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Abstract—This article presents a novel method for 

measurement of wildfire smoke dynamics based on computer 
vision and augmented reality techniques.  The aspect of smoke 
dynamics is an important feature in video smoke detection that 
could distinguish smoke from visually similar phenomena. 
However, most of the existing smoke detection systems are not 
capable of measuring the real-world size of the detected smoke 
regions. Using computer vision and GIS-based augmented 
reality, we measure the real dimensions of smoke plumes, and 
observe the change in size over time. The measurements are 
performed on offline video data with known camera 
parameters and location. The observed data is analyzed in 
order to create a classifier that could be used to eliminate 
certain categories of false alarms induced by phenomena with 
different dynamics than smoke. We carried out an offline 
evaluation where we measured the improvement in the 
detection process achieved using the proposed smoke dynamics 
characteristics. The results show a significant increase in 
algorithm performance, especially in terms of reducing false 
alarms rate. From this it follows that the proposed method for 
measurement of smoke dynamics could be used to improve 
existing smoke detection algorithms, or taken into account 
when designing new ones. 
 

Index Terms—Image motion analysis, Computer vision, 
Computer aided analysis, Virtual reality, Pattern analysis. 

I. INTRODUCTION 

Wildfires have always been devastating phenomena, 
having impact on natural and wildlife environment. 
Research shows [1] that wildfires destroy up to 10,000 km2 
of vegetation in Europe, and up to 100,000 km2 in North 
America and Russia every year. In order to minimize the 
damage generated by wildfires, prompt reaction is essential. 
Traditional method for early discovery of wildfires is based 
on visual inspection of the surrounding terrain from lookout 
posts located on elevated areas. The primary phenomenon of 
interest is wildfire smoke rather than flame itself, since in 
most cases the smoke is visible before the flame. In majority 
of scenarios the fire is obscured and not remotely visible in 
its incipient phase, and becomes visible after it has 
considerably spread over larger areas. 

Advances in technology have led to camera-based 
monitoring, where a single operator could simultaneously 
inspect multiple locations. One of the drawbacks of this 
approach is the decrease in human concentration over time, 
possibly leading to delayed detections. In recent times, 
progress in the field of computer vision has led to automatic 
smoke detection. Images acquired by the camera are 
analyzed by different computer algorithms raising the alarm 
in the case that smoke is present in the image. 

There are many different approaches to visual smoke 
detection, however, there are several phases that are 

common to most smoke detection systems. One of the most 
common phases is the motion detection, where only the 
moving pixels are isolated and forwarded to subsequent 
detection phases [2-4]. Another important phase in the 
detection process is the chromatic analysis of the detected 
regions. Based on chromatic characteristics, certain 
categories of candidate regions can be rejected from the 
detection process [5,6]. Additional information about the 
candidate regions is obtained using texture analysis. There 
are diverse approaches to texture analysis in smoke 
detection, such as wavelet analysis [7] or the gray-level co-
occurrence matrix (GLCM) [8]. Another phase that is 
common to most detection algorithms is the final or the 
decision phase. Utilizing the gathered information about the 
candidate regions, the system makes the final decision about 
raising the alarm. There are various approaches to the 
decision-making process such as neural networks [9], 
random forests [10] or support vector machines [11]. 
However, these systems are not completely autonomous, 
and require final confirmation from the operator. 

Our motivation for this article is the analysis of smoke 
behavior, specifically smoke dynamics, in order to improve 
smoke detection systems. One of the drawbacks of most 
smoke detection algorithms is a high false alarm rate. There 
are different natural phenomena similar to smoke that could 
induce false alarms such as fog, clouds, dust etc. 
Nevertheless, smoke has specific dynamics that adhere to 
some general rules. In this article we analyze the specific 
information about these dynamic characteristics in order to 
create a classifier that could be used in smoke detection 
algorithms resulting in better discrimination between smoke 
and visually similar phenomena with different dynamics.  

Several publications deal with dynamic characteristics of 
smoke, such as the ones described in [12-14] that use a 
simulation model of smoke spread. However, due to 
different location specific parameters that have to be set, 
these studies provide no adequate information that could be 
useful to improve smoke detection. For this reason, we have 
chosen an empirical approach to smoke dynamics analysis 
based on data collected from real wildfires.  

