
Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

Hamming Weight Counters and Comparators
based on Embedded DSP Blocks for

Implementation in FPGA

Valery SKLYAROV, Iouliia SKLIAROVA
 University of Aveiro/IEETA, 3810-193, Portugal

skl@ua.pt, iouliia@ua.pt

1Abstract—This paper is dedicated to the design,

implementation and evaluation of fast FPGA-based circuits
that compute Hamming weights for binary vectors and
compare the results with fixed thresholds and variable bounds.
It is shown that digital signal processing (DSP) slices that are
widely available in contemporary FPGAs may be used
efficiently and they frequently provide the fastest and least
resource consuming solutions. A thorough analysis and
comparison of these with the best known alternatives both in
hardware and in software is presented. The results are
supported by numerous experiments in recent prototyping
boards. A fully synthesizable hardware description language
(VHDL) specification for one of the proposed core components
is given that is ready to be synthesized, implemented, tested
and compared in any FPGA that contains embedded DSP48E1
slices (or alternatively DSP48A1 slices from previous
generations). Finally, the results of comparisons are provided
that include discussions of designs in an ARM processor
combined with reconfigurable logic for very long vectors.

Index Terms—Hamming weight counter, Hamming weight
comparator, field-programmable gate array, digital signal
processing slice, hardware accelerator, on-chip architecture.

I. INTRODUCTION

The Hamming weight (HW) W(A) of a binary vector A =
{a0,…,aN-1} is the number of ones in the vector, which
ranges from 0 to N [1]. Certain applications require W(A) to
be computed or compared with a fixed threshold k or with
W(B), where B = {b0,…,bQ-1} is another binary vector (Q
and N can be either equal or different). Examples of such
applications are digital filtering [2-4], piecewise multivariate
functions [5], pattern matching/recognition [6,7], problem
solving in Boolean space [8], combinatorial search [9],
encoding for data compression [10], and stream/matrix
analyzers [11].

The HW frequently needs to be found in the area of
combinatorial search for solving such problems as covering
binary matrices [8], Boolean satisfiability [9,12], and graph
coloring [13]. The relevant instructions are now embedded
to many processing cores. For instance, POPCNT
(population count) [14] and VCNT (Vector Count Set Bits)
[15] are currently available in Intel and ARM products.
Operations (like POPCNT and VCNT) are used very
intensively in numerous applications, including those where
they are applied to very large data sets (see, for example,
[16]). Optimized designs for HW counters targeted to

general-purpose processors are proposed (e.g. [17]) and
broadly discussed, with the main objective being to provide
support for significant acceleration.

This research was supported by National Funds through FCT -

Foundation for Science and Technology, in the context of the project PEst-
OE/EEI/UI0127/2014.

Many electronic, environmental, medical, and biological
applications need to process data that is produced by
sensors, and measure external parameters within given
upper and lower bounds [11]. In the simplest case there are
two thresholds: one for an upper bound and another for a
lower bound. Monitoring thermal radiation from volcanic
products [18] and digital filtering [4] are examples of such
measurements. In more complicated cases, there are several
bounds that permit some events to be predicted with higher
or lower probability. Dependently on other factors (e.g.
weather conditions) the bounds may be variable.

It is known that broad parallelism makes significant
acceleration possible for a number of practical applications.
We will briefly describe one of them. Combinatorial search
algorithms (e.g. described in [8,9]) frequently require
executing operations over binary and ternary matrices, such
as finding a row/column with the minimum/maximum HW.
Application examples are solving a matrix covering problem
[8] and the Boolean satisfiability algorithms [9]. One of the
fastest methods is to unroll the matrix and obtain the
solution in a combinational circuit that finds HWs for all the
unrolled rows/columns and then computes the
maximum/minimum value with the aid of the circuits [19].
It should be underlined that the desired HWs can be found in
a combinational circuit with just a propagation delay
through the logical gates that are used. This is, indeed, very
fast. The only problem is that such unrolling cannot be
implemented in widely available processing cores without
involving sequential computations. However, FPGAs can
offer a very elegant solution because the customization that
is supported allows the design to be directly mapped to
hardware. The size of the matrices can be very large, even
for low-cost FPGAs such as the Xilinx Artix-7 that is
available on the Digilent Nexys-4 prototyping board [20].
The most important advantages of reconfigurable systems
are the inherent configurability and relatively cheap
development cost. Recent field-configurable micro-chips
incorporate multi-core processors and reconfigurable logic
appended with a number of frequently used devices such as
digital signal processing (DSP) slices and memories. FPGAs
still operate at lower clock frequencies than general-purpose
computers and application-specific integrated circuits. The
cost of the most advanced devices is high. Cheaper
microchips operate at clock frequencies that are lower than

