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1Abstract—This paper is dedicated to the design, 

implementation and evaluation of fast FPGA-based circuits 
that compute Hamming weights for binary vectors and 
compare the results with fixed thresholds and variable bounds. 
It is shown that digital signal processing (DSP) slices that are 
widely available in contemporary FPGAs may be used 
efficiently and they frequently provide the fastest and least 
resource consuming solutions. A thorough analysis and 
comparison of these with the best known alternatives both in 
hardware and in software is presented. The results are 
supported by numerous experiments in recent prototyping 
boards. A fully synthesizable hardware description language 
(VHDL) specification for one of the proposed core components 
is given that is ready to be synthesized, implemented, tested 
and compared in any FPGA that contains embedded DSP48E1 
slices (or alternatively DSP48A1 slices from previous 
generations). Finally, the results of comparisons are provided 
that include discussions of designs in an ARM processor 
combined with reconfigurable logic for very long vectors. 
 

Index Terms—Hamming weight counter, Hamming weight 
comparator, field-programmable gate array, digital signal 
processing slice, hardware accelerator, on-chip architecture. 

I. INTRODUCTION 

The Hamming weight (HW) W(A) of a binary vector A = 
{a0,…,aN-1} is the number of ones in the vector, which 
ranges from 0 to N [1]. Certain applications require W(A) to 
be computed or compared with a fixed threshold k or with 
W(B), where B = {b0,…,bQ-1} is another binary vector (Q 
and N can be either equal or different). Examples of such 
applications are digital filtering [2-4], piecewise multivariate 
functions [5], pattern matching/recognition [6,7], problem 
solving in Boolean space [8], combinatorial search [9], 
encoding for data compression [10], and stream/matrix 
analyzers [11]. 

The HW frequently needs to be found in the area of 
combinatorial search for solving such problems as covering 
binary matrices [8], Boolean satisfiability [9,12], and graph 
coloring [13]. The relevant instructions are now embedded 
to many processing cores. For instance, POPCNT 
(population count) [14] and VCNT (Vector Count Set Bits) 
[15] are currently available in Intel and ARM products. 
Operations (like POPCNT and VCNT) are used very 
intensively in numerous applications, including those where 
they are applied to very large data sets (see, for example, 
[16]). Optimized designs for HW counters targeted to 

general-purpose processors are proposed (e.g. [17]) and 
broadly discussed, with the main objective being to provide 
support for significant acceleration. 
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Many electronic, environmental, medical, and biological 
applications need to process data that is produced by 
sensors, and measure external parameters within given 
upper and lower bounds [11]. In the simplest case there are 
two thresholds: one for an upper bound and another for a 
lower bound. Monitoring thermal radiation from volcanic 
products [18] and digital filtering [4] are examples of such 
measurements. In more complicated cases, there are several 
bounds that permit some events to be predicted with higher 
or lower probability. Dependently on other factors (e.g. 
weather conditions) the bounds may be variable. 

It is known that broad parallelism makes significant 
acceleration possible for a number of practical applications. 
We will briefly describe one of them. Combinatorial search 
algorithms (e.g. described in [8,9]) frequently require 
executing operations over binary and ternary matrices, such 
as finding a row/column with the minimum/maximum HW. 
Application examples are solving a matrix covering problem 
[8] and the Boolean satisfiability algorithms [9]. One of the 
fastest methods is to unroll the matrix and obtain the 
solution in a combinational circuit that finds HWs for all the 
unrolled rows/columns and then computes the 
maximum/minimum value with the aid of the circuits [19]. 
It should be underlined that the desired HWs can be found in 
a combinational circuit with just a propagation delay 
through the logical gates that are used. This is, indeed, very 
fast. The only problem is that such unrolling cannot be 
implemented in widely available processing cores without 
involving sequential computations. However, FPGAs can 
offer a very elegant solution because the customization that 
is supported allows the design to be directly mapped to 
hardware. The size of the matrices can be very large, even 
for low-cost FPGAs such as the Xilinx Artix-7 that is 
available on the Digilent Nexys-4 prototyping board [20]. 
The most important advantages of reconfigurable systems 
are the inherent configurability and relatively cheap 
development cost. Recent field-configurable micro-chips 
incorporate multi-core processors and reconfigurable logic 
appended with a number of frequently used devices such as 
digital signal processing (DSP) slices and memories. FPGAs 
still operate at lower clock frequencies than general-purpose 
computers and application-specific integrated circuits. The 
cost of the most advanced devices is high. Cheaper 
microchips operate at clock frequencies that are lower than 
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those in inexpensive computers. One of the most important 
applications of FPGAs is improving the performance of 
existing systems. To achieve acceleration with devices that 
are generally slower, parallelism needs to be applied 
extensively. 