Our intention is to measure the real dimensions of smoke 
plumes (in standard units of measurement), and to monitor 
the changes in size during the early stages of wildfire. In 
order to perform the measurements, we proposed a novel 
method to estimate those dimensions by using a video-based 
approach, or more precisely, by using GIS-based augmented 
reality (AR) and camera parameters. First, smoke plumes 
were recorded by the camera with known intrinsic and 
extrinsic parameters, as well as the exact geographic 
location. We hand-segmented smoke plumes from the
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Figure 1. Image formation in the real camera model 

 
training set images (in order to obtain maximum precision) 
and estimated their real dimensions by using the proposed 
method. We then analyzed smoke plume dynamics during 
the incipient phase of wildfire, since this phase is crucial for 
the early detection of smoke and exhibits different dynamics 
compared to a smoke of already expanded wildfires. 
Obtained smoke dynamics data served as training data for a 
classifier whose purpose is to distinguish smoke from 
phenomena with different dynamics. Finally, both the 
classifier and the proposed method were tested on a new set 
of video sequences containing both smoke and other 
phenomena that could induce false alarms. 

II. MEASUREMENTS OF SMOKE DIMENSIONS 

Smoke arising from wildfires moves in the open space, 
whereas its shape depends on the conditions prevailing in 
the surrounding environment. In the incipient phase of 
wildfire, it is possible to visually determine the smoke 
boundaries. However, determining the size of such 
phenomena, expressed in standard units of measurement 
(such as meters), might be a very difficult task. 

In open space areas, even in ideal conditions, it is 
impossible to measure dimensions of smoke plumes directly 
on the spot. The smoke has a tendency of constant growth 
and ascent. Moreover, it is not always possible to approach 
the area affected by the wildfire. Therefore, in this paper we 
propose an alternative approach that could be used for the 
measurement of smoke dimensions. In our approach, we use 
CCD camera located at a safe distance from the wildfire. 

Images taken by common CCD cameras do not contain 
the information about the third dimension. However, if 
camera’s geographic location and parameters are known, 
GIS-based augmented reality could be used to estimate the 
physical size of the smoke visible in the image. The first 
step towards a successful measurement of smoke 
dimensions is to estimate the distance of the smoke visible 
in the image from the camera. Without this knowledge, the 
estimation is unreliable and prone to errors. 

A. Distance Estimation Based on AR System 

In order to compensate the lack of depth information of 
common CCD cameras, we propose the development of 
augmented reality system that incorporates the models of 
both real and virtual cameras, as well as the digital elevation 
of the surrounding terrain. This is important, since the 

topography of the terrain must be taken into account if one 
wants to estimate the distance from the camera to the 
specific point visible in the image. Augmented reality 
system provides the view of the physical, real-world 
environment with the additional computer generated 
information, in this case with the exact geographical 
coordinates of the specific points visible in the camera 
image. This information can then be used for the estimation 
of distances from the camera to these points. 

The first step towards the development of such 
augmented reality system is generation of the appropriate 
digital terrain model. This virtual terrain model is based on 
the exact topography of the real world. Since we are dealing 
with wildfires that occur in the open space areas, it is 
possible to ignore artificial structures, such as the human 
infrastructures, that could affect the final appearance of the 
model. In order to preserve the dimensions of the real-world 
environment, a map projection must be chosen. Map 
projections define the systematic transformation of points on 
a sphere (or an ellipsoid) to points on a plane. We have 
chosen spherical map projection (EPSG code 3857) 
primarily because of its popularity and widespread usage.  

The connection between the real-world terrain and the 
virtual terrain model is not sufficient for a successful 
augmented reality system, and therefore for a successful 
distance estimation. Each camera is different, and each 
camera view depends on specific set of parameters that 
define it. We use a pinhole camera model, defined by 
intrinsic and extrinsic camera parameters, as the 
representation of the real world camera. These parameters 
must be taken into account if the observed object is not 
perfectly positioned in the center of the camera image, 
which is almost always the case with wildfire smoke, since 
it moves unpredictably in the image. 

Each virtual environment requires a virtual camera that 
defines what is visible in the virtual viewport. To create an 
augmented reality view with as few registration errors as 
possible, it is necessary to find a connection between the 
real and virtual camera models. Each point of the real-world 
environment visible in the real camera image must 
correspond to the point with the same geographic 
coordinates on the virtual terrain and must be visible at the 
same position in the virtual camera image. 