 63

Digital Object Identifier 10.4316/AECE.2014.02011

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

those in inexpensive computers. One of the most important
applications of FPGAs is improving the performance of
existing systems. To achieve acceleration with devices that
are generally slower, parallelism needs to be applied
extensively.

 The majority of contemporary FPGAs contain embedded
DSP slices (ex. DSP48E1 slice for Xilinx FPGAs [21]) and
they can be employed to implement arithmetical and logical
operations. The number of such slices is large. For example,
even in the low-cost FPGA Artix-7 [20] there are 240
embedded DSP48E1 slices and in the most advanced
FPGAs from the Xilinx 7 series there are more than 3500
such slices. We will show that HW counters and
comparators can be built very efficiently on DSPs and this is
achievable without the use of general-purpose logical
resources. The throughput is high, the cost is reasonable,
and it will be demonstrated in the last section that FPGA-
based circuits may significantly outperform processor-based
implementations. In addition, numerous operations can be
executed in parallel. In subsequent sections we will prove
that HW counters and comparators on embedded DSP slices
are better than known competitors and can be recommended
for highly parallel computational systems.

II. RELATED WORK

The state-of-the-art for hardware implementations of HW
counters and comparators was analyzed exhaustively in
[1,10,11,22,23]. The results were presented in the form of
charts that compare the cost (i.e. the number of gates) and
the latency (i.e. the number of gate levels) for five methods
[1], [24], [2,25], [22], and [11]. The basic ideas of these
methods are summarized below:
1. Parallel counters from [1] are tree-based circuits that are

built from full-adders that compute the HW of 3-bit
binary sub-vectors (two 1-bit operands and a carry) of
the given vector. The 2-bit results are further added and
propagated through the tree levels until the final HW is
produced. Our comparison has shown that this solution
is one of the best.

2. The designs from [24] are based on sorting networks,
which have known limitations [11]; in particular, as the
number of source data items grows, the resources
occupied increase dramatically.

3. Gate-based circuits from [2, 25] are, in fact, bubble-sort
networks that are resource consuming [26] and also
have long propagation delays. Thus, solutions [24] are
generally better when the fastest-known even-odd
merge and bitonic merge networks are used [22,26].

4. Counting networks [22] eliminate propagation delays in

carry chains in [1] and give very good results,
especially for pipelined implementations. However,
they occupy many general-purpose logical slices, which
are very extensively employed for the majority of
practical applications. We show below that similar
operations can be executed without such slices. Instead,
DSP slices are employed which are frequently unused,
even though they are available in FPGAs.

5. LUT-based solutions [11] are very economical but they
have the same drawbacks as the counting networks.

We suggest novel designs for HW counters and
comparators here that provide better performance and
consume fewer resources than the best known alternatives
[1,2,11,22-25]. The proposed designs also outperform
processor-based implementations, which can be verified on
benchmarks that are given in [16]. A comparison with
software products involving operations like POPCNT [14]
and VCNT [15] also demonstrates that the proposed
solutions are faster.

