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1Abstract—Progressive Edge Growth (PEG) constructions 

are usually based on optimizing the distance metric by using 
various methods. In this work however, the distance metric is 
replaced by a different one, namely the betweenness centrality 
metric, which was shown to enhance routing performance in 
wireless mesh networks. A new type of PEG construction for 
Low-Density Parity-Check (LDPC) codes is introduced based 
on the betweenness centrality metric borrowed from social 
networks terminology given that the bipartite graph describing 
the LDPC is analogous to a network of nodes. The algorithm is 
very efficient in filling edges on the bipartite graph by adding 
its connections in an edge-by-edge manner. The smallest graph 
size the new code could construct surpasses those obtained 
from a modified PEG algorithm - the RandPEG algorithm. To 
the best of the authors' knowledge, this paper produces the 
best regular LDPC column-weight two graphs. In addition, the 
technique proves to be competitive in terms of error-correcting 
performance. When compared to MacKay, PEG and other 
recent modified-PEG codes, the algorithm gives better 
performance over high SNR due to its particular edge and local 
graph properties. 
 

Index Terms—AWGN channels, block codes, channel 
coding, error correction codes, parity check codes. 

I. INTRODUCTION 

LDPC codes are among the most powerful error-
correcting codes for wireless communication of high-speed 
data. Their concept was developed by Robert G. Gallager in 
1960 [1]. However, they were forgotten as technology was 
not mature enough for their efficient implementation. In 
1999, David MacKay rediscovered the codes and found that 
they enabled data transmission rate close to the Shannon's 
theoretical limit [2]. 

LDPC codes are usually identified by a parity-check 
matrix H containing mostly ‘0’s and very few ‘1’s. Such a 
matrix can efficiently be represented by a bipartite graph 
which consists of bit and check nodes corresponding to 
columns and rows in H. Decoding is achieved using the 
belief propagation algorithm also known as the message 
passing algorithm or the sum-product algorithm (SPA) that 
passes messages along the edges of the bipartite graph. The 
performance of the SPA is determined by particular edge 
connections and local topologies of the graph [3-5]. Short 
cycles should be avoided since the “bad” nodes of the 
bipartite graph will convey the wrong information to other 

nodes to which they are connected. These receiving nodes 
will increase their false confidence, and they will in turn 
provide other nodes with wrong messages eventually 
building up to decoding failure. As such, it is fundamental to 
avoid small cycles. The girth of a code refers to the length of 
the smallest cycle in its corresponding bipartite graph and it 
is important to maximize the girth of the particular H matrix 
size with objective of obtaining better performance such as 
in [6-7]. 

 
1This work was financially supported by the Tertiary Education 

Commission (TEC) of Mauritius. 

The construction of bipartite graphs with good girth 
properties is crucial for good performance. In [2], the H 
matrix is created through random constructions. Another 
class is based on algebraic constructions [8-10] where 
LDPC codes can be commonly encoded in linear time with 
linear complexity on account of special structural property. 
In [11], the proposed algorithm based on graph theory, 
prevents the formation of a cycle by detecting the matrix 
related to the subgraph created from the original bipartite 
graph. Among these algorithms is the PEG algorithm [12] 
which constructs the H matrix through an edge by edge 
progression by optimizing the local girth after each edge 
addition for any particular code dimension and node degree 
distribution. The PEG algorithm demonstrates improved 
decoding performance through iterative decoding. 

In [13], a modification of the PEG algorithm called the 
RandPEG is proposed. The technique improves the girth g 
achieved by the PEG algorithm, and when the girth cannot 
be increased, the RandPEG reduces the number of cycles of 
length g. The authors in [14] put forward a technique to 
construct the H matrix based on Quasi Cyclic (QC) method 
for the PEG algorithm with maximized girth property. Other 
works in [15-17] were also based on the PEG algorithm for 
QC codes. In [18], the PEG algorithm was extended to 
optimize high code rate of LDPC codes at the expense of a 
relatively high decoding error floor. Though the 
performance is decreased in the AWGN channel at low 
SNR, the authors assert that the high rate codes reduce 
transmission cost. The technique in [19] utilized a density 
metric instead of the conventional distance metric for the 
selection of nodes resulting in the creation of high rate 
codes. The concept of decoder optimization for the selection 
of check nodes in PEG-based construction techniques is 
presented in [20] with improved performance without extra 
cost in computational complexity. In [21], an algorithm was 
provided to the original PEG one to avoid the creation of 
dominant elementary trapping sets during edge selection in 
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the attempt of lowering the error floor performance. A more 
recent work in [22] attempts to reduce the complexity of the 
PEG algorithm by decreasing the time for expanding the 
subgraph by not searching the bit nodes hence generating 
the same H matrix as in PEG. 