Fig. 1 is a visual representation of image formation in the 
real camera model. The point in the real world XW is visible 
in the camera image plane as the point xr. In this example, it 
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Figure 2. Image formation in the virtual camera model 

 
is visible in the optical center, therefore point xr has the 
coordinates (u0,v0). The focal length f is expressed in 
standard units of measurement, and should be converted to 
fx, fy expressed in pixels. Fig. 1 also displays orientation and 
position of camera coordinate system (Xe,Ye,Ze) and 
camera image coordinate system (Xr,Yr). 

If the point xr(Xr,Yr) is not visible in the optical center, 
but in any other position in the image, its coordinates are 
calculated using the Eqs. (1)-(2). 
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Fig. 2 shows the simplified representation of the image 
formation for the virtual camera. Parameters used to define 
the view of the virtual (OpenGL) camera are the following: 
height and width of the image, (x0,y0) coordinates of the 
lower left viewport corner, fovy the field of view angle in 
radians in the y-direction and the aspect ratio that 
determines the field of view in the x-direction. Fig. 2 also 
shows the virtual camera coordinate system (Xe,Ye,Ze) and 
the virtual camera image coordinate system (Xv,Yv). Part of 
the virtual terrain visible in the frustum defined by the 
distances zNear and zFar is rendered in the camera image. 
The equations used to calculate the coordinates of the point 
xv(Xv,Yv) visible in the virtual viewport are the following: 
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After taking into consideration the differences in the 
orientation of the coordinate systems for both real and 
virtual cameras, it is possible to calculate the equations that 
define the connection between the image formation of the 
real and the virtual camera Eqs. (5)-(8). 

The correct geographic location of the real camera is 
obtained using a GPS sensor. Since the virtual environment 

is correctly georeferenced, this information also represents 
the location of the virtual camera. 
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If everything is correctly implemented into the augmented 
reality system, the virtual and real cameras share the same 
view, as seen in Fig. 3. More specifically, Eqs. (5)-(8) were 
implemented into the core of the Capaware [15,16] software 
that is an open source, 3D multilayer geographical 
framework developed as a virtual environment system with 
the ability to generate and display a virtual terrain. Apart 
from its functionality to serve as a visual analysis and 
decision-making system, Capaware has been used as a 
wildfire spread simulation [17] and a wildfire forecasting 
system [18]. None of the existing solutions and plugins for 
Capaware provided augmented reality functionality. In order 
to extend the system and convert it into an AR system, it 
was necessary to intervene into the core of the system. This 
intervention included abilities to display real camera image 
and to change virtual camera parameters defined by the Eqs. 
(5)-(8). 

  Smoke phenomenon covers a relatively large area in the 
surrounding environment; therefore it is necessary to choose 
a reference point on the terrain that will represent the 
position of the observed smoke. This point will be used for 
the actual estimation of the distance of the observed smoke 
from the camera. Smoke is constantly rising and it is not 
always linked to the ground, which further complicates the 
calculation of the distance to the observed phenomena. 
Determining the distance of the detected smoke plume is a 
difficult task not only for a computer system, but also for 
human operators [19]. Errors in determining the distance 
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Figure 3. An example of smoke plume from the real environment. Figure on the left represents a real camera view, whereas figure on the right represents 
the corresponding virtual camera view 

 
of the smoke plume can occur either under the influence of 
the topographic shadowing [20] or incorrect identification of 
the base of the smoke. Therefore, one should be careful 
when determining the reference point that represents the 
position of the observed smoke region. 

In our approach, the reference point should be as close to 
the smoke as possible and clamped to the ground in order to 
minimize the estimation error. We propose that this point is 
defined as the intersection of the virtual terrain and the ray 
cast from the camera which passes through the region of 
smoke. We have chosen the intersection of the ray with the 
virtual terrain located at a minimum distance from the 
camera as the reference point.  

