
Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Robotic Arm Control Algorithm Based on
Stereo Vision Using RoboRealm Vision

Roland SZABÓ, Aurel GONTEAN
Applied Electronics Department, Faculty of Electronics and Telecommunications

Politehnica University of Timișoara, 300223, Romania
roland.szabo@etc.upt.ro

1Abstract—The goal of this paper is to present a stereo

computer vision algorithm intended to control a robotic arm.
Specific points on the robot joints are marked and recognized
in the software. Using a dedicated set of mathematic equations,
the movement of the robot is continuously computed and
monitored with webcams. Positioning error is finally analyzed.

Index Terms—decision making, image color analysis,
machine vision, manipulators, stereo vision, video equipment.

I. INTRODUCTION

The design and control a robotic arm is not an easy task
as it is difficult for the robotic arm to follow the assigned
geometry path in high precision and accuracy manner [1].

Most humans or animals move and walk easily without
explicitly controlling their movements [2]. The robots need
to use fuzzy logic in order to make more human-like
movements. Artificial neural networks have been
traditionally employed to learn and compute the inverse
kinematics of a robotic arm [3].

The robotic arm can have many attributions, but are used
mainly in the industry or in special applications like serving
a glass of water to an immobile patient, using a remote
pressing operation [4-7].

This paper presents the robotic arm control with stereo
cameras. In the industry most of the robots have no vision
system, they just move following predefined paths, which
they have learned previously, but no decision is made by
them, one can say that almost no artificial intelligence is
implemented in their control software [8-11]. The industry
needs robots with one, two or even more cameras, thus
minimizing the work of the operator almost to zero.

The calibration of the arm is very important and time
consuming, because the production line needs to be stopped
to do it, and it needs to be done quite often to increase or
maintain precision [9]. With the computer vision method,
the calibration of the robotic arm can be performed
continuously, because the robotic arm will always check its
position with the cameras and will make small adjustment to
reach the exact point which is needed.

II. RELATED WORKS

There have been quite many attempts to give sight to the
robotic arms. Some of them are presented below.

One of the tests for a robotic arm was to apply a coating
of plasma for certain objects. The goal was to reduce the
time and cost of learning for a robotic arm. With vision

system, a robotic arm with six degrees of freedom can be
manipulated [12]. The system is similar to the one presented
in this paper, the goal is to create a system which moves the
robotic arm without teaching it all the points in its path. It is
also desired to avoid calibration of the robotic arm; this
should be made automatically while the robotic arm
executes its necessary movements to manipulate the targeted
object.

Another way to add vision system to a robotic arm is to
mount the camera exactly on the end effector of the robotic
arm, this method is also called camera in hand. This can be
advantageous when the camera is filming objects which are
approached by the camera. The system does not need to
calculate the Jacobian matrix or to compute direct or inverse
kinematics. All you need is a camera mounted on the robot’s
end effector, which can estimate distances [13]. The method
seems interesting, but it could be considered rather a
complementary method to this presented in this paper. When
there are fixed cameras mounted next to the robot system,
this can have an influence of both the robotic arm and the
object which the arm wishes to manipulate.

Another approach is using a robotic arm with multiple
fingers, with a video camera on its end effector which is
filming the surrounding world. The implementation is quite
interesting because there is a parallel system that
reconstructs the object in 3D from the captured images. The
system computes how robotic arm can grasp the object [14].
The system requires quite high computing power and the
porting of such a system on a dedicated platform would be
quite a big challenge. On the other hand the speed and
integration area of dedicated processors and FPGAs are
growing every year, so placing a complex system on a
dedicated platform is only a matter of time. However the
belief is that this system is more complex even than direct
and inverse kinematics. The solution presented in this paper
is much simpler.

A similar method to those presented before is a system
with a handheld camera. The camera is mounted on the end
effector of the robotic arm, but it also takes into
consideration the dynamics of the camcorder. The system
continuously makes a big number of iterations and
calculates all the possible trajectories and places them into a
tree structure. After doing some computations, it selects the
optimal path for movement [15]. The system is quite
interesting, but it needs high resources to operate, because
much iteration is needed. The placement of the camera to
the robotic arm’s end effector gives much narrower vision
range than many fixed cameras placed in the room where
the robotic arm is.