In this work, we introduce a new type of PEG 
construction for LDPC codes based on the Betweenness 
Centrality (BC) metric borrowed from social networks 
terminology. The idea is inspired from [23] where the BC 
metric was used to enhance the routing performance in 
wireless mesh networks. A considerable gain in 
performance was achieved when the degree metric was 
based on the betweenness metric [23] (see (1)). 

,

,
,
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where CB,i, the betweenness centrality of node i is defined 
as the percentage of shortest paths across all possible pairs 
of nodes that pass through node i. Let gj,k be the number of 
shortest paths in from node j to node k and gj,k(i) be the 
number of shortest paths from node j to node k that contain 
node i. 

Given that the bipartite graph describing the LDPC is 
analogous to a network of nodes, a modified version of the 
PEG method was adapted based on the use of the BC metric. 
Results obtained demonstrate the efficacy of the method 
such that for a given target girth g, the algorithm aims in 
constructing graphs with the minimal size so that a graph of 
girth g exists, and most graphs built surpassed those 
obtained by the standard PEG algorithm [12] or the 
RandPEG algorithm [13]. The graphs obtained can in turn 
be used to design ultra sparse non-binary (NB) LDPC codes 
giving good performance at small to moderate codeword 
lengths and high Galois field orders [13]. 

The paper is organised as follows: In section II, a 
description of the method is provided. Section III presents 
the results and discussion and we conclude with section IV. 

II.  MAXIMIZING THE RATE OF A GIVEN CODE 

An (n,k) LDPC code is a linear block code mapping a 
source sequence s of k bits into a codeword c of n bits 
through c = GTs. GT is the generator transpose associated to 
H in such a way that HGT = 0. 

In a bipartite graph, the notation Nd(p) refers to the set of 
nodes having a depth or a path of length d from a particular 
node p where p can be a bit node ci, 0 ≤ i ≤ n-1 or a check 
node fs, 0 ≤ s ≤ k-1. In Fig.1, N1(c0) = {f3, f6, f9}, N1(f4) = {c5, 
c7, c11}, N2(f7) = {f4, f9} and N3(c0) = {f3, f6, f7}. 

 
Figure 1. Subgraph of a (20,10) regular LDPC code. Note: Not all edges  
are shown in the bipartite graph 

A bipartite graph needs to be built with m check nodes, λ 
edges per bit node with the desired girth. To start with, a 
null bipartite graph is created with m check nodes. For each 
bit node ci, λ = 2 edges are added so that the overlap of two 
columns of the parity-check matrix H is ≤ 1 [2]. The overlap 
between two columns refers to the number of positions 
where they both have a non-zero entry. For instance, an 
overlap of 2 in H reflects a cycle of length 4 which should 
be avoided. Algorithm 1 in Fig. 2 describes the technique 
employed by the new algorithm.  Algorithm 1 builds a graph 
with column-weight two only and λ = 2.  

For girth g, 
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where gk,l (fj) = 1 if fj lies on the shortest path between fk 
and fl and gk,l (fj) = 0 otherwise. 

 
Figure 2. Algorithm 1 Adding edges to bit node ci 

A. Steps 1 to 4 in Algorithm 1 

The process of adding the first edge to a bit node ci 
consists of successive screening operations. For a certain 
girth g, at each step, check nodes contributing to a cycle of g 
- 2 are eliminated and at the end, the edge is chosen 
randomly in a set containing the check nodes having the 
minimum BC metric. 