As already mentioned, smoke plumes are not always 
connected to the ground. Plume floating high in the air can 
in many times lead to the errors in distance estimation. 
Another unfavorable scenario occurs when a part of the 
observed smoke plume is obscured behind the elevated 
terrain. Nevertheless, the evaluation of the proposed smoke 
dynamic characteristics shows that, despite of these 
imperfections, it is still highly practical for the improvement 
of visual smoke detection systems. More details on this are 
given in Section 4.  

Since camera’s geographic coordinates are obtained using 
a GPS sensor, and coordinates of the reference point are 
known (each point on the virtual terrain is georeferenced), 
we can easily estimate the distance between the camera and 
the smoke plume. 

B. Estimating the Smoke Region Size 

Each pixel in the camera image represents a three 
dimensional space in the real world. The actual dimensions 
of this three dimensional space are not known, however, for 
a chosen reference point, it is possible to calculate the 
dimensions of the projection of the space surrounding this 
point onto the plane that has the following characteristics: it 
is located at the same distance from the camera as the 
reference point, and it is parallel to the camera image plane. 

Fig. 4 demonstrates the method of dimensions estimation 
of the 3D space projected to the plane R that is parallel to 
the camera image plane and that holds the chosen reference  
point TUTM(X,Y,Z). Pixel Tp(x,y), visible in the image plane 
at the position (x,y), represents a three dimensional space in 
the environment around the reference point TUTM(X,Y,Z) 
that is projected to the camera image plane. 

Two points TUTM1 and TUTM2 located on the plane R are 
chosen in such a way that they are equidistant from the 

reference point for some distance d. Points TUTM, TUTM1 and 
TUTM2 share a same Z coordinate, or in other words these 
points are located at the same altitude. Points Tp1 and Tp2 
visible in the camera image plane are projections of 
pointsTUTM1 and TUTM2, respectively. Points Tp1, Tp and Tp2 

lie on a same, horizontal line on the camera image plane. 
The length of the line segment |Tp1 Tp2 | is denoted as 2dp. 

For any chosen distance d, the distance dp is 
unambiguously identified in the chosen virtual environment. 
Note that the distance dp is expressed in number of pixels, 
and the distance d is expressed in meters. Since dp and d 
represent the same distance, the connection between those 
two measurement units can be easily calculated. In case of 
square pixels this connection is the same in both horizontal 
and vertical direction. Otherwise, it is necessary to 
determine the connection between those measurement units 
in the vertical direction as well. 

Note that after applying the Eqs. (5)-(8) the connection 
between the real and the virtual system has been found. 
Therefore the movement in any direction in the virtual 
environment represents the same movement in the real 
world. Also, sizes of the objects in the virtual environment 
correspond to the sizes of the objects in the real world. 

Based on the proposed method, it is possible to estimate 
the total area covered within one pixel of the input image 
where the reference point is visible. Consequently, the area 
occupied by the smoke phenomena could also be projected 
to the previously specified plane. In order to simplify the 
estimation process, after estimating the surface area on the 
specified plane within the pixel where the reference point is 
visible and after counting the number of pixels where the 
smoke phenomenon is visible, it is possible to approximate 
the surface area of the projection of the smoke phenomena 
onto the plane R.  

Since the distance of the smoke phenomenon from the 
camera is defined in meters (m), the calculated surface area 
is defined in square meters (m2). 

III. MEASUREMENT RESULTS AND ANALYSIS 

In this section our aim is to define a logistic classifier 
capable of distinguishing smoke from visually similar 
phenomena with different dynamics based on one feature: 
the change in physical size. The measurement of physical 
size is based on methodology presented in Section 2. It is 
important to emphasize that this classifier is not intended to 
be used as a stand-alone classifier, but rather as a part of a 
smoke detection algorithm and used for elimination of
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Figure 4. The procedure for estimating the size of the projection of 3D space that is visible within a single pixel on to the plane that contains the reference 
point T UTM and that is parallel to the camera image plane 

 
certain categories of false alarms. 

Training set for the classifier is obtained by performing 
the measurements of smoke dimensions followed by the 
analysis of smoke dynamics based on the obtained results. 
The measurements are conducted on offline smoke video 
database with known location information. The videos were 
recorded on various locations covering 33 different scenes 
containing smoke. Information about the geographical 
position of the camera is recorded for every scene along 
with specific intrinsic and extrinsic parameters. 
Development of smoke plumes in terms of size is tracked 
for the incipient phase of wildfire, since it is crucial for early 
detection. Each smoke plume is treated independently.  