III. EMBEDDED DSP-BASED HAMMING WEIGHT COUNTERS

AND COMPARATORS

The main idea of the method proposed here is the use of a
DSP arithmetic and logic unit (ALU) in a way that permits a
tree of adders to be built in sections of the same ALU. The
sum of two n-bit operands cannot contain more than n+1
bits so the size of each segment is known in advance. Thus
for a 16-bit binary vector that is initially represented as eight
2-bit sub-vectors (i.e. 8 bits of the first DSP operand and 8
bits of the second DSP operand), the ALU can be segmented
as shown in Fig. 1. Initially, the two bits in each of the eight
pairs are added. The result of each sum is a maximum of 2
bits, with possible values 00 (i.e. 0+0), 01 (i.e. 0+1 or 1+0),
and 10 (i.e. 1+1). The addition is done in eight 2-bit ALU
segments, as shown in Fig.1 and Fig. 2a.

The eight 2-bit sums that are produced are further
processed as four 4-bit sub-vectors (see Fig. 1). Each sub-
vector represents two 2-bit operands that are added to
produce a result that is a maximum of 3 bits. These are the
inputs of four 3-bit segments of the same ALU (see Fig. 1
and Fig. 2b). In the next stage, two 4-bit segments are
allocated (see Fig. 1 and 2c). The last 5-bit segment (see
Fig. 1 and 2d) produces the final HW. The outputs of a 48-
bit adder [21] for any stage (1-4 in Fig. 1) are considered to
be inputs for the next stage of the same DSP, specifying the
number of bits that are needed for operands and results at
each stage. Similar circuits can also be built in less advanced
FPGAs with embedded DSP48A1 slices (e.g. Xilinx
Spartan-6 FPGAs).

2‐bit ALU segments

16‐bit input vector

Threshold k
two's

complement

The result of comparison

5‐bit ALU
segmentThe first stage (additions)

Eight 2‐bit sums each with
the maximum value 102=210

The second stage (additions)

Eight 2‐bit sums each with
the maximum value 102=210

Four 3‐bit sums each with
the maximum value 1002=410

Four 3‐bit sums each with
the maximum value 1002=410

The third stage

4‐bit sums (maximum
value: 10002=810)

The 4th stage

5‐bit final HW

4‐bit sums (maximum
value: 10002=810)

3‐bit ALU segments
4‐bit ALU segments

One DSP48E1 slice

Figure 1. Computing the Hamming weight and the result of comparison with a fixed threshold for a 16-bit binary vector

 64

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

2‐bit ALU
segment

Tw
o
 1
‐b
it

o
p
er
an
d
s

2
‐b
it

re
su
lt

0
3‐bit ALU
segment

0
Tw

o
 2
‐b
it

o
p
er
an
d
s

3
‐b
it

re
su
lt

0 4‐bit ALU
segment

0

Tw
o
 3
‐b
it

o
p
er
an
d
s

4
‐b
it

re
su
lt

0

0
5‐bit ALU
segment

0

Tw
o
 4
‐b
it

o
p
er
an
d
s

5
‐b
it

fi
n
al
 r
es
u
lt

0

0

a)

b)

c)

d)

Figure 2. DSP ALU segments for implementation of tree-based additions at
different stages in Fig. 1

A comparator of the HWs with a fixed threshold k can
easily be built using the same DSP slice (see Fig. 1). Much
like [1], the result of comparison can be obtained as HW-k,
or as HW plus the 2's-complement of the threshold k on the
appropriate DSP output (see Fig. 1), or if the output is
occupied, in the DSP carry out line. A final comparator can
also be built on an additional look-up-table (LUT) [22],
enabling multiple and variable bounds to be supported.

We found that the method described permits quite
complex HW counters/comparators to be implemented with
moderate resources. For example, the circuit in Fig. 1
requires just one DSP48E1 slice, which can be verified
using the following synthesizable VHDL code.