 65
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.02009

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Another actuators control system has a robotic arm with
six degrees of freedom and the system has, of course, video
cameras. The system has a three-point spherical projection
of Cartesian distances. The second part consists in
representing the angle-axis rotation matrix from two
measured points from the image [16]. The system is very
interesting and is close to what will be presented in this
paper, but mathematics used is more complex than the one
used in this paper.

III. PROBLEM FORMULATION

In order to accomplish the objectives of this study, the
authors started of a small scale robot available in the lab: the
Lynxmotion AL5 type robotic arm, which ships with almost
no control software.

The task was clear, to create a system which can control
the robotic arm, move it in any physically reachable place
just with color recognition algorithms. The robot calculates
and decides the movement direction and distance. The
robotic arm starts to move only when the targeted object is
in its field of view. The robotic arm tries to move the gripper
as close as possible to the targeted object, after it tries to
grab the object and bring it in the desired position. The
robotic arm has colored bottle stoppers placed on joints in
order to be visible for the cameras which use a color
recognition algorithm. The base joint has a blue colored
bottle stopper, the elbow has a yellow colored bottle stopper,
the gripper has a red colored bottle stopper and the targeted
object has a green colored bottle stopper. When the targeted
object (the green bottle stopper) is moved, the robotic arm
follows it, grabs it and brings it in a desired position. The
robotic arm can be used for object sorting, gathering objects
or other object manipulation tasks. Basically the mechanism
needs to make multiple decisions and computations. The
robotic arm needs to decide to reach or not the object and
needs to compute the distance and the direction of the
targeted object.

After the initial implementation on the small robotic arm,
the algorithm was validated on an industrial robotic arm
(SCORBOT-ER III). Because of the nature of the algorithm
(video recognition of the robotic arm), it can work on
robotic arms of every size and can be extended on robots
with more joints. To extend the method on more joints is to
repeat the algorithm on every joint of the robotic arm.

IV. MATERIAL AND METHOD

A. Theoretical Background

The idea was to recognize each joint of the robot using
just computer vision. In order to do so, a well-known
method (mostly used on athletes when it’s needed to
introduce the data of their movement in the PC) was used.
The luminous spots placed at subject’s joints are united with
lines to create a computer skeleton of the movement. This
method is also used when the computer game creators want
to make human-like movements to their characters and they
record the movement data of actors. The next step is to
assign the data to the character which is moving in the
computer game [17-20].

In our experiments colored bottle stoppers were attached
to each robotic arm joint. By acquiring the image,

performing color recognition and finally uniting the
recognized spots with straight lines the skeleton and the
movement in real time of the robotic arm was obtained [21-
25].

Afterwards, at the gripper level, a 2D coordinate system
(similar to a parallelogram) was drawn by the software. This
way the movement on 0Z and 0Y axes could be calculated.
The length of each side of the parallelogram is one side of
an orthogonal triangle and the segment connecting the
colored spots is the other side. The arctangent of the
movement angle can be computed for the specific motor
which needs to move. For the movement around the base
(0X axis), stereo triangulation had to be used to compute the
distances between the cameras and the gripper and between
the cameras and the target point (the green bottle stopper in
this case). The difference between these two distances is the
distance between the gripper and the target point. The
robotic arm could be moved this way on three axes in 3D
space.

In order to link the robotic with the angles, (1) is used.
These values were sent as SCPI commands (Standard
Commands for Programmable Instruments) to the robotic
arm on the RS-232 interface.

values_robotic_)1.(11
0180

5002500

0180

ω
ttancons_robotic

 (1)

In (1), 2500 is the maximum and 500 is the minimum
robotic value and they correspond to a 180º maximum angle,
leading to the result presented in (2).

values_robotic_)1.(111 (2)

Fig. 1 introduces the block diagram of the setup.
The image recognition algorithm is presented next. An

RGB software filter is involved for each color, using a blob
size threshold to get rid of the noise and the false positives.
The center of gravity was computed next to determine the
center of the colored spot to finally get the coordinate where
the joint number will be drawn (this is also the start point of
the segment which unites the joint with other joints). After
some specific mathematical computations, the final values
which enable the robot’s motors to move as much as it is
needed are concatenated in the SCPI commands sent to the
robot’s SSC-32 controller using the VISA driver for RS-
232.

