we can no longer reduce the distance to a 
linear term as the end-points no longer have the same 
height). 
2) Remark  

We note that the current approach minimizes the path 
length but other criteria are of course possible. Typical 
choices are the flight time and energy minimization. These 
depend on the internal model of the UAV (which is 
nonlinear and parametrized after a multitude of factors). For 
the current choice of the cost (path length) we simplified the 
model by assuming that the UAV will stay close to the 
reference path through suitably chosen auto-pilot control 
loops. 
3) Remark  

We have assumed that the area under observation is a 
convex shape. It might very well be the case that the area is 
non-convex. A possible solution is the construction of the 
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convex hull of the area (and then the snapshots taken outside 
the area are discarded at the processing stage). Otherwise, 
we may decompose the region into a union of convex shapes 
and apply the optimization procedures from above to each of 
them separately. In order to reduce the total length of the 
path we may consider as an additional factor, the rotation 
angle for the lines followed by the UAV. Strictly speaking, 
this would introduce an additional level in the optimization 
problem where at the upper-level the rotation angle θ would 
be the optimization variable. To avoid this, we consider an 
iterative procedure where we take successive values of θ and 
solve problem (5a)-(5d) (or (7a)-(7d)), as shown in 

Algorithm 1. Note that the mappings xx,  will have to be 

recomputed for each different θ. The output of the algorithm 

will be the pair ),( ** l , which denotes the minimum path 

length and the angle for which it is obtained, respectively. 
 

Algorithm: Search after rotation angle 
Input: P, d, δθ, θw, Δθ 
Output: θ*, l* 
1.  θ = Δθ - θw; 
2. while θ < Δθ + θw do  
3. θ = θ + δθ; 
4. solve problem (5a)-(5d) (or (7a)-

(7d)) for 
 PRP )( and obtain the path length 

l(θ); 
5.  if l* > l(θ) then 
6.   l* = l(θ), θ* = θ; 
7.  end 
8. end 

)(R stands for the rotation matrix, which in 2 is: 

 














cossin

sincos
)(R  

δθ denotes the angle increment with which is the current 
angle value θ is modified at each step in the algorithm. 
4) Remark  

Searching over the entire interval [0o, 360o] might not be 
suitable. For example, in the presence of wind we may not 
accept a deviation of the line path greater than a   from 
the wind direction w  (the maximum amount which the 

auto-pilot can handle). Thus, the algorithm would have to 
consider a feasible search interval ),(   ww . 

C. Considerations on UAV dynamics 

Up to this point the problem discussed was exclusively 
geometric in nature with the underlying dynamics of the 
UAV completely ignored. If the straight line lengths and the 
turn radius are relatively short then the dynamics become 
relevant and have to be taken into account. 

To this end, we consider the dynamics of a 2D 3-DOF 
model of an airplane (8) in which the autopilot forces 
coordinated turns (zero side-slip) at a fixed altitude [19]: 

                       )(cos)()( ttVtx a   

)(sin)()( ttVty a                                     (8) 
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)(tan
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
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The state variables are represented by the position 
(x(t),y(t)) and the heading (yaw) angle  2,0)(  t  rad. 

The input signals are the airspeed velocity )(tVa  and the 

bank (roll) angle )(t , respectively.  

Also, the airspeed and the bank angle are regarded as the 
autopilot pseudo-controls. In other words, we assume that 
control loops exist at the lower level and that they can 
handle any set point sent from the higher control level. A 
refining of the model (not followed here) is to assume that 
these low-level controllers correspond, in closed-loop form, 
to first and second order systems. 

We denote TT tytxtztztz )]()([)]()([)( 21   as the flat 

outputs of dynamics and compute the remaining variables in 
terms of these outputs and their derivatives (9): 
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     (9) 

Variables z1(t) and z2(t) are called “flat outputs” and 
describe both the state and the input independently (that is, 
the dynamic link between state and input is hidden in the 
description of the flat outputs) [20-22]. 