entity Test_HW16 is
 port (Sw : in std_logic_vector (15 downto 0);-- 16-bit vector
 -- led outputs keep the HW; led_comp gives the result of comparison with k
 led : out std_logic_vector (14 downto 0);
 led_comp : out std_logic);
end Test_HW16;

architecture Behavioral of Test_HW16 is
 -- A,B are DSP48E1 operands; Y keeps the result of comparison and HW
 signal A, B, Y : std_logic_vector(47 downto 0);
 signal threshold : std_logic_vector(4 downto 0); -- fixed threshold
begin

threshold <= not "01010" + 1; -- the threshold two's complement

process(Sw, Y, threshold)
begin

 A <= (others => '0'); -- the first 48-bit DSP operand
 B <= (others => '0'); -- the second 48-bit DSP operand

 for i in 7 downto 0 loop -- the first stage in Fig. 1
 A(2*i) <= Sw(i); B(2*i) <= Sw(i+8);
 end loop;

 for i in 3 downto 0 loop -- the second stage in Fig. 1
 A(16+3*i+1 downto 16+3*i) <= Y(2*i+1 downto 2*i);
 B(16+3*i+1 downto 16+3*i) <= Y(2*i+1+8 downto 2*i+8);
 end loop;

 for i in 1 downto 0 loop -- the third stage in Fig. 1
 A(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2 downto 16+3*i);
 B(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2+6 downto
 16+3*i+6);
 end loop;

 -- the fourth stage in Fig. 1
 A(39 downto 36) <= Y(31 downto 28);
 B(39 downto 36) <= Y(35 downto 32);
 A(45 downto 41) <= Y(40 downto 36); -- comparison
 B(45 downto 41) <= threshold;
end process;

-- the resulting Hamming weight:
led <= (14 downto 5 => '0') & Y(40 downto 36);
 -- the result of the Hamming weight comparison:
led_comp <= Y(46); -- see also Fig. 1

DSP: entity work.DSP48E1_HW16 -- link with the DSP slice
 port map (A, B, "0000", Y); --"0000" is the addition mode

end Behavioral;

A template for the DSP48E1 slice [21] that is available in
the Xilinx design environment has been customized to block
the multiplication operation and to assign the latency to 0.
Two operands are used as ALU inputs applying
concatenation operation for one operand. The mode of the
ALU is set to addition [21]. Since latency is 0, the clock
signal is not used.

VHDL code for N=32 is built based on the Test_HW16
entity and it has the structure shown in Fig. 3. Two
Test_HW16 components compute the HW for the first and for
the second 16-bit sub-vectors of the 32-bit vector. Since HW
comparators are no longer needed for the sub-vectors, a part
of each DSP slice becomes vacant (see the unused section in
Fig. 3) for input operands A41,…,A47,B41,…,B47. Thus, the
two Test_HW16 entities resources that are released may now
be used for:
1. Adding HWs of the two 16-bit sub-vectors to get the

HW of the entire 32-bit vector. This is done in the first
Test_HW16 component (see the upper block in Fig. 3) in
which a 6-bit sum of two 5-bit HWs is produced.

2. Computing the result of comparing the 32-bit HW with
a fixed threshold k (see the second Test_HW16
component at the bottom of Fig. 3).

Similarly, HW counters/comparators can be built for
larger values of N. Let us discuss now how multiple and
variable bounds can be supported. Since a LUT(n,1) with n
inputs and 1 output can implement any Boolean function of
n variables, various number of bounds for 0N2n-1 may be
handled. If N is greater (or even significantly greater) than
2n-1, the LUT(n,1) circuit can be built using the method [22]
(see the circuits in Fig. 2 in [22]). Of course, embedded
memory blocks may also be used. For the majority of
contemporary FPGAs, such blocks with 9 ≤ n ≤ 15 are
available. Thus, the maximum value of N can be increased
up to 215-1, which enables requirements for practical cases
to be satisfied. Since all memories (both distributed or LUT-
based and embedded) are run-time configurable, the circuits

 65

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

described above are not threshold-dependent (i.e. they may
be dynamically customized for any value of the threshold k
< 2n-1 or for any range 0N2n-1 for fixed or variable
bounds).