B. Algorithm Details

Fig. 2 includes the overlay drawing on the image acquired
with a webcam. P0 is the point from the base of the robotic
arm (blue bottle stopper), P1 is the point from the elbow of
the robotic arm (yellow bottle stopper), P2 is the point from
the gripper of the robotic arm (red bottle stopper) and PT is
the point from the targeted object (green bottle stopper).
P2P4 is an orthogonal vector to P2P0 and has the same length.
P2P5 is an orthogonal vector to P2P1 and has the same length.
P6 is the intersection between the PTP6 and P5P2 vectors,
which is parallel to the P4P2 vector. P7 is the intersection
between the PTP7 and P4P2 vectors, which is parallel to the
P5P2 vector. Angle α is actually PTP2P6< angle and angle β is
actually PTP2P7< angle. These two angles are used for
computing slopes used in the equation of the straight line.

 66

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Logitech C270
Webcams

AL5B Robotic
Arm

Center of
Gravity

Figure 1. Block diagram of the experiment

The difference between two vectors can be computed as
in (3).

12y

02x

yy

xx

 (3)

The vector length could be computed as shown in (4).
This is the Euclidian norm.

22 yxl (4)

The orthogonal vector is presented in (5).

xy~
yx~

ort

ort (5)

Combining (3) with (5), the coordinates of points P4 and
P5 can be obtained in (6) and (7).

2xx4

2xx4

y2y

x2x

y0y0

x0x0

 (6)

2yy5

2yy5

y2y

x2x

y0y0

x0x0

 (7)

The parallelogram P7PTP6P2 is calculated in the following
way. First the slope (m) of the two tangents of the circles is
computed as shown in (8).

24

24
β

25

25
α

xx

yy
m

xx

yy
m

 (8)

The segment which goes through the points PT, P2 and
used for the robotic arm’s gripper is obtained in (9).

bxmy 2α2 (9)

The Y intercept (b) is introduced in (9) and the next
relation (10) is generated.

2α2α xmyxmy (10)

Using (10) twice for the x points and twice for the y
points for both slopes (mα and mβ), the expressions (11)-(14)
are derived.

2α26α6 xmyxmy (11)

2β27β7 xmyxmy (12)

TβT6β6 xmyxmy (13)

TαT7α7 xmyxmy (14)

Next, equating y6 in (11) and (13) yields (15).

2α2TβT6β6α xmyxmyxmxm (15)

Finally P6 coordinates are obtained in (16).

226α6

βα

2TTβ2α
6

y)xx(my
mm

)yyxmxm(
x

 (16)

Performing the same calculations for y7, the coordinates
for P7 can be expressed in (17) and (18).

2β2TαT7α7β xmyxmyxmxm (17)

227β7

αβ

2TTα2β
7

y)xx(my
mm

)yyxmxm(
x

 (18)

The stereo distance calculation is explained in Fig. 3. The
tangent of the a and b angles are shown in (19).

factor_conversion

offset
)b(tg

separation_camera

cetandis
)a(tg

 (19)

The offset distance can be computed as the difference
from the initial right and left points (20).

L0R0 xxoffset (20)

The conversion factor needs to be computed for
calibration as shown on equation (21).

separation_camera

cetandis_initialoffset

factor_conversion

 (21)

The offset distance can be expressed by the difference
from the new right and left points, as shown in (22).

