
Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

Pipelined Error-detecting Codes in FPGA
Testing

Oleg BREKHOV, Maksim RATNIKOV
Moscow Aviation Institute (National Research University), 125993, Moscow, Russian Federation.

m.o.ratnikov@mail.ru

Abstract—This article approaches the solution of FPGA

testing and research of characteristics at early development
stages. The approach offers error-detection code based on
universal test firmware. The performed test firmware based on
CRC and Hamming codes detect single and multiple faults, and
locate fault place (for Hamming code based test firmware).

Index Terms—Field programmable gate arrays, Design for
testability, Automatic testing, Cyclic redundancy check codes,
Error correction codes

I. INTRODUCTION

FPGA (Field-Programmable Gate Array) based system
design ensures a variety of tasks among which the FPGA
environment testing. At some stage, these tasks may require
not only error detection but also the determination of the
location of the error. Existing approaches do not guarantee
identification of multiple failures, and do not allow accurate
finding of a failure place. In addition, they require the
creation of a separate firmware for each development stage
and do not meet the scalability requirements.

In this paper, a new approach for creation of the test
firmware base on pipelined error-detection code generator
realization is proposed. It allows detecting failures and their
occurrence place.

II. REQUIREMENTS TO THE TEST FIRMWARE

We introduce the definitions of target firmware and test
firmware. Test firmware is intended to perform a test or test
group. Target firmware is intended to perform all functions
that are specified in the assignment for the development of a
system.

In addition, we introduce the definition of input vector
concept. It is set of binary values transmitted on system
inputs at this moment.

Test firmware is used in the following stages of the
system testing:

- hardware platform selection;
- FPGA chips grading (selection the most suitable chips);
- FPGA environment testing (system board and its

subsystems).
Existing approaches described in [1] and [2] have the

following disadvantages:
 - cannot guarantee detection of single or multiple

failures;
- do not provide precise location of failure;
- require the development of the test firmware for each of

the testing phases;
- do not guarantee the correct handling of multiple

failures.
The test firmware must meet the following requirements:

1. being synthesizable – the functional description must
precede synthesis, tracing and firmware generation
successfully, i.e. ensuring FPGA platform restrictions;

2. fault sensitivity – providing maximum sensitivity of
faults, including multiple faults;

3. scalability - allowing to