HW counter
for N=16

4
1
×2

 in
p
u
ts

fo
r
H
W

4
1
 o
u
tp
u
ts

fo
r
re
su
lt
s

HW counter
for N=16

4
1×
2
 in
p
u
ts

fo
r
H
W

4
1
o
u
tp
u
ts

fo
r
re
su
lt
s

Unused
section

6‐bit
HW for
N=32

Threshold k The result of
comparison

Unused
section

5‐bit
HW for
N=16

Figure 3. The structure of HW counter/comparator for N=32

IV. IMPLEMENTATION, EXPERIMENTS, AND COMPARISONS

This section presents a thorough evaluation and
comparison of the proposed circuits that have been
synthesized and implemented in the Xilinx ISE 14.7/Vivado
2014.1 from specifications in VHDL and tested in the
Nexys-4 prototyping board with the recent Artix-7 FPGA
xc7a100t-3csg324 [20] from the Xilinx 7 series. Some of the
experiments were done in the ZedBoard [27] and ZyBo [28]
with Zynq all programmable systems-on-chip (APSoCs).

The size N of input vectors was chosen from 16 to 2048
which is appropriate for the majority of practical cases.
Values of N larger than 2048 are indeed exceptional, but
they can also be handled because the most advanced devices
contain a significantly greater number of DSP slices than the
low-cost FPGAs that were used. Even in the chosen FPGAs,
HW for N=16384 can be computed if we combine DSP and
general-purpose logical slices. The following three methods
were used to supply initial vectors: 1) from a random
number generator implemented in the same FPGA; 2) from
an embedded processing system (PS), such as that available
in the Xilinx APSoCs; 3) from the keyboard as we will
explain later in this section.

Table 1 below presents the results of synthesis,
implementation and test of HW counters/comparators in the
Nexys-4 board, where N is the size of vectors in bits, NDSP is
the number of DSP slices occupied, and Dmax is the
maximum combinational path delay in ns. Ns is the number
of logical slices used (Ns=0 for all circuits in Table 1).

 TABLE 1. THE RESULTS OF EXPERIMENTS (ONLY DSP SLICES WERE USED)

N 16 32 64 128 256 512 1024 2048
NDSP 1 2 4 9 17 34 68 136
Dmax 2.1 3.9 5.7 6.5 7.5 9.3 10.9 14.2

Table 2 presents results similar to Table 1 but DSP slices
were used only up to N=64; then a set of adders built from
FPGA logical slices perform the additions of HWs for all
the sub-vectors with N=64. For example, to find the HW for
N=512, the HWs of 512/64 = 8 sub-vectors are added. Thus,
depending on the requirements and the availability of FPGA
resources, different methods may be chosen.

TABLE 2. THE RESULTS OF EXPERIMENTS (DSP AND LOGICAL SLICES WERE

USED)
N 128 256 512 1024 2048
NDSP 8 16 32 64 128
Ns 2 6 15 33 67
Dmax 7.0 8.6 9.8 10.9 12.6

We found that DSP-based implementations are generally
faster. Only in one case for N=2048 the circuit from Table 1
is slower, which can be explained by different routing
overheads.

The results of [22] demonstrate that the parallel counters,
counting networks and circuits based on mapping [11] to
LUTs are the fastest and the least resource consuming
compared to other known methods (particularly [2,24,25]).
Fig. 4 shows the maximum combinational path delays for
the proposed and the best known designs. Only circuits for
up to 1024-bit vectors are compared. This is because we
could not find any published result for implementations of
HW counters and comparators in FPGAs with N>1024.

Maximum combinational path delay in ns

Figure 4. Comparison of the maximum combinational path delays from the
results of experiments in the Nexys-4 board

Fig. 5 shows the values of NDSP and Ns. Note that the
numbers of DSPs and logical slices are not given for
comparison with each other. The main objective is to
demonstrate how effectively potential alternative FPGA
resources may be used.

0

100

200

300

400

500

600

N=16 N=32 N=64 N=128 N=256 N=512 N=1024

The number of occupied FPGA slices and DSP slices

Number of
DSP slices

N
u
m
b
er
 o
f
lo
gi
ca
l s
lic
es

Figure 5. The occupied resources from the experiments in Nexys-4 board

It is clear from the results of experiments that the
proposed solutions consume reasonable resources (see Fig.

 66

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 67

5) and are faster (see Fig. 4) than the best known
alternatives. From Tables 1 and 2 we can see that effective
throughput may exceed 50 million 2048-bit vectors per
second, which is significantly better that the results of
benchmarks for software running in general purpose
computers [16].