L2R2 xxoffset (22)

VISA Driver
for RS-232

SCPI
Commands

Hardware Software

RS-232

USB

RGB Filter

Mathematical
Calculations

Drawing Overlay
on Image

Blob Size
Threshold

USB

PC

 67

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Figure 2. The overlay drawings on the robotic arm for the mathematical computations

Figure 3. Stereo distance calculation algorithm

The final distance is (23).

offset

separation_camerafactor_conversion

cetandis_final

 (23)

The angle in degrees is computed as shown in (24). The
two segments (tangent and radius) form a right triangle in a
circle which is useful to compute the movement angle of a
motor.

length_radius

length_genttan
arctg

π

180
angle (24)

The robotic values are computed as shown in (25).

values_robotic_)1.(11angle

values_robotic_final

 (25)

The real world coordinates were converted to pixels as
follows. The monitor size used in the setup is 19” and the
resolution of the captured video image is 320x240 pixels as
shown in (26).

"19diagonal

240resolution_vertical

320resolution_horizontal

 (26)

To compute pixels from real world coordinates, the pixel
density is needed, which can be obtained from (27). From
(26) the data is 21.05 PPI.

PPI05.21at

in28.173"4.11"2.15size_display 2 (27)

To compute the distance in pixels it’s needed to know the
pixel density from (27) and it’s needed to convert the length
from inch to cm, because the measurement of the distance
was done in cm as shown on (28).

]cm[54.2

]PPI[05.21
]cm[cetandis_world_real

]pixels[scale

 (28)

The execution time of the algorithm is quite fast. The
robotic arm can go to the target position in less than 1
second and can go back to the home position again in less
than 1 second. The code memory usage was 2552 KB. The
same algorithm was also ported on a Raspberry PI
development board and displayed a similar performance
(512 MB of RAM stored both the operation system and the
code).

The whole code compiled executable has 964 KB size on
PC.

The initial image (left and right) of the Lynxmotion
AL5B robotic arm created with two cameras placed one near
another (stereo camera configuration) is presented in Fig. 4.
These images are processed in MATLAB (Fig. 5) to
generate a 3D model of the actual robot. This 3D image

a
b

conversion factor

offset

cam
era se paration

distance

P5

P0

P1

P4

P7

P6

α

PT
β

P2

 68

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

generated from the two initial images (left and right) is
placed on a 3D graph, which can be moved with mouse.

On Fig. 6 these is a 3D model of the Lynxmotion AL5

type robotic arm with the overlay drawings generated by the
image recognition algorithm.

Figure 4. Initial images (left and right) of the robotic arm used for a 3D image generation in MATLAB

Figure 5. The 3D image created in MATLAB

 69

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Figure 6. The 3D model of the Lynxmotion AL5 type robotic arm with the overlays generated by the presented image recognition algorithm

C. Software Implementation

The software was implemented in LabWindows/CVI.
This programming language was chosen, because it has an
excellent GUI (Graphical User Interface) and has the
possibility to control many computer ports without using
external libraries. In the experiments, the communication
protocol is ensured by the RS-232 interface.

The main window of the application is presented in Fig.
7.

Figure 7. Robotic arm control GUI

The connected LED indicator informs the operator that
the webcams are operational. The SSC Version button reads

the version of the SSC-32 servo control board (being
responsible for the robotic arm’s motor control). The current
version of the board is 2.01XE. The Initialize Motors button
tests the digital ports of the ATmega168 microcontroller
from the SSC-32 board and also the servomotors. The All
Servos button “wakes up” the robotic arm. Basically it puts
all servos in the middle position, which has the value of
1500. The robot is assembled mechanically in a way that
after “waking up” it has the shape of the Greek capital
gamma letter (Γ). This is the robots initial position.

The Draw button draws all the overlays over the robotic
arm’s webcam image and moves the robotic arm to reach
the desired object (in our case, the green bottle stopper).