It suffices then to find the flat outputs which validate 
given constraints (in our case the UAV x,y components of 
the states have to pass through the way-points determined a 
priori) and to introduce the results back into (9). Note that in 
general it is difficult to obtain a flat output )(tz which 

respects state and input constraints. Henceforth, the output is 
parametrized after some basis functions (10): 

Rttz
N

i
i

i
i




1

),()(                 (10) 

Assuming that the basis function is known (polynomial, 
Bezier, B-spline functions, etc) it only remains to find the 
coefficients 

i  which respect the constraints of interest. 

Due to their properties, in what follows we will consider 
B-spline basis functions to characterize (10). They are given 
by a recurrent construction which takes a knot-vector (11) 

 0 1, , , ,m       (11) 

of monotonously increasing time instants such that the i-th 
function of degree d is given by (12): 
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     (12)

  
For d  > 1 and 0,1, ,i n m d    . 
Considering a collection of control points (13): 

                        0 , , nP p p                                 (13) 

we define a B-spline curve (14) as a combination of these  
control points and the B-spline basis functions 

0, ,( ) ( ), , ( )
T

d d n dt B t BB t    : 
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,
0

( ) ( ) ( )
n

i d i d
i

z t B t p PB t


                   (14) 

Further details are to be found in, e.g., [26-27]. 
Taking a collection of way-points and the time stamps 

(15) associated to them: 
 { }and { },k kw t                (15) 

for any 0, ,k N   we can construct a flat trajectory (16) 
which passes “near” each way-point wk at the time instant tk, 
i.e., find a flat output z(t) such that 

            ( )( ) ( ( ), ( )) { } ,r
k k k k kx t z t z t w S         (16) 

for any k = 0,…,N  and where Sk is an a priori defined 
sensing region around the k-th way-point. 

Note that the constraints usually appear in the input or 
state space (as is the case in (16)). Hence, these have to be 
translated into the flat output space. The mapping from one 
to another is not necessarily straightforward. Here, the B-
splines parametrization is of help due to their geometrical 
properties. In particular, we note that derivatives of (10) 
translate into B-spline parametrizations of lower-order 
which can be then rewritten as combinations of higher order 
B-splines (via the matrices Mr, Lr used in the next 
equations). In our case, this means that the way-point (16) 
becomes (17): 

(B ( ), P) { } , 0 ,d k k kt w S k N       (17) 

with (B ( ), P) (PB ( ), , P ( ))d d r r dt t M L tB     a shorthand 

notation which highlights the fact that the various mappings 
described in (8) and (9) can be always expressed in terms of 
the control points (13). Hence, even if the mapping is 
nonlinear, it is still possible to handle it through a nonlinear 
solver. 

The same B-spline properties can be used to write a cost 
(B ( ), P)d t which minimizes path length [28], or indeed any 

other cost which penalizes states and inputs. 
With these elements it is then straightforward to write the 

(possibly nonlinear) optimization problem (18) which 
provides as result a collection of control points: 

0

argmin | | (B ( ),P) ||

s.t.constraints(17)areverified

Nt

dt
P t dt P


               (18) 

which uniquely characterize the flat output (10) and hence, 
the dynamics (8-9).  

Some remarks are presented below: 
1) Remark  

The sensing region kS  can be manipulated to account for 

the constraints of the photogrammetry scheme as it allows 
relaxing selectively the constraints (16). For example, for 
the internal way-points, through which we wish to pass, the 
region can be taken as the empty set (i.e., 0kS  ) whereas 

for the external way-points (i.e., those outside of the active 
region), where we are content to pass “near” but not 
necessarily “through” way-points, the region can be taken as 
some constant shape defined a priori (i.e., *

kS S ). 

2) Remark  
Last but not least, the basis functions have to be properly 

chosen. First, their number should be taken such that the 
problem actually has a solution (too few coefficients 

i  for 

a given set of constraints and the problem may become 

infeasible). Next, the degree of the basis functions has to be 
sufficiently large to assure continuity for the states and 
inputs. For example, if we wish to have smooth inputs in the 
roll angle component )(t  it means that we need to have 

)(tz continuous up to its 4th derivative (since a function is 

smooth if its second derivative is continuous and in (9) 

terms )(1 tz and )(2 tz  appear which means that )(tz itself 

has to be twice continuously derivable).   