The HW counters and comparators described can be used
as hardware accelerators in APSoCs such as the Zynq-7000.
Note that the speed that is achievable in the proposed
circuits is limited by the communication mechanisms
available with a host computer/processor (such as the ARM
Cortex-A9 in Zynq) that may use the results. A detailed
research report on communication overheads in APSoCs can
be found in [29].

One example of a potential application is shown in Fig. 6.
The PS (e.g. the ARM Cortex-A9 in Zynq microchips)
prepares initial data and transfers them to the external DDR
memory, which is also accessible from the programmable
logic (PL) located on the same microchip.

PS:
1. Generation and
processing binary

vectors

3. Using the results
of the accelerator

DDR
memory:

PL (accelerator):
DSP‐based HW
counting and

comparison with a
fixed threshold or
with variable

bounds
2. Transferring the
vectors to the

external memory

A set of the
generated
vectors

Using other available interfaces

On‐chip resources

Figure 6. Potential application for an on-chip system

The PL that implements the proposed DSP-based HW
counter/comparator, reads a vector (or a set of vectors) from
the DDR and produces the result, which is returned to the
PS. Interaction with the on-chip DDR controller is provided
through Advanced eXtensible Interface (AXI), which is very
fast.

Experiments just in the PL permit, in particular, hardware
accelerators to be preliminary evaluated and the circuits to
be tested before their integration in more complicated
systems, including software and hardware components. The
technique used is verified in a project that includes a VGA
controller, a keypad controller and the proposed DSP-based
Hamming weight counter. The Digilent keypad [30] was
used to enter hexadecimal numbers that are shifted in long
(2048 hexadecimal digits in the example) binary vector as
follows: digits <= digits(1 to 2047) & Decode, where Decode is a

digit from the keypad. Thus, each element of the signal digits
is a hexadecimal number taken from the keypad. Even in a
simple VGA monitor with resolution 800×600 pixels, more
than 5000 hexadecimal numbers may be shown, allowing
the functionality of Hamming weight counters for binary
vectors with more than 20 thousand bits to be evaluated. The
following VHDL process is used to extract individual bits
from the vector that was entered:

process(set2048digits)
begin
 for i in 2047 downto 0 loop
 in2048bit(i) <= set2048digits(i)(0); -- bits 0 are extracted
 end loop;
end process;

where the in2048bit signal is declared as: signal in2048bit :
std_logic_vector(2047 downto 0); and set2048digits(i)(0) is the
bit with index zero (0) in the hexadecimal number with
index i. Similarly, other bits (i.e. 1, 2, 3) can be extracted
and the resulting long vectors further processed. In this case
the process above is changed as follows:

process(set2048digits)
begin -- the vector in8192bits is std_logic_vector (8191 downto 0);
 for i in 2047 downto 0 loop
 in8192bits(i) <= set2048digits(i)(0);
 in8192bits(i+2048) <= set2048digits(i)(1);

in8192bits(i+4096) <= set2048digits(i)(2);
in8192bits(i+6144) <= set2048digits(i)(3);

 end loop;
end process;

Thus, long binary vectors can be processed without the
need for a very large number of external pins.

Fig. 7 shows how the circuit is used for visual tests. Data
are typed from a mini keypad [30]. Different bits of the
entered hexadecimal numbers are taken to form a binary
vector (see the last process above). The resulting HW is
displayed and can be evaluated preliminarily. Physical
delays in the circuits may easily be found and displayed.
The designed and tested circuit permits HW for N=8192 to
be computed in the ZyBo (microchip Zynq xc7010-1clg400)
[28] in about 1 microsecond.

Figure 8 demonstrates the utilization of resources from
the post implementation report (Vivado 2014.1). As you can
see, 71% of LUTs were used because at the first stages (see
Fig. 1) 32-bit HW counters were constructed from LUTs
using the circuits from [11], and DSPs computed the final
HW from N/32 products of the LUTs.