The algorithm in pseudo-code is shown next.
function DiffPoint (pos1, pos2)
 diff.x ← pos1.x – pos2.x
 diff.y ← pos1.y – pos2.y
function VectLen (vect)

22 y.vecyx.vect

function Orthogonalize (vect)
 vect.x ↔ vect.y
main ()
 xAxis ← DiffPoint (point[2], point[0])
 yAxis ← DiffPoint (point[2], point[1])
 xAxis ← Orthogonalize (xAxis)
 yAxis ← Orthogonalize (yAxis)

m1 ←
x].2int[pox].5int[po

y].2int[poy].5int[po

 70

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

m2 ←
x].2int[pox].4int[po

y].2int[poy].4int[po

x1 ←

21

21

mm

x.etargtmx].2int[pom

21 mm

y].2int[poy.etargt

 y1 ← m y].2int[po)x].2int[pox(11

x2 ←

12

12

mm

x.etargtmx].2int[pom

12 mm

y].2int[poy.etargt

 y2 ← m y].2int[po)x].2int[pox(22
 xAxis ← DiffPoint (point[2], point[0])
 gradlen ← VectLen (xAxis)
 yAxis ← DiffPoint (point[2], point[1])
 bradlen ← VectLen (yAxis)
 diffg ← DiffPoint (point[7], point[2])
 gtanlen ← VectLen (diffg)
 diffb ← DiffPoint (point[6], point[2])
 btanlen ← VectLen (diffb)

 degb ←

bradlen

lentanb
arctg

π

180

 degg ←

gradlen

lentang
arctg

π

180

 degd ←

gradlen

lentand
arctg

π

180

 robodegb ←
180

2000
b deg

 robodegg ←
180

2000
g deg

 robodegd ←
180

2000
d deg

V. EXPERIMENTAL RESULTS

The initial stereo image of the Lynxmotion AL5B robotic
arm image acquired with the two webcams is presented in
Fig. 8.

The result of the overlay on the Lynxmotion AL5B
robotic arm initial image, after the Draw button is pressed is
introduced in Fig. 9. All the colors are recognized and after
the required mathematic calculations, the lines and circles
are drawn. Finally after calculating the length of the sides of
the parallelogram, the final angles were computed, which
were needed to for each motor to move in the desired
position.

The overlay on the SCORBOT-ER III robotic arm image
is shown in Fig. 10, case used for final validation of the
proposed method.

Figure 8. The initial stereo image of the Lynxmotion AL5B robotic arm acquired by the two webcams (blue bottle stopper at base, yellow bottle stopper at
elbow, red bottle stopper at gripper of robotic arm and green bottle stopper at target)

Figure 9. Overlay of the lines and circles on the Lynxmotion AL5B robotic arm after the correct color detection on initial stereo image from Fig. 8 (green
small circle with green tangent, blue big circle with blue tangent, green parallel line to blue tangent, blue parallel line to green tangent, red line between
points 2 and 3, red square around points 0, 1, 2 and 3)

 71

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Figure 10. Overlay of the lines and circles on the SCORBOT-ER III robotic arm after the correct color detection on initial stereo image

The movement on the 0X axis is ensured by the stereo
triangulation calculations, which were presented in the
previous chapter.

The measurement results for the stereo distance
computation are introduced in Table I. The robotic arm was
placed in different positions with respect to the cameras.
The real distance was measured with laser and compared to
the projected distance which was computed in the software.

TABLE I. POSITIONING ERROR
Real Distance [m] Projected Distance [m] Delta [mm]

0,5 0,495 5
0,6 0,594 6
0,7 0,696 4
0,8 0,795 5
0,9 0,897 3
1 0,996 4

1,1 1,094 6
1,2 1,195 5
1,3 1,293 7
1,4 1,398 2

The relation between the error and the distance is
represented in Fig. 11. It can be concluded that the stereo
distance computation algorithm worked well in 99% of the
tested time.

Figure 11. Real distance and delta

In Fig. 12 the error distribution is introduced, the highest
positioning error is 5 mm at over 10 m distance, which in

our case can turn to even smaller error because the practical
distances are under 1 m. The error can be further reduced
using higher resolution cameras.

Figure 12. Histogram of positioning error (real distance and projected
distance)

In Fig. 13 these is the process capability sixpack made for
the positioning error in Minitab.

The upper and lower limits were set between -2 and 12
mm, because this would be acceptable. From the I Chart and
Moving Range Chart is clear that everything is in these
limits. The histogram and normal probability plot shows that
the distributions of the values have a normal distribution.
For this small amount of measured values the best graph is a
normal probability plot, which creates a better graph than
the histogram, which is generated just by the default by
Minitab in the process capability analysis sixpack.