Total of 79 smoke plumes are tracked for a minimum 
period of 24 seconds up to 196 seconds depending on 
individual plume lifetime. To achieve maximum precision, 
tracking of separate smoke plumes is performed by hand-
segmentation of input images in 4 second intervals. Using 
methods described in Section 2 we can estimate the physical 
smoke region size (in two-dimensional image plane) and 
analyze the change in this size over time. Obtained results 
are used to create a training set for our classifier. The 
average increase in smoke area in two-dimensional image 
plane (µ) is 16.04 m2/s in the initial fire starting phase, with 
a standard deviation (σ) of 76.33m2/s. Our aim is to define a 
range of smoke behavior that covers approximately 99% of 
smoke spreading scenarios included in the training set data. 
This range can then be used by the classifier as a model to 
eliminate those regions with different dynamics than smoke.   

To achieve this, we first plot a histogram showing the 
distribution of smoke area change in m2 for 1 second periods 
averaged from change in 4 second intervals, as shown in 
Fig. 5. Our intention is to find a probability density function 
(pdf) that best fits the training data set histogram. In our case 
it is the pdf of t location-scale distribution, defined as: 
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where Γ is the gamma function, λ is the location parameter, 
ω represents the scale parameter, and v is the shape 
parameter. Parameter values used for fitting are     

λ= 18.85, ω = 37.48 and v = 1.96. The fitted pdf function 
plotted over the data distribution is shown in Fig. 5. The 
area under the probability density function (in interval         
[-∞,∞]) represents 100% of smoke spreading scenarios. Our 
aim is to find a safe range of smoke dynamics that would 
eliminate certain categories of false alarms while still 
covering over 99% of smoke spreading scenarios. One way 
to determine the probability that a real-valued random 
variable (smoke plume dynamics in our case) will be found 
in the specified interval is to use a cumulative distribution 
function (cdf). Cdf for t location-scale distribution is defined 
as follows: 
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where p denotes the probability that an observation from the 
t location-scale distribution, will fall in the interval [−∞,l). 
Fig. 6 shows the cdf for the chosen t location-scale 
distribution. Using the cdf we can calculate the probability 
of observation falling in limited intervals. It is now possible 
to show if a certain interval covers over 99% of smoke 
spreading scenarios. The probability of an observation 
falling in the interval (µ − 6σ,µ + 6σ) can be calculated as: 

9924.0)6()6(   pp   (11) 

where µ = 16.04 is the average value, and σ = 76.33 is the 
standard deviation of the measured samples. Therefore, we 
can say that the interval [−441.94 m2/s, 474.02 m2/s] covers 
99.24% of smoke spreading scenarios. This interval 
indicates the allowed change in smoke area in one second 
intervals. As specified in the interval the change in the area 
could be positive or negative which would suggest that the 
smoke is growing or shrinking. This area is measured in the 
plane intersecting smoke and parallel to the image plane as 
described in Section 2. 

We can now dismiss potential false alarms with a high 
degree of certainty in case the candidate region dynamics 
fall out of the defined range. Many smoke detection 
algorithms are very sensitive to intensity changes, 
shadowing by clouds and reflections that generate sudden 
detections of large regions which could be safely eliminated 
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using this classifier. Nevertheless, the percent of success 
(99.24%) should be taken with caution as it defines the 
probability of an observation falling into this interval only in 
situations when the distance is perfectly estimated. Smoke is 
a phenomenon that is constantly rising and not always 
linked to the ground, or can be partly hidden by the 
foreground terrain. All this can lead to the false 
identification of the reference point representing the smoke 
phenomenon location, what inevitably leads to a false 
distance estimation, and consequently to the undesirable 
estimation of smoke dynamics and a missed detection.  The 
image database used in the evaluation included different 
smoke sequences where we covered various scenarios that 
could induce such unwanted scenarios. 