Hexadecimal value

Figure 7. Counting the HW in pure combinational DSP-based circuit implemented and tested in the PL section of Zynq 7010 microchip (ZyBo [28])

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

This approach permits the size of vectors to be increased
further. Finally the tested projects enable HWs to be found
in fully combinational circuits implemented in the PL for
N=8192 in ZyBo and N=16384 in ZedBoard (Xilinx APSoC
xc7z020clg484-1).

Figure 8. Utilization of resources from the Vivado 2014.1 report (BRAM –
block RAM used for VGA controller; I/O – inputs/outputs, BUFG – Xilinx
buffers, MMCM – mixed-mode clock manager, FF – flip flops)

We compared the results in hardware with the results in

software [31] running in the PS of the same APSoC for
ZyBo. The clock frequency of the PS is 670 MHz. For
N=8192, the HW is found in software in about 14 thousands
processor cycles for the best program from [31]. Thus, the
hardware implementation described is faster by a factor of
about 20. Communication overheads have been then
measured for one (of the 4 available) high-performance AXI
port. We found finally that hardware is faster by a factor of
about 7, including the communication overheads. The
comparisons were done using timer functions from [32].

V. CONCLUSION

High-performance Hamming weight counters and
comparators are frequently required in both software and
hardware implementations. The paper suggests a novel
technique that allows very fast circuits to be developed
based on embedded digital signal processing slices that are
widely available in contemporary FPGAs. The results of
experiments clearly demonstrate that the proposed solutions
require very reasonable resources and are faster than the best
known alternatives.

ACKNOWLEDGMENT

The authors would like to thank Ivor Horton for his very
useful comments and suggestions.

REFERENCES
[1] B. Parhami, “Efficient Hamming weight comparators for binary

vectors based on accumulative and up/down parallel counters,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 56, no.
2, 2009, pp. 167-171.

[2] V. Pedroni, “Compact Hamming-comparator-based rank order filter
for digital VLSI and FPGA implementations,” in Proc. IEEE Int.
Symp. on Circuits and Systems, vol. 2, Canada, 2004, pp. 585-588.

[3] K. Chen, “Bit-serial realizations of a class of nonlinear filters based
on positive Boolean functions,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 6, 1989, pp. 785–794.

[4] P.D. Wendt, E.J. Coyle, and N.C. Gallagher, “Stack filters,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 34, no.
4, 1986, pp. 898-908.

[5] M. Storace and T. Poggi, “Digital architectures realizing piecewise-
linear multivariate functions: two FPGA implementations,” Int.
Journal of Circuit Theory and Applications, vol. 39, no. 1, 2011, pp.
1-15.

[6] K. Asada, S. Kumatsu, and M. Ikeda, “Associative memory with
minimum Hamming distance detector and its application to bus data
encoding,” in Proc. IEEE Asia-Pacific Application-Specific Integrated
Circuits Conf., Korea, 1999, pp. 16-18.

[7] C. Barral, J.S. Coron, and D. Naccache, “Externalized fingerprint
matching,” in Proc. Int. Conf. on Biometric Authentication, Hong
Kong, 2004, pp. 309–315.

[8] A. Zakrevskij, Y. Pottosin, and L. Cheremisiniva, Combinatorial
Algorithms of Discrete Mathematics, TUT Press, 2008.

[9] I. Skliarova and A.B. Ferrari, “A Software/reconfigurable hardware
SAT solver,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 4, 2004, pp. 408-419.

[10] D.E. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, Addison-Wesley, 2011.

[11] V. Sklyarov and I. Skliarova, “Digital Hamming weight and distance
analyzers for binary vectors and matrices,” Int. Journal of Innovative
Computing, Information and Control, vol. 9, no. 12, 2013, pp. 4825-
4849.

[12] J.D. Davis, Z. Tan, F. Yu, and L. Zhang, “A practical reconfigurable
hardware accelerator for Boolean satisfiability solvers,” in Proc. 45th
ACM/IEEE Design Automation Conf., USA, 2008, pp. 780-785.