The σ (standard deviation) is 1,675 and the Cpk (process
capability index) is 1,33; which is equal to 4σ quality, which
is a really good result for an existing process ,the 6σ process
is the ideal process, not existent in the real world.

The Cpk formula is presented in (29), where USL is the
upper specification limit, LSL is the lower specification
limit, μ is the mean and σ is the standard deviation.

σ3

LSLμ
,

σ3

μUSL
minC pk (29)

 72

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

10987654321

10

5

0

In
di

vi
du

al
 V

al
ue

_
X=4,7

UCL=9,72

LCL=-0,32

10987654321

5,0

2,5

0,0

M
ov

in
g

Ra
ng

e

__
MR=1,889

UCL=6,172

LCL=0

108642

6

4

2

Observation

V
al

ue
s

121086420-2

LSL -2
USL 12

Specifications

LSL USL

Overall
Within

1050

StDev 1,675
Cp 1,39
Cpk 1,33
PPM 38,05

Within
StDev 1,494
Pp 1,56
Ppk 1,49
Cpm *
PPM 4,19

OverallOverall

Within

Specs

Process Capability Sixpack Report for Delta [mm]
I Chart

Moving Range Chart

Last 10 Observations

Capability Histogram

Normal Prob Plot
AD: 0,241, P: 0,697

Capability Plot

Figure 13. Process capability sixpack of positioning error

VI. CONCLUSION

The paper presented all the steps involved in an
application development which eventually can control the
robotic arm in the 3D space, using stereo vision. In the
example, the robotic arm had three motors, one for each axis
in the XYZ coordinate system.

The algorithm is based on two distance calculation
methods. The first computes the movement position of the
0Y and 0Z axes (in 2D). This will make possible find the
needed movement angle for robot base (P2P0P7<) on 0Y axis
and robot elbow (P2P1P6<) on 0Z axis. The second is the
stereo distance calculation where the movement of the base
on the 0X axis is performed. Based on these values, the
movement of the robotic arm in 3D is derived. For distance
calculation two cameras were used. First, the distance to the
base of the robotic arm and afterwards the distance to the
target were evaluated. The difference of these two distances
is the distance for the base motor to move on the 0X axis.
This distance is one of the sides of a right triangle; the other
side can be the radius (P0P2).

On Table II. there is a comparison of the presented
method versus the methods of other authors.

TABLE II. COMPARISON OF ALGORITHM TO SIMILAR METHODS

Charac-
teristics

Presented
Method

[12]
M.

See-
linger

[13]
R.

Kelly

[14]
V.

Lippi-
ello

[15]
M.

Kaze-
mi

[16]
R. T.
Fo-

mena
Number
of Joints

3 6 2
multi-
finger

6 6

Cost low low low high high high
Precision high high high high high high
Executi-
on Time

< 1s < 1s < 1s < 1s < 1s < 1s

Comple-
xity

low
medi-

um
low high high high

Memory
Usage

low
medi-

um
low high high high

In order to further evaluate the algorithm, the authors will
also experiment it using different programming languages
and operating systems to compare the resources involved.

The final target is to have all the system running on an
FPGA and if possible, on an ASIC.

This algorithm would scale up to bigger robotic arms too;
it can be also extended to be used for robotic arms with
more joints just by repeating the algorithm. The robotic arm
can used to manipulate almost any object. One of the
advantages of the method is the low to medium complexity,
being easy to implement. It does not need complex matrix
computations or forward and inverse kinematics

 73

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

calculations. The algorithm can be also combined with the
current method used in the industry. The goal of the
algorithm is not to replace the already well tested methods
from industry but to work along them. The most useful filed
of usage could be to repeatedly optically calibrate the
robotic arm during execution, this way the production line
would not need to be stopped and this way a lot of
calibration cost could be reduced.