V1 from (2) is a set that discards check nodes that would 
have caused a cycle of length g - 2. For constructing an H 
matrix of girth g = 6 for example, check nodes contributing 
to a cycle of length 4 should be avoided. In the same way, 
those leading to a cycle of length 4 and 6 should be 
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excluded for g = 8. The set V2 from (3) takes the elements of 
V1 and returns the nodes having the least check node degree 
dc. This step ensures the resulting graph is regular, with the 
sa

e is 
shown in Fig. 3 after the first edge has been added to c6. 

me numbers connections for each check node. 
The set V3 from (4) then retrieves the check nodes having 

the least BC metric from V2
  using (5). To illustrate how the 

set V3 calculates the least BC metric of the nodes, a (16,8) 
LDPC code is taken as example. The subgraph of the cod

 
 Figure 3. Subgraph of a (16,8) regular LDPC code after addition of the first 

ge in c

 

 matrix generated by the previous λj-1 addition 

B.

ded, is considered. 
In this case, the SP matrix M (c , λ ) =  

ed 6 

The procedure of adding edges to c6 and c7 will be 
described in subsections B and C respectively. Before that, 
the k+1 by k+1 Shortest Path (SP) matrix MSP(ci, λj) is 
introduced where ci and λj represent the ith bit node to which 
the jth edge has already been added. The SP matrix is 
derived from Step 5 in Algorithm 1 from Fig. 2 and from 
Algorithm 2 from Fig. 4 which will be explained in 
subsection D. This matrix is crucial in finding the shortest 
path which exists between any two check nodes fj. In this 
work, if the distance of the shortest path between fj is greater 
or equal to 4, the list of check nodes that lie on the shortest 
path between  fj  is found. For instance, a path of length 4 or 
6 between two check nodes fj will have only one or two 
check nodes lying between them respectively. As the 
shortest path matrix is a k+1 by k+1 matrix, only the upper 
triangular part of the matrix is considered as the lower part 
is exactly the same. To connect an edge λj to a certain bit 
node ci, the SP
is regarded. 

 Addition of the second edge λ2 to c6 

For the addition of the second edge λ2 to c6, the SP matrix 
when the first edge λ1 has already been ad

SP 6 1
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f      
Matrix MSP(c6, λ1) demonstrates the shortest path that 

exists between any two check nodes fj when the first edge λ1 
has already been added to c6. For instance, there exists a 

path of length 4 between check nodes f0 and f6. As such, 
there is only one check node which lies between f0 and f6 
contributing to that distance (note that the connected bit 
nodes on the path are not considered). To find out that check 
node requires searching for a check node which lies at a path 
of length 2 from both f0 and f6. In the example mentione














d, 
this particular check node is found to be f  (see Fig. 3). 3

 
Figure 4. Algorithm 2 Updating subgraphs of c and f

 

algorithm (represented by the highlighted cells in 
Fi

pplied 
to

r ensures that the generated 

i s 

We next demonstrate how the BC metric is updated. The 
latter is best represented as a cube of size k by k by k. Each 
layer of the cube represents a check node’s participation in 
the shortest paths between all shortest paths across the 
bipartite graph. All values of the cube are initialised to 0. 
Concerning the example of node f3 which lies on the shortest 
path between f0 and f6, we next consider an expanded and 
partially filled BC matrix of Fig. 5. Since f3 is the relevant 
node, the layer m = 3 is considered. The value of the cells 
lying at the intersection of check node f0 (represented by row 
0) and check node f6 (represented by column 6), and at the 
intersection of check node f6 (represented by row 6) and 
check node f0 (represented by column 0) are incremented by 
1 in the 

g. 5). 
In the SP matrix MSP(c6, λ1), a path of length 6 exists 

between check nodes f0 and f4. The two check nodes lying at 
a distance of length 4 from both f0 and f4 are f3 and f6. In Fig. 
5 for layers m = 3 and m = 6, the cells values which lie at the 
intersection of check node f0 and check node f4, and at the 
intersection of check node f4 and check node f0 are 
incremented by 1 in the algorithm (represented by the 
highlighted cells in Fig. 5). The same mechanism is a

 all paths greater or equal to 4 in matrix MSP(c6, λ1). 
For each layer m in the BC matrix, the number of ones 

represented by the highlighted cells is counted and since the 
cell values appear twice, the calculated number is divided by 
two to obtain the BC metric. Fig.5 represents only part of all 
the updates of the matrix. The full one is shown in Table I 
where the check node degree dc (calculated from Fig.3) and 
the BC metric for each check node fj after λ1 has been added 
to c6 are represented. For the next edge selection therefore, 
the check node degree, dc is first taken into consideration 
and then the BC metric is used to discriminate between the 
remaining check nodes (this orde
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co

r the 
selection of the second node λ  to be connected to c .   