[13] D. Cullina, A.A. Kulkarni, and N. Kiyavash, “A coloring approach to
constructing deletion correcting codes from constant weight
subgraphs,” in Proc. of IEEE Int. Symp. on Information Theory, UK,
2012.

[14] Intel, Corp., Intel® SSE4 Programming Reference, 2007. [Online].
Available: http://home.ustc.edu.cn/~shengjie/REFERENCE/
sse4_instruction_set.pdf

[15] ARM, Ltd., NEON™ Version: 1.0 Programmer’s Guide, 2013.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.den0018a/index.html

[16] Dalke Scientific Software, LLC, Faster population counts, 2011.
[Online]. Available: http://dalkescientific.com/writings/diary/archive/
2011/11/02/faster_popcount_update.html

[17] R. Ramanarayanan, S. Mathew, V. Erraguntla, R. Krishnamurthy, and
S. Gueron, “A 2.1GHz 6.5mW 64-bit Unified PopCount/BitScan
Datapath Unit for 65nm,” in Proc. 21st Int. Conf. on VLSI Design,
India, 2008.

[18] L. Field, T. Barnie, J. Blundy, R.A. Brooker, D. Keir, E. Lewi, and K.
Saunders, “Integrated field, satellite and petrological observations of
the November 2010 eruption of Erta Ale,” Bulletin of Volcanology,
vol. 74, no. 10, 2012, pp. 2251–2271.

[19] V. Sklyarov and I. Skliarova, “Fast Regular Circuits for Network-
based Parallel Data Processing,” Advances in Electrical and
Computer Engineering, vol. 13, no. 4, 2013, pp. 47-50.

[20] Digilent, Inc., Nexys4™ FPGA board reference manual, 2013.
[Online]. Available: http://www.digilentinc.com/Data/Products/
NEXYS4/Nexys4_RM_VB1_Final_3.pdf

[21] Xilinx, Inc., 7 Series DSP48E1 Slice User Guide, 2013. [Online].
Available: http://www.xilinx.com/support/documentation/
user_guides/ug479_7Series_DSP48E1.pdf

[22] V. Sklyarov and I. Skliarova, “Design and implementation of
counting networks,” Computing, 2013. [Online]. Available: doi:
10.1007/s00607-013-0360-y

[23] V. Sklyarov and I. Skliarova, Parallel Processing in FPGA-based
Digital Circuits and Systems, TUT Press, 2013.

[24] S.J. Piestrak, “Efficient Hamming weight comparators of binary
vectors,” Electronic Letters, vol. 43, no. 11, 2007, pp. 611–612.

[25] V.A. Pedroni, “Compact fixed-threshold and two-vector Hamming
comparators,” Electronic Letters, vol. 39, no. 24, 2003, pp. 1705–
1706.

[26] R. Mueller, J. Teubner, and G. Alonso, “Sorting Networks on
FPGAs,” The Int. Journal on Very Large Data Bases, vol. 21, no. 1,
2012, pp. 1-23.

[27] Avnet, Inc., ZedBoard (Zynq™ Evaluation and Development)
Hardware User’s Guide, 2013. [Online]. Available:
http://www.zedboard.org/sites/default/files/documentations/ZedBoard
_HW_UG_v1_9.pdf

[28] Digilent, Inc., ZyBo Reference Manual, 2014. [Online]. Available:
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf

[29] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and Performance
Exploration of Accelerator Coherency Port Using Xilinx ZYNQ,” in
Proc. 10th FPGAworld Conf., Copenhagen and Stockholm, 2013.

[30] Digilent, Inc., PmodKYPD™ Reference Manual, 2011. [Online].
Available:
http://digilentinc.com/Products/Detail.cfm?NavPath=2,401,940&Prod
=PMODKYPD

[31] S.E. Anderson, Counting bits set, in parallel. [Online]. Available:
http://graphics.stanford.edu/~seander/bithacks.html

[32] Xilinx, Inc., OS and Libraries Document Collection, 2010. [Online].
Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx12_3/oslib_rm.pdf

 68

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:08:29 (UTC) by 44.202.183.118. Redistribution subject to AECE license or copyright.]