 The majority of contemporary FPGAs contain embedded 
DSP slices (ex. DSP48E1 slice for Xilinx FPGAs [21]) and 
they can be employed to implement arithmetical and logical 
operations. The number of such slices is large. For example, 
even in the low-cost FPGA Artix-7 [20] there are 240 
embedded DSP48E1 slices and in the most advanced 
FPGAs from the Xilinx 7 series there are more than 3500 
such slices. We will show that HW counters and 
comparators can be built very efficiently on DSPs and this is 
achievable without the use of general-purpose logical 
resources. The throughput is high, the cost is reasonable, 
and it will be demonstrated in the last section that FPGA-
based circuits may significantly outperform processor-based 
implementations. In addition, numerous operations can be 
executed in parallel. In subsequent sections we will prove 
that HW counters and comparators on embedded DSP slices 
are better than known competitors and can be recommended 
for highly parallel computational systems. 

II. RELATED WORK 

The state-of-the-art for hardware implementations of HW 
counters and comparators was analyzed exhaustively in 
[1,10,11,22,23]. The results were presented in the form of 
charts that compare the cost (i.e. the number of gates) and 
the latency (i.e. the number of gate levels) for five methods 
[1], [24], [2,25], [22], and [11]. The basic ideas of these 
methods are summarized below:  
1. Parallel counters from [1] are tree-based circuits that are 

built from full-adders that compute the HW of 3-bit 
binary sub-vectors (two 1-bit operands and a carry) of 
the given vector. The 2-bit results are further added and 
propagated through the tree levels until the final HW is 
produced. Our comparison has shown that this solution 
is one of the best. 

2. The designs from [24] are based on sorting networks, 
which have known limitations [11]; in particular, as the 
number of source data items grows, the resources 
occupied increase dramatically. 

3. Gate-based circuits from [2, 25] are, in fact, bubble-sort 
networks that are resource consuming [26] and also 
have long propagation delays. Thus, solutions [24] are 
generally better when the fastest-known even-odd 
merge and bitonic merge networks are used [22,26]. 

4. Counting networks [22] eliminate propagation delays in 

carry chains in [1] and give very good results, 
especially for pipelined implementations. However, 
they occupy many general-purpose logical slices, which 
are very extensively employed for the majority of 
practical applications. We show below that similar 
operations can be executed without such slices. Instead, 
DSP slices are employed which are frequently unused, 
even though they are available in FPGAs. 

5. LUT-based solutions [11] are very economical but they 
have the same drawbacks as the counting networks. 

We suggest novel designs for HW counters and 
comparators here that provide better performance and 
consume fewer resources than the best known alternatives 
[1,2,11,22-25]. The proposed designs also outperform 
processor-based implementations, which can be verified on 
benchmarks that are given in [16]. A comparison with 
software products involving operations like POPCNT [14] 
and VCNT [15] also demonstrates that the proposed 
solutions are faster.  

III. EMBEDDED DSP-BASED HAMMING WEIGHT COUNTERS 

AND COMPARATORS 

The main idea of the method proposed here is the use of a 
DSP arithmetic and logic unit (ALU) in a way that permits a 
tree of adders to be built in sections of the same ALU. The 
sum of two n-bit operands cannot contain more than n+1 
bits so the size of each segment is known in advance. Thus 
for a 16-bit binary vector that is initially represented as eight 
2-bit sub-vectors (i.e. 8 bits of the first DSP operand and 8 
bits of the second DSP operand), the ALU can be segmented 
as shown in Fig. 1. Initially, the two bits in each of the eight 
pairs are added. The result of each sum is a maximum of 2 
bits, with possible values 00 (i.e. 0+0), 01 (i.e. 0+1 or 1+0), 
and 10 (i.e. 1+1). The addition is done in eight 2-bit ALU 
segments, as shown in Fig.1 and Fig. 2a. 