de is a perfectly regular one).  
From Table I, the check nodes having the least dc are f0, f2 

and f4 and are therefore the potential candidates fo
2 6

 
Figure 5. Partially filled BC matrix for addition of second edge λ2 in c6 for 

 
EACH 

EC N OF 

Chec ode Check no e, dc BC tric 

(16,8) regular LDPC code 

 CHECK NODE DEGREE d  AND BC METRIC FOTABLE I.
CH

c

K  NODE AFTER ADDITIO
R 

λ1 TO c6 
k n de degre me
f0 1 6 
f1 2 2 
f2 1 6 
f3 2 2 
f4 1 6 
f5 2 6 
f6 2 2 
f7 2 2 

The check node with the least BC metric is then 
considered. As the BC metric of check nodes f0, f2 and f4 is 
6, a random selection is performed and f0 is chosen as λ2 to 
c6 as shown in Fig. 6. 

 
Figure 6. Subgraph of a (16,8) regular LDPC code after addition of the 

C.

s already been added to c6, is 
considered. M (c , λ ) = 

second edge λ2 in c6 

 Addition of the first edge λ1 to c7 

For the addition of the first edge λ1 to c7, the SP matrix 
MSP(c6, λ2) when λ2 ha

SP 6 2
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It can be seen from matrix MSP(c6, λ2) that there  exists a 
path of length 8 between check nodes f0 and f2. From Fig. 6, 
the check nodes lying between check nodes f0 and f2 are f1, f5 
and f7. In the expanded and partially filled BC matrix (at 
first initialised to 0) in Fig. 7, in the layers m = 1, 5 and 7, 
the cells values which lie at the intersection of check nodes 
f0 and f2 (represented by row 0 and column 2, respectively), 
and at the intersection of f2 and f0  (represented by row 2 and 
column 0, respectively), are incremented by 1 in the 
algorithm (represented by the highlighted cells in Fig. 7). 
The same mechanism is applied to

 

 all path length greater or 
eq

heck 
 λ1 to c7 at random. 

D.

 
edge ci - fs is connected by two subgraphs. As such, all bit 

ual to 4 in matrix MSP(c6, λ2). 
For each layer m in the BC matrix, the number of ones 

represented by the highlighted cells is counted and since the 
cell values appear twice, the calculated number is divided by 
two to obtain the BC metric. As Fig. 7 represents only part 
of all the updates of the matrix, the full one is found in 
Table II for each check node fj  after λ2 has been added to c6. 
As the check node degree dc is first considered, the check 
nodes having the least dc are f2 and f4. To discriminate 
between check nodes f2 and f4, the one with the least BC is 
selected for edge addition. As, the BC metric of both c
nodes is 12, the edge f4 is chosen as

  Step 5 in Algorithm 1 

In step 5 of Algorithm 1 in Fig. 2, the connectivity of all  
nodes up to g - 1 for ci and fs is updated. The newly formed
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Figure 7. Partially filled BC matrix for addition of the first edge λ1 in c7 for 
(16,8) regular LDPC code 

TABLE II. CHECK NODE DEGREE dc AND BC METRIC FOR EACH 

CHECK  NODE AFTER ADDITION OF λ2 TO c6 
Check node Check node degree, dc BC Metric 

f0 2 18 
f1 2 14 
f2 1 12 
f3 2 14 
f4 1 12 
f5 2 18 
f6 2 12 
f7 2 12 

 
and check nodes that form part of the subgraph at a depth 

of g - 1 need to be notified of ci - fs. 
When an edge is added between a certain bit and check 

node in the bipartite graph, the respective subgraph of either 
node contains many other subgraphs which hold potential 
connections for the formation of cycles. Fig. 8 shows the 
subgraphs of the newly formed edge ci - fs.  

Connections of ci and fs with other bit and check nodes in 
the bipartite graph can be seen in Fig. 8. Algorithm 2 [19] in 
Fig. 4 provides the update of all nodes up to g - 1 for ci and 
fs as in step 5 in Algorithm 1 in Fig. 2. 

 
Figure 8. Subgraphs of ci and fs  

E. Step 6 in Algorithm 1 

In step 6 of Algorithm 1 in Fig. 2, the BC metric of all 
nodes in the bipartite graph is updated so that the node with 
the least BC metric can be chosen during the subsequent 
edge connection process. In our algorithm, when the BC 
metric is optimized, all nodes are equally connected in the 
graph allowing for a better transfer of decoding metrics via 
the edge connection. 