III. RESULTS 

In the previous section we introduced the notion of a 
lattice of integer points superposed over a polytopic set. 
These points represent the points which we wish to 
photograph and the dilation factor t parametrizes the 
effective width of the photo (it may change as a function of 
UAV altitude, desired degree of superposition between 
neighboring photos, etc). 

Considering a polytope P defined by the extreme points 
{(-2,4),(2,3),(3,-1),(-1,-2),(-3,0)}×100 m (Fig. 1), the 
associated Ehrhart polynomial (4) is obtained by computing 
(via the aforementioned Latte toolbox): 

1325),( 2  tttPL                                     (19) 

With this analytic description we can provide the number 
of points which are covered by the given shape for various 
values of parameter t. For example, at 1001t  we have 29 

points inside P. Note that larger values of t lead to more 
interior points (scaling P with t is equivalent with decreasing 
with t1  the inter-distance between points in the lattice). 

Conversely, smaller values of t lead to less points. 
The integer points inside and outside of the polyhedral set 

are drawn in Fig. 1 as solid red and empty markers 
respectively. In the magnified detail we illustrate the area 
covered by each of these points. 

 

 
Figure 1. Illustration of snapshot counting 

 
Using the same example as before, we illustrate the 

results of the proposed method. First, in Fig. 2 we show the 

left-most and right-most mappings xx, . 

 
Figure 2. Illustration of mappings )(),( yxyx  
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Each of these mappings is piecewise affine and for our 
example they are: 

 

 

 

 

 


































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3

8

3,1
4

11

4

1,5.2
11

9

11

8

)(

,

5.4,03
2

0,5.23
5

4

)(

y
y

y
y

y
y

yx

y
y

y
y

yx

                (20) 

These, together with the rest of the constraints and the 
auxiliary binary variables used to model the PWA (piece-
wise affine) functions are used to solve (5a)-(5d) and (7a)-
(7d) respectively. The resulting solution (the points 

)),(),(( iii yyxyx  is depicted in Fig. 3 which illustrate the 

inner and external path, respectively. 
 

 
(a) 

                                                          
 (b) 

Figure 3. Illustration for optimal path 
 

The result of solving (5a)-(5d) with parameter d = 75 m is 
depicted in Fig. 3(a) and has length 3371.88 m. The result of 
solving (7a)-(7d) with parameters d = 75 m, 100ed  m is 

depicted in Fig. 3(b) and has a total of length 4529.96 m. 
Further, we search for the optimal angle which minimizes 

the total path length. We use Algorithm 1 with starting 

parameters oo
w

o 5,180,180   . In Fig. 4(a) we 

illustrate the internal path (as obtained from (5a)-(5d)) and 
the total path (as obtained from (7a)-(7d)) as functions of 
rotation angle θ. The average computation time for both 
problems was 0.9713 sec and respectively 0.9999 sec. While 

these times may vary with hardware, solvers and problem 
instance, they indicate that solving these optimization 
problems is fast and does not pose great difficulties. 

The minimum, under (7a), is reached at value θ* = -105o 
corresponding to a total path l* = 4020.18 m (Fig. 4(b)). 

 

 
(a)                                                             

 
 (b) 

Figure 4. Illustration of optimal path computations 
 

We also analyze the situation in which the area is non-
convex. There are two ways in which we may consider the 
problem: i) we compute the convex hull of the area and 
apply the optimization problem from before (and ignore the 
snapshots which are outside); ii) we decompose the area in a 
union of convex shapes and compute the paths for each 
shape separately. Note that in the latter case we have to 
consider the lengths between successive starting and 
stopping points.  

As an illustrative example, a non-convex area composed 
of three convex shapes is considered (Fig. 5) and the two 
approaches mentioned above are applied. In Fig. 5(a) we 
first compute the convex hull (dashed line) and obtain a total 
path length of 9517.91m whereas in Fig. 5(b) we compute 
total path lengths for each of the shapes (1369.12 m, 
2774.27 m and 2304.19 m), consider the lengths between 
the stop and start path for the pair of first/second and 
second/third shapes (645.30 m and 655.02 m) and obtain a 
total path length of 7747.9 m. Note that the second approach 
gives (at least for this example) a shorter total path than the 
first approach. An improvement, not treated here would be 
to decide the direction of covering the path such that the 
links between the shapes are minimized (observe that the 
distances between STOP1 – START2 and STOP2 – START3 
would have been shorter if we would have switched 
START2 and STOP2 between themselves. 
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(a) 

 
 (b) 

Figure 5. Illustration of optimal path computations for non-convex shapes 
 

As illustrated by the two figures, in this particular case, 
dividing the region into smaller ones pays of, since we 
obtain a smaller total length. However, this may not hold for 
any non-convex shape. 