 

 
Figure 5. Distribution of the change in smoke area (m ) for 1 second 
periods and the fitted function  

2

IV. EVALUATION 

To demonstrate the applicability of the results presented 
in the previous section and to show how to use smoke 
dynamics characteristics to successfully improve standard 
smoke detection algorithms, we have performed a detailed 
evaluation using a database consisting of 10098 images. In 
this dataset, the smoke is present in 4474 of these images, 
whereas the remaining 5624 images include various other 
phenomena that are known to induce false alarms: such as 
clouds, shadowing by clouds, sea reflections, etc. We 
deliberately chose such demanding scenes (with a lot of 
movement present in the images) in order to show the full 
potential of the proposed smoke dynamics characteristics. 
Practice has shown that most false alarms occur during 
similar conditions, which justifies the use of such scenes for 
the evaluation. Representatives of the images used for the 
purpose of this evaluation are given in Fig. 7.  

To perform the evaluation, we compared three different 
stages of smoke detection: motion detection, chromatic 
analysis (in combination with motion detection) and finally, 
smoke dynamics characteristics (also in combination with 
motion detection). 

Motion detection is commonly used as the first step of the 
existing smoke detection algorithms, followed by additional 
phases of detection used for elimination of false alarms. The 
aim of this evaluation is to show how the proposed classifier 
based on smoke dynamics compares to standard chromatic 
analysis that is used as detection phase in the majority of 
state of the art smoke detection systems.  

For motion detection we have chosen the approach 
proposed in [21]. The same motion detection algorithm has 

proven to be useful in smoke detection systems, as 
demonstrated in [22,23].  

First step in this motion detection method is to build a 
statistical background model, that is: 
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where In represents value of pixel I in the nth frame, ϕ is the 

 
Figure 6. Cumulative distribution function (cdf) with marked data average 
and +/- 6 standard deviations of the measured samples  

 

relative deviation threshold and n represents standard 

deviation for a given pixel in the nth frame. Standard 
deviation is calculated as follows: 
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where is a parameter defining responsiveness of the 

model to the changes in the background, and 

a

nI is the 

running average for a given pixel, calculated by 

nnn IaIaI )1(11     (14) 

Parameters and ϕ are variable parameters. In our case, 
we have chosen values =0.08 and ϕ=1.7, although any 
other reasonable combination of parameters is also suitable. 

a
a

For chromatic analysis phase we have chosen chromatic 
feature analysis model as described in [5]. It is based on the 
following three rules: i) the absolute difference of the 
maximum and minimum values among three components 
(RGB) should be less than a predetermined threshold , ii) the 
intensity I of a smoke pixel ranges between two given 
thresholds and iii) the value of B component is a slightly 
larger than two other components. The aforementioned rules 
were applied to the regions previously labeled as candidate 
regions by the same motion detection algorithm as before.  

Finally, a third approach used for the evaluation is based 
on the same motion detection followed by the proposed 
method for measurement of wildfire smoke dynamics, 
where candidate regions were tested to verify that their 
dynamics fall into the interval [−441.94 m2/s, 474.02 m2/s], 
as proposed in the previous section.  

Table 1 shows eight different quality measures [24] we 
use for the evaluation: measures for correct detections (cd), 
correct rejections (cr), false alarms (fa), missed detections 
(md), Matthews correlation coefficient (mcc), accuracy 
(acc), positive predictive value (ppv) and negative predictive 
value (npv). These measures are used to evaluate the 
performance of the algorithm with images as main 
evaluation units. The measures are defined as follows: 

 60 

[Downloaded from www.aece.ro on Friday, July 04, 2025 at 00:28:17 (UTC) by 172.69.214.214. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 1, 2015 

 
Figure 7. Representatives of the images used for the evaluation 

 
TABLE I. EVALUATION RESULTS 

 cd cr fa md mcc acc ppv npv 

Motion detection 0.9774 0.2304 0.4568 0.0226 0.2891 0.5340 0.4651 0.9371 

Motion detection & 
chromatic feature analysis 

0.9573 0.3793 0.3660 0.0427 0.3870 0.6164 0.5176 0.9274 

Motion detection & 
smoke dynamics analysis 

0.9192 0.6940 0.1773 0.0808 0.6104 0.7887 0.6856 0.9220 
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where TP denotes the number of true positive detections, FN 
represents the number of false negative detections, TN 
represents the number of true negative detections, and FP 
represents the number of false positive detections.  