REFERENCES
[1] W. G. Hao, Y. Y. Leck, L. C. Hun, “6-DOF PC-Based Robotic Arm

(PC-ROBOARM) with efficient trajectory planning and speed
control,” 4th International Conference On Mechatronics, Kuala
Lumpur, pp. 1-7, 2011. [Online]. Available:
http://dx.doi.org/10.1109/ICOM.2011.5937171

[2] W. Yang, J. H. Bae, Y. Oh, N. Y. Chong, B. J. You, S. R. Oh, “CPG
based self-adapting multi-DOF robotic arm control,” International
Conference on Intelligent Robots and Systems, Taipei, pp. 4236-4243,
2010. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2010.5651377

[3] E. Oyama, T. Maeda, J. Q. Gan, E. M. Rosales, K. F. MacDorman, S.
Tachi, A. Agah, “Inverse kinematics learning for robotic arms with
fewer degrees of freedom by modular neural network systems,”
International Conference on Intelligent Robots and Systems, pp.
1791-1798, 2005. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2005.1545084

[4] N. Ahuja, U. S. Banerjee, V. A. Darbhe, T. N. Mapara, A. D. Matkar,
R.K. Nirmal, S. Balagopalan, “Computer controlled robotic arm,”
16th IEEE Symposium on Computer-Based Medical Systems, New
York, pp. 361-366, 2003. [Online]. Available:
http://dx.doi.org/10.1109/CBMS.2003.1212815

[5] M. H. Liyanage, N. Krouglicof, R. Gosine, “Design and control of a
high performance SCARA type robotic arm with rotary hydraulic
actuators,” Canadian Conference on Electrical and Computer
Engineering, St. John's, CA, pp. 827-832, 2009. [Online]. Available:
http://dx.doi.org/10.1109/CCECE.2009.5090244

[6] M. Mariappan, T. Ganesan, M. Iftikhar, V. Ramu, B. Khoo, “A design
methodology of a flexible robotic arm vision system for OTOROB,”
International Conference on Mechanical and Electrical Technology,
Singapore, pp. 161-164, 2010. [Online]. Available:
http://dx.doi.org/10.1109/ICMET.2010.5598341

[7] H. Guo-Shing, C. Xi-Sheng, C. Chung-Liang, “Development of dual
robotic arm system based on binocular vision,” International
Automatic Control Conference, Nantou, pp. 97-102, 2013. [Online].
Available: http://dx.doi.org/10.1109/CACS.2013.6734114

[8] R. Szabó, A. Gontean, “Controlling a Robotic Arm in the 3D Space
with Stereo Vision,” 21th Telecommunications Forum, Belgrade, pp.
916-919, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TELFOR.2013.6716380

[9] R. Szabó, A. Gontean, “Robotic arm control in 3D space using stereo
distance calculation,” International Conference on Development and
Application Systems, Suceava, pp. 50-56, 2014. [Online]. Available:
http://dx.doi.org/10.1109/DAAS.2014.6842426

[10] R. Szabó, A. Gontean, “Remotely Commanding the Lynxmotion AL5
Type Robotic Arms,” 21th Telecommunications Forum, Belgrade, pp.
889-892, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TELFOR.2013.6716373

[11] R. Szabó, A. Gontean, “Creating a Programming Language for the
AL5 Type Robotic Arms,” 36th International Conference on
Telecommunications and Signal Processing, Rome, pp. 62-65, 2013.
[Online]. Available: http://dx.doi.org/10.1109/TSP.2013.6613892

[12] M. Seelinger, E. Gonzalez-Galvan, M. Robinson, S. Skaar, “Towards
a robotic plasma spraying operation using vision,” IEEE Robotics &
Automation Magazine, vol. 5, issue 4, pp. 33-38, 49, 1998. [Online].
Available: http://dx.doi.org/10.1109/100.740463

[13] R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, F. Reyes, “Stable visual
servoing of camera-in-hand robotic systems,” IEEE/ASME
Transactions on Mechatronics, vol. 5, issue 1, pp. 39-48, 2000.
[Online]. Available: http://dx.doi.org/10.1109/3516.828588