The eight 2-bit sums that are produced are further 
processed as four 4-bit sub-vectors (see Fig. 1). Each sub-
vector represents two 2-bit operands that are added to 
produce a result that is a maximum of 3 bits. These are the 
inputs of four 3-bit segments of the same ALU (see Fig. 1 
and Fig. 2b). In the next stage, two 4-bit segments are 
allocated (see Fig. 1 and 2c). The last 5-bit segment (see 
Fig. 1 and 2d) produces the final HW. The outputs of a 48-
bit adder [21] for any stage (1-4 in Fig. 1) are considered to 
be inputs for the next stage of the same DSP, specifying the 
number of bits that are needed for operands and results at 
each stage. Similar circuits can also be built in less advanced 
FPGAs with embedded DSP48A1 slices (e.g. Xilinx 
Spartan-6 FPGAs). 

2‐bit ALU segments

16‐bit input vector

Threshold k 
two's 

complement

The result of comparison

5‐bit ALU 
segmentThe first stage (additions)

Eight 2‐bit sums each with 
the maximum value 102=210

The second stage (additions)

Eight 2‐bit sums each with 
the maximum value 102=210

Four 3‐bit sums each with 
the maximum value 1002=410

Four 3‐bit sums each with 
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The third stage
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The 4th stage
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4‐bit ALU segments

One DSP48E1 slice

Figure 1. Computing the Hamming weight and the result of comparison with a fixed threshold for a 16-bit binary vector
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Figure 2. DSP ALU segments for implementation of tree-based additions at 
different stages in Fig. 1 

 

A comparator of the HWs with a fixed threshold k can 
easily be built using the same DSP slice (see Fig. 1). Much 
like [1], the result of comparison can be obtained as HW-k, 
or as HW plus the 2's-complement of the threshold k on the 
appropriate DSP output (see Fig. 1), or if the output is 
occupied, in the DSP carry out line. A final comparator can 
also be built on an additional look-up-table (LUT) [22], 
enabling multiple and variable bounds to be supported. 

We found that the method described permits quite 
complex HW counters/comparators to be implemented with 
moderate resources. For example, the circuit in Fig. 1 
requires just one DSP48E1 slice, which can be verified 
using the following synthesizable VHDL code. 

entity Test_HW16 is   
    port ( Sw : in  std_logic_vector (15 downto 0);-- 16-bit vector 
    -- led outputs keep the HW; led_comp gives the result of comparison with k 
              led  : out  std_logic_vector (14 downto 0);    
              led_comp : out std_logic);    
end Test_HW16;     

architecture Behavioral of Test_HW16 is 
   -- A,B are DSP48E1 operands; Y keeps the result of comparison and HW 
   signal A, B, Y : std_logic_vector(47 downto 0);  
   signal threshold : std_logic_vector(4 downto 0); -- fixed threshold 
begin 

threshold <= not "01010" + 1;    -- the threshold two's complement 

process(Sw, Y, threshold) 
begin 

   A <= (others => '0'); -- the first 48-bit DSP operand 
   B <= (others => '0'); -- the second 48-bit DSP operand 

   for i in 7 downto 0 loop   -- the first stage in Fig. 1 
 A(2*i) <= Sw(i); B(2*i) <= Sw(i+8); 
   end loop; 

   for i in 3 downto 0 loop   -- the second stage in Fig. 1 
     A(16+3*i+1 downto 16+3*i) <= Y(2*i+1 downto 2*i); 
     B(16+3*i+1 downto 16+3*i) <= Y(2*i+1+8 downto 2*i+8); 
   end loop; 

   for i in 1 downto 0 loop   -- the third stage in Fig. 1 
     A(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2 downto 16+3*i); 
     B(28+4*i+2 downto 28+4*i) <= Y(16+3*i+2+6 downto 
         16+3*i+6); 
   end loop; 

   -- the fourth stage in Fig. 1 
   A(39 downto 36) <= Y(31 downto 28);   
   B(39 downto 36) <= Y(35 downto 32); 
   A(45 downto 41) <= Y(40 downto 36);  -- comparison 
   B(45 downto 41) <= threshold; 
end process; 