Matthews correlation coefficient (mcc) is a balanced 
quality measure that works with classes of different sizes 
[25]. Accuracy (acc) is degree of closeness of measurements 
of a certain quantity to its actual value. Positive predictive 
value (ppv) and negative predictive value (npv) are the 
proportions of positive and negative results that are true 
positive and true negative results. For all these measures 
(mcc, acc, ppv, npv) value 1 represents best result. 

The results from the evaluation based on the testing image 
set are presented in Table 1. The motion detection phase is 
generally used as a filter to reduce the amount of data to be 
analyzed, where only the detected regions are taken into 
account in following phases. The results show that the 
motion detection method successfully detects smoke, 
however, this phase alone cannot eliminate a significant 
amount of false alarms. 

For the chromatic analysis phase following motion 
detection, the results show the performance of the detection 
has improved in terms of reduction in number of false 
alarms (fa measure reduces from 0.46 to 0.37) and an 
increase in the number of correct rejections (cr measure 
reduces from 0.23 to 0.38). Nevertheless, a small decrease in 
performance quality in the number of correct detections and 
missed detections is present as well. 

In the approach based on motion detection followed by 
smoke dynamics analysis, we achieved a significant 
improvement in terms of reduction in the number of false 
alarms. More specifically, false alarms value (fa) has 
decreased from 0.46 to less than 0.18. Simultaneously, the 
number of correct detections (cd) remained higher than 0.90. 
Even more importantly, the value of correct rejections 
measure has increased to more than 0.69.  

When observing other quality measures, the dynamic 
analysis approach shows same (npv) or better (mcc, acc, 
ppv) results when compared to chromatic analysis. This is 
especially evident for the mcc measure which is important in 
detection evaluation because it is a balanced measure which 
takes into account all detection cases (TP, TN, FP and FN). 
The results show a significant increase for the mcc measure 
when compared to chromatic analysis. More specifically, 
mcc measure for dynamic analysis has shown a significant 
increase to more than 0.60, what is significantly more than 
the increase to 0.38 shown for the chromatic analysis. 

V. CONCLUSION 

Wildfires are a constant threat to ecological systems, 
wildlife and human safety. Prompt reaction is one of the 
most important factors in minimizing the damages caused 
by wildfires. Since smoke is in most cases visible before the 
flame, wildfire detection methods are primarily focused on 
smoke detection. In order to provide a more effective means 
of smoke detection, automatic smoke detection systems 
have been developed, that can cover larger areas and serve 
as an aid for human observers. One of the main problems of 
these systems is the false alarms rate, where visually similar 
phenomena induce the system in triggering an alarm. 

The main aim of this work is the measurement of real 
dimensions of smoke plumes in the incipient phase of 
wildfires and the analysis of dynamic smoke behavior in 
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order to define the range of smoke region dynamics. This 
information could be used to improve the existing smoke 
detection methods in terms of eliminating potential false 
alarms based on dynamic behavior of the candidate regions. 

Using an offline smoke video database with appropriate 
location information we measured the physical size of the 
smoke regions based on computer vision and augmented 
reality techniques. We have observed the change in size of 
the regions over time for 79 smoke plumes from various 
locations. The size change distribution can be fitted with a t 
location-scale distribution. Based on the cumulative 
distribution function it is possible to define the interval of 
smoke dynamics that covers over 99 percent of smoke 
region spreading scenarios. This interval is then used to 
create a classifier with a purpose to reliably reject 
phenomena visually similar to smoke, based on the dynamic 
behavior of the candidate regions. 

Our aim was not to develop a new smoke detection 
algorithm, but to provide a classifier built on empirical data 
about smoke dynamics characteristics and a novel method 
for smoke dynamic measurements. These could be used to 
improve any existing smoke detection system by reducing 
the number of false alarms triggered by visually similar 
phenomena. Please note that the proposed classifier could be 
independently used in combination with any other method 
for measurement of wildfire smoke dynamics.    

We performed a detailed evaluation where we 
demonstrated the possible improvement in performance of 
smoke detection algorithms. We compared evaluation 
results of the improvement based on smoke dynamics 
analysis with one variant of chromatic feature analysis 
phase, which is a standard phase in smoke detection. From 
these results it is evident that smoke dynamics is a very 
important feature in smoke detection that could distinguish 
smoke from visually similar phenomena. Therefore, it could 
be used to improve smoke detection quality, especially when 
there is a lot of movement present in the scene.  
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