In Fig. 6 we show a couple of line-paths depicted over a 
real terrain feature (with different rotation angles). 

For UAV dynamics, we consider a B-spline 
parameterization which has numerical and algorithmic 
advantages with regards to polynomial or Bezier 
parameterizations [22-23]. We consider an optimization 
problem where we minimize the total-path length of a B-
spline curve which passes thorough N a priori given way-
points and has N+1 control points while also respecting 
UAV dynamics (8). The resulting flat outputs (which are 
also the x, y components of the state) are depicted in Fig. 7a) 
as the solid red line. The dashed blue line represents the 
control point polygon which bounds the curve. 

 

        
Figure 6. Line path generation over a real terrain feature 
 

The total length of the path is 33.30 × 100 m. An 
improvement, making use of results described in [23] is to 
relax the constraints such that the trajectory has only to pass 
through a neighbourhood of them. This cannot be applied to 
the internal way-points, only to the external ones 

),)(( ieii ydyx   and ),)(( ieii ydyx  . 

As it can be seen, the external points are no longer 
reached rather the trajectory will pass through a 
neighbourhood of them (Fig. 7b). The total path-length is 
31.17 × 100 m, a slight improvement with respect to the 
exact case.  

 

      
(a)  

         
(b) 

Figure 7. Real trajectory under UAV dynamics: (a) flat trajectory with 
exact constraints, (b) flat trajectory with relaxed constraints 
 

In Fig. 8 the remaining state )(t  - the course angle and 

the inputs )(tVa  and )(t  are depicted (by introducing 

)(1 tz  and )(2 tz  into relations (9)).  

 

 
course angle )(t  

 
velocity )(tVa  

 
roll angle )(t  

Figure 8. State and input values for UAV dynamic 
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The dashed lines represent the state and inputs 
corresponding to this relaxed case (whereas the solid lines 
correspond to the exact case). It can be seen that the 
extremes are less pronounced (accordingly, less stress for 
the UAV and less fuel consumption). 

To solve the problems and illustrate the results, we have 
used the Yalmip [24] and MPT3 [25] toolboxes in the 
Matlab environment on a computer with 2.2 Ghz CPU and 8 
Gb of RAM memory. While the computation times are 
relative to the implementation and particularities of the 
hardware, we point that the computation times are 
reasonable and allow “on-the-fly” computation of the 
optimal path. 

Future directions may consider fuel consumption as a cost 
to be minimized, bounds on the UAV velocity and the 
integration of the flat trajectory computation into the way-
point computation. In particular, keeping the velocity 
constant is of great importance as many photogrammetry 
schemes do not estimate/use GPS information to retrieve the 
UAV position and hence assume a constant velocity and 
take photos at constant time intervals. 

IV. CONCLUSION 

The paper studied a typical photogrammetry problem 
through the prism of control and optimization theory. The 
novelty lies in the analysis and computation of an optimal 
path covering the area of interest. That is, for a given 
polyhedral region which has to be covered by parallel lines 
(along which photographs are taken) we have given both an 
estimation of the required number of photographs and 
provided a minimum-length path covering the area. For the 
latter case we formulated a constrained optimization 
problem where various constraints and parameters were 
considered in order to obtain a minimum-length path. We 
took into account the maximum distance between 
consecutive lines and turn conditions (such that the UAV is 
guaranteed to follow the interior lines). We have also 
discussed the path generation problem in the presence of 
wind and for regions with non-convex shapes. Lastly, we 
took into account simplified UAV dynamics in order to 
compute a feasible trajectory which passes through the 
points defined earlier. We further relaxed the problem by 
considering neighborhoods centered on the external turn 
points. 
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