F. Step 7 in Algorithm 1 

It may occur that the algorithm adds only one edge for 
some bit nodes as a result of its sub-optimality. If λ = 2, for 
some bit nodes, the algorithm adds only one edge. However, 
for the next bit node ci+1, the algorithm has the capability of 
adding the set of λ = 2 edges. 
As the BC is based on the number of shortest paths that pass 
through a certain node, one which has a high BC metric is 
likely to be such a node that connects two subgraphs in the 
bipartite graph. Nodes having a high BC metric have a high 
probability of being cut-points due to the fact that they lie on 
a high number of shortest paths among other nodes in the 
bipartite graph. They are related to the degree of 
compactness and connectedness, and their removal entails a 
partition of disconnected group of nodes (subgraphs) in the 
graph. The reason for selecting an edge in V3 from (4) 
having the least BC metric in step 4 in Algorithm 1 in Fig. 2, 
is to encourage edge selection associated with disconnected 
group of nodes. 
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Step 7 of Algorithm 1 in Fig. 2 deals with the elimination 
of bit nodes having less than  λ  edges as only bit nodes with  
λ edges need to be kept. A bipartite graph is obtained with m 
check nodes, n bit nodes and exactly λ edges per bit node. 

III. APPLICATION AND PERFORMANCE EVALUATION 

A. Design of ultra-sparse graphs 

Tables III, IV and V show the smallest graph size, that is 
the codeword length that the LDPC code with the BC metric 
could construct for regular (2, dc) graphs of girth g = 6 to 10, 
g = 12 to 16 and g = 18 to 22 respectively where dc is the 
check node degree. It is noted that the column weight is 2 
although the technique could be applied to any graph 
connectivity. When the value of the graph size achieves the 
lower bound, this is indicated by a star (*) super-script. 
Alternatively, the lower bound value is super-scripted with 
parenthesis. Our results were compared with those obtained 
with RandPEG [13] and standard PEG [12] which are 
indicated on the first square brackets and second square 
brackets respectively in Tables III, IV and V. For instance, 
considering the cell dc = 5 and g = 10 in Table III, [110] 
represents the graph the standard PEG algorithm could 
construct, [90] represents the graph built by the RandPEG 
and 85 denotes the best regular (2, dc) graph of girth g 
achieved so far by the LDPC code based on the BC metric. 
In the same cell, the superscripted value (65) represents the 
value of the theoretical lower bound. 
 

TABLE III. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK 

NODE DEGREE dc AND GIRTH g = 6 TO g = 10 
dc g = 6 g = 8 g = 10 
3 6* [6] [6] 9* [9] [9] 15* [15] [18] 
4 10* [10] [10] 16* [16] [20] 38(34)[38][42] 
5 15* [15] [15] 25* [25] [35] 85(65)[90][110] 
6 21* [21] [21] 36* [36] [48] 177(111)[189][225] 
7 28* [28] [28] 49* [49] [70] 308(175)[385][441] 
8 36* [36] [36] 64* [64] [116] 496(260)[728][812] 
9 45* [45] [45] 81* [81] [162]  

10 55* [55] [55] 100* [100] [230]  
... ...* ...*  
50 1275* [1275] [1275] 2500*  

 
TABLE IV. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK 

NODE DEGREE dc AND GIRTH g = 12 TO g = 16 
dc g = 12 g = 14 g = 16 
3 21*[21][27] 36* [36] [36] 45* [45] [72] 
4 52* [52] [104] 200[260][292]  

 
TABLE V. THE SMALLEST GRAPH SIZE OBTAINED FOR CHECK 

NODE DEGREE dc AND GIRTH g = 18 TO g = 22 
dc g = 18 g = 20 g = 22 
3 96(69)[114][150] 156(93)[201][285] 351(141)[447][558] 

 
The RandPEG algorithm is built from a randomization 

approach in which the objective function was used to 
discriminate among other edge connections. Results 
obtained by the RandPEG are found in [13]. 

For all values of dc up to 50, the algorithm constructs 
graphs for g = 6 and 8 as shown in Table III. For g = 10, 14, 
18, 20 and 22 the algorithm could construct smaller graphs 
than those obtained by the standard PEG algorithm [12] or 
the RandPEG algorithm [13]. These results are highlighted 
in bold in Tables III, IV and V. For large graphs with 
increasing girth and dc, the present algorithm outperforms 
consistently better. To the best of the authors' knowledge, 

the graphs achieved by our algorithm are the best (2, dc) 
graphs of girth g. 