-- the resulting Hamming weight: 
led <= (14 downto 5 => '0') & Y(40 downto 36); 
 -- the result of the Hamming weight comparison:  
led_comp  <= Y(46);  -- see also Fig. 1  

DSP: entity work.DSP48E1_HW16 -- link with the DSP slice 
 port map (A, B, "0000", Y); --"0000" is the addition mode 

end Behavioral;  

A template for the DSP48E1 slice [21] that is available in 
the Xilinx design environment has been customized to block 
the multiplication operation and to assign the latency to 0. 
Two operands are used as ALU inputs applying 
concatenation operation for one operand. The mode of the 
ALU is set to addition [21]. Since latency is 0, the clock 
signal is not used. 

VHDL code for N=32 is built based on the Test_HW16 
entity and it has the structure shown in Fig. 3. Two 
Test_HW16 components compute the HW for the first and for 
the second 16-bit sub-vectors of the 32-bit vector. Since HW 
comparators are no longer needed for the sub-vectors, a part 
of each DSP slice becomes vacant (see the unused section in 
Fig. 3) for input operands A41,…,A47,B41,…,B47. Thus, the 
two Test_HW16 entities resources that are released may now 
be used for: 
1. Adding HWs of the two 16-bit sub-vectors to get the 

HW of the entire 32-bit vector. This is done in the first 
Test_HW16 component (see the upper block in Fig. 3) in 
which a 6-bit sum of two 5-bit HWs is produced.  

2. Computing the result of comparing the 32-bit HW with 
a fixed threshold k (see the second Test_HW16 
component at the bottom of Fig. 3). 

Similarly, HW counters/comparators can be built for 
larger values of N. Let us discuss now how multiple and 
variable bounds can be supported. Since a LUT(n,1) with n 
inputs and 1 output can implement any Boolean function of 
n variables, various number of bounds for 0N2n-1 may be 
handled. If N is greater (or even significantly greater) than 
2n-1, the LUT(n,1) circuit can be built using the method [22] 
(see the circuits in Fig. 2 in [22]). Of course, embedded 
memory blocks may also be used. For the majority of 
contemporary FPGAs, such blocks with 9 ≤ n ≤ 15 are 
available. Thus, the maximum value of N can be increased 
up to 215-1, which enables requirements for practical cases 
to be satisfied. Since all memories (both distributed or LUT-
based and embedded) are run-time configurable, the circuits 
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described above are not threshold-dependent (i.e. they may 
be dynamically customized for any value of the threshold k 
< 2n-1 or for any range 0N2n-1 for fixed or variable 
bounds). 
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Figure 3. The structure of HW counter/comparator for N=32 

IV. IMPLEMENTATION, EXPERIMENTS, AND COMPARISONS 

This section presents a thorough evaluation and 
comparison of the proposed circuits that have been 
synthesized and implemented in the Xilinx ISE 14.7/Vivado 
2014.1 from specifications in VHDL and tested in the 
Nexys-4 prototyping board with the recent Artix-7 FPGA 
xc7a100t-3csg324 [20] from the Xilinx 7 series. Some of the 
experiments were done in the ZedBoard [27] and ZyBo [28] 
with Zynq all programmable systems-on-chip (APSoCs). 

The size N of input vectors was chosen from 16 to 2048 
which is appropriate for the majority of practical cases. 
Values of N larger than 2048 are indeed exceptional, but 
they can also be handled because the most advanced devices 
contain a significantly greater number of DSP slices than the 
low-cost FPGAs that were used. Even in the chosen FPGAs, 
HW for N=16384 can be computed if we combine DSP and 
general-purpose logical slices. The following three methods 
were used to supply initial vectors: 1) from a random 
number generator implemented in the same FPGA; 2) from 
an embedded processing system (PS), such as that available 
in the Xilinx APSoCs; 3) from the keyboard as we will 
explain later in this section.  

Table 1 below presents the results of synthesis, 
implementation and test of HW counters/comparators in the 
Nexys-4 board, where N is the size of vectors in bits, NDSP is 
the number of DSP slices occupied, and Dmax is the 
maximum combinational path delay in ns. Ns is the number 
of logical slices used (Ns=0 for all circuits in Table 1). 