[14] V. Lippiello, F. Ruggiero, B. Siciliano, L. Villani, “Visual Grasp
Planning for Unknown Objects Using a Multifingered Robotic Hand”,
IEEE/ASME Transactions on Mechatronics, vol. 18, issue 3, pp.
1050-1059, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TMECH.2012.2195500

[15] M. Kazemi, K. K. Gupta, M. Mehrandezh, “Randomized
Kinodynamic Planning for Robust Visual Servoing”, IEEE
Transactions on Robotics, vol. 29, issue 5, pp. 1197-1211, 2013.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2013.2264865

[16] R. T. Fomena, O. Tahri, F. Chaumette, “Distance-Based and
Orientation-Based Visual Servoing From Three Points”, IEEE
Transactions on Robotics, vol. 27, issue 2, pp. 256-267, 2011.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2011.2104431

[17] N. C. Orger, T. B. Karyot, “A symmetrical robotic arm design
approach with stereo-vision ability for CubeSats,” 6th International
Conference on Recent Advances in Space Technologies, Istanbul, pp.
961-965, 2013. [Online]. Available:
http://dx.doi.org/10.1109/RAST.2013.6581353

[18] F. Medina, B. Nono, H. Banda, A. Rosales, “Classification of Solid
Objects with Defined Shapes Using Stereoscopic Vision and a
Robotic Arm,” Andean Region International Conference, Cuenca, pp.
226, 2012. [Online]. Available:
http://dx.doi.org/10.1109/Andescon.2012.71

[19] M. Puheim, M. Bundzel, L. Madarasz, “Forward control of robotic
arm using the information from stereo-vision tracking system,” 14th
International Symposium on Computational Intelligence and
Informatics, Budapest, pp. 57-62, 2013. [Online]. Available:
http://dx.doi.org/10.1109/CINTI.2013.6705259

[20] T. P. Cabre, M. T. Cairol, D. F. Calafell, M. T. Ribes, J. P. Roca,
“Project-Based Learning Example: Controlling an Educational
Robotic Arm With Computer Vision,” IEEE Revista Iberoamericana
de Tecnologias del Aprendizaje, vol. 8, issue 3, pp. 135-142, 2013.
[Online]. Available: http://dx.doi.org/10.1109/RITA.2013.2273114

[21] G. S. Gupta, S. C. Mukhopadhyay, M. Finnie, “WiFi-based control of
a robotic arm with remote vision,” Instrumentation and Measurement
Technology Conference, Singapore, pp. 557-562, 2009. [Online].
Available: http://dx.doi.org/10.1109/IMTC.2009.5168512

[22] L. Haoting, W. Wei, G. Feng, L. Zhaoyang, S. Yuan, L. Zhenlin,
“Development of Space Photographic Robotic Arm based on
binocular vision servo,” Sixth International Conference on Advanced
Computational Intelligence, Hangzhou, pp. 345-349, 2013. [Online].
Available: http://dx.doi.org/10.1109/ICACI.2013.6748528

[23] C. Wen-Chung, C. Chih-Wei, “Automatic Mobile Robotic
Manipulation with Active Eye-to-Hand Binocular Vision,” 33rd
Annual Conference of the IEEE Industrial Electronics Society, Taipei,
pp. 2944-2949, 2007. [Online]. Available:
http://dx.doi.org/10.1109/IECON.2007.4460000

[24] P. C. Nunnally, J. M. Weiss, “An inexpensive robot arm for computer
vision applications,” Energy and Information Technologies in the
Southeast, Columbia, vol. 1, pp. 1-6, 1989. [Online]. Available:
http://dx.doi.org/10.1109/SECON.1989.132303

[25] T. Kizaki, A. Namiki, “Two ball juggling with high-speed hand-arm
and high-speed vision system,” IEEE International Conference on
Robotics and Automation, Saint Paul, MN, pp. 1372-1377, 2012.
[Online]. Available: http://dx.doi.org/10.1109/ICRA.2012.6225090

 74

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 10:21:22 (UTC) by 54.175.59.242. Redistribution subject to AECE license or copyright.]