For all graph sizes our algorithm could construct, the 
matrices were constructed three times and an average 
number of trials was calculated. Fig. 9 shows the average 
number of trials against dc for g = 6, 8, 10, 12 and 14. It can 
be observed that the average number of trials increases with 
dc. 

 
Figure 9. Graph of average number of trials against dc for the LDPC code 
with the BC metric 

 
Fig. 10 illustrates the average number of trials against 

column size for further graph sizes the LDPC code with the 
BC metric has been able to construct with girth 10, 14, 18, 
20 and 22 against that of the RandPEG algorithm. It can be 
deduced that as the graph size decreases, it becomes more 
and more challenging for the matrices with a specific girth 
to be constructed, thus requiring an increase in the number 
of trials for successful matrix construction. 

 
Figure 10.  Graph of average number of trials against column size for girth 
g = 10, 14, 18, 20 and 22 

B. Application to non-binary LDPC codes and design of 
protographs 

The graphs built from our algorithm can be used in many 
applications such as building good non-binary LDPC codes 
in high order fields. The column weight two graphs 
constructed from our algorithm could be utilized for 
nonbinary coefficients in GF(64). 
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The presented algorithm could be used to build 
protographs which serve as a blueprint for the construction 
of LDPC codes [24]. A protograph is a bipartite graph with 
a relatively small number of nodes. It consists of variable 
nodes and check nodes. A larger graph can be obtained from 
a protograph through a copy and permute procedure [24]. 
The copies are overlaid in such a way that the same-type 
vertices neighbour each other. However, the subgraphs are 
disconnected. Connection of the subgraphs is achieved 
through swapping of endpoints of edges [24]. This 
procedure results in a derived graph from a prototype LDPC 
code. In [25] and [26], new QC protograph LDPC code 
constructions are presented. In this work, the presented 
algorithm can be used as protographs to build larger codes. 
The protograph will consist of a bipartite graph of small size 
constructed as per Algorithm 1 in Fig. 2. After updating the 
BC metric of all nodes of the protograph, it will become an 
optimized version which can be duplicated a certain number 
of times. The duplicated graphs will then be permuted 
according to some structural rules. The derived graph will 
become optimized in itself from the protographs. 

C. Error-correction performance 

This subsection deals with the error-correction 
performance of the LDPC code with the BC metric over 
other LDPC codes with results shown in Fig. 11-13 as 
graphs of Block Error Rate (BER) against (Eb/No) where 
(Eb/No) is the ratio of energy per information symbol to 
noise spectral density.  

Simulations were carried out using the AWGN channel 
with the SPA as decoding algorithm. For a (504,252) LDPC 
code, our algorithm outperformed the PEG code [12] and 
the MacKay code [2] with a coding gain of 0.3 dB and 0.6 
dB respectively at a BER of 1.00x10-6 in Fig. 11. The 
performance of our algorithm was compared with the DPEG 
code in [19]. For a (200,100) LDPC code, coding gains of 
0.15 dB and 0.55 dB were achieved by the new code over 
the DPEG and MacKay codes respectively at a BER of 
5.03x10-7 shown in Fig. 12. For a larger (400,200) code, a 
coding gain of 0.15 dB is obtained over the DPEG code at a 
BER of 7.45x10-7 in Fig. 13. It is therefore observed that the 
presented algorithm gives better error-correction 
performance. 

 
Figure 11. Graph of BER against (Eb/No) in dB for (504,252) girth 8 
MacKay, PEG and LDPC code with the BC metric 
 

 
Figure 12. Graph of BER against (Eb/No) in dB for (200,100) girth 8 
MacKay, DPEG and LDPC code with the BC metric 

 

 
Figure 13. Graph of BER against (Eb/No) in dB for (400,200) girth 8 
MacKay, DPEG and LDPC code with the BC metric 

IV. CONCLUSION 

In this work, a new PEG algorithm construction based on 
the BC metric is proposed. The smallest graph size the new 
code could construct surpasses those obtained from the 
RandPEG algorithm in [13]. The new code can also be used 
in non-binary LDPC codes and serve as protographs to build 
larger optimized codes. In addition, the technique proves to 
be competitive in terms of error-correcting performance. 
When compared to the MacKay [2] and DPEG [19] codes, 
our algorithm gives better performance over high SNR. 
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