 
    TABLE 1. THE RESULTS OF EXPERIMENTS (ONLY DSP SLICES WERE USED) 

N 16 32 64 128 256 512 1024 2048 
NDSP 1 2 4 9 17 34 68 136 
Dmax  2.1 3.9 5.7 6.5 7.5 9.3 10.9 14.2 
 

Table 2 presents results similar to Table 1 but DSP slices 
were used only up to N=64; then a set of adders built from 
FPGA logical slices perform the additions of HWs for all 
the sub-vectors with N=64. For example, to find the HW for 
N=512, the HWs of 512/64 = 8 sub-vectors are added. Thus, 
depending on the requirements and the availability of FPGA 
resources, different methods may be chosen.  

TABLE 2. THE RESULTS OF EXPERIMENTS (DSP AND LOGICAL SLICES WERE 

USED) 
N 128 256 512 1024 2048 
NDSP 8 16 32 64 128 
Ns 2 6 15 33 67 
Dmax 7.0 8.6 9.8 10.9 12.6 

 

We found that DSP-based implementations are generally 
faster. Only in one case for N=2048 the circuit from Table 1 
is slower, which can be explained by different routing 
overheads. 

The results of [22] demonstrate that the parallel counters, 
counting networks and circuits based on mapping [11] to 
LUTs are the fastest and the least resource consuming 
compared to other known methods (particularly [2,24,25]). 
Fig. 4 shows the maximum combinational path delays for 
the proposed and the best known designs. Only circuits for 
up to 1024-bit vectors are compared. This is because we 
could not find any published result for implementations of 
HW counters and comparators in FPGAs with N>1024.    

Maximum combinational path delay in ns

 
Figure 4. Comparison of the maximum combinational path delays from the 
results of experiments in the Nexys-4 board 

 

Fig. 5 shows the values of NDSP and Ns. Note that the 
numbers of DSPs and logical slices are not given for 
comparison with each other. The main objective is to 
demonstrate how effectively potential alternative FPGA 
resources may be used. 
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Figure 5. The occupied resources from the experiments in Nexys-4 board 
 

It is clear from the results of experiments that the 
proposed solutions consume reasonable resources (see Fig. 
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5) and are faster (see Fig. 4) than the best known 
alternatives. From Tables 1 and 2 we can see that effective 
throughput may exceed 50 million 2048-bit vectors per 
second, which is significantly better that the results of 
benchmarks for software running in general purpose 
computers [16]. 

The HW counters and comparators described can be used 
as hardware accelerators in APSoCs such as the Zynq-7000. 
Note that the speed that is achievable in the proposed 
circuits is limited by the communication mechanisms 
available with a host computer/processor (such as the ARM 
Cortex-A9 in Zynq) that may use the results. A detailed 
research report on communication overheads in APSoCs can 
be found in [29]. 

One example of a potential application is shown in Fig. 6. 
The PS (e.g. the ARM Cortex-A9 in Zynq microchips) 
prepares initial data and transfers them to the external DDR 
memory, which is also accessible from the programmable 
logic (PL) located on the same microchip.  

PS:
1. Generation and 
processing binary 

vectors

3. Using the results 
of the accelerator

DDR 
memory:

PL (accelerator):
DSP‐based HW 
counting and 

comparison with a 
fixed threshold or 
with variable 

bounds
2. Transferring the 
vectors to the 

external memory

A set of the 
generated 
vectors

Using other available interfaces

On‐chip resources
 

Figure 6. Potential application for an on-chip system 
 

The PL that implements the proposed DSP-based HW 
counter/comparator, reads a vector (or a set of vectors) from 
the DDR and produces the result, which is returned to the 
PS. Interaction with the on-chip DDR controller is provided 
through Advanced eXtensible Interface (AXI), which is very 
fast.  

Experiments just in the PL permit, in particular, hardware 
accelerators to be preliminary evaluated and the circuits to 
be tested before their integration in more complicated 
systems, including software and hardware components. The 
technique used is verified in a project that includes a VGA 
controller, a keypad controller and the proposed DSP-based 
Hamming weight counter. The Digilent keypad [30] was 
used to enter hexadecimal numbers that are shifted in long 
(2048 hexadecimal digits in the example) binary vector as 
follows: digits <= digits(1 to 2047) & Decode, where Decode is a 

digit from the keypad. Thus, each element of the signal digits 
is a hexadecimal number taken from the keypad. Even in a 
simple VGA monitor with resolution 800×600 pixels, more 
than 5000 hexadecimal numbers may be shown, allowing 
the functionality of Hamming weight counters for binary 
vectors with more than 20 thousand bits to be evaluated. The 
following VHDL process is used to extract individual bits 
from the vector that was entered: 

process(set2048digits) 
begin 
    for i in 2047 downto 0 loop 
        in2048bit(i) <= set2048digits(i)(0); -- bits 0 are extracted       
    end loop;  
end process;  

where the in2048bit signal is declared as: signal in2048bit : 
std_logic_vector(2047 downto 0); and set2048digits(i)(0) is the 
bit with index zero (0) in the hexadecimal number with 
index i. Similarly, other bits (i.e. 1, 2, 3) can be extracted 
and the resulting long vectors further processed. In this case 
the process above is changed as follows: 

process(set2048digits) 
begin  -- the vector in8192bits is std_logic_vector (8191 downto 0); 
    for i in 2047 downto 0 loop   
         in8192bits(i)            <= set2048digits(i)(0);   
  in8192bits(i+2048)  <=  set2048digits(i)(1); 

in8192bits(i+4096)  <= set2048digits(i)(2); 
in8192bits(i+6144)  <=  set2048digits(i)(3); 

   end loop;  
end process; 

Thus, long binary vectors can be processed without the 
need for a very large number of external pins. 

Fig. 7 shows how the circuit is used for visual tests. Data 
are typed from a mini keypad [30]. Different bits of the 
entered hexadecimal numbers are taken to form a binary 
vector (see the last process above). The resulting HW is 
displayed and can be evaluated preliminarily. Physical 
delays in the circuits may easily be found and displayed. 
The designed and tested circuit permits HW for N=8192 to 
be computed in the ZyBo (microchip Zynq xc7010-1clg400) 
[28] in about 1 microsecond. 

Figure 8 demonstrates the utilization of resources from 
the post implementation report (Vivado 2014.1). As you can 
see, 71% of LUTs were used because at the first stages (see 
Fig. 1) 32-bit HW counters were constructed from LUTs 
using the circuits from [11], and DSPs computed the final 
HW from N/32 products of the LUTs. 

Hexadecimal value
 

Figure 7. Counting the HW in pure combinational DSP-based circuit implemented and tested in the PL section of Zynq 7010 microchip (ZyBo [28])
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This approach permits the size of vectors to be increased 
further. Finally the tested projects enable HWs to be found 
in fully combinational circuits implemented in the PL for 
N=8192 in ZyBo and N=16384 in ZedBoard (Xilinx APSoC 
xc7z020clg484-1).  

 
Figure 8. Utilization of resources from the Vivado 2014.1 report (BRAM – 
block RAM used for VGA controller; I/O – inputs/outputs, BUFG – Xilinx 
buffers, MMCM – mixed-mode clock manager, FF – flip flops) 

 
We compared the results in hardware with the results in 

software [31] running in the PS of the same APSoC for 
ZyBo. The clock frequency of the PS is 670 MHz. For 
N=8192, the HW is found in software in about 14 thousands 
processor cycles for the best program from [31]. Thus, the 
hardware implementation described is faster by a factor of 
about 20. Communication overheads have been then 
measured for one (of the 4 available) high-performance AXI 
port. We found finally that hardware is faster by a factor of 
about 7, including the communication overheads. The 
comparisons were done using timer functions from [32].  

V. CONCLUSION 

High-performance Hamming weight counters and 
comparators are frequently required in both software and 
hardware implementations. The paper suggests a novel 
technique that allows very fast circuits to be developed 
based on embedded digital signal processing slices that are 
widely available in contemporary FPGAs. The results of 
experiments clearly demonstrate that the proposed solutions 
require very reasonable resources and are faster than the best 
known alternatives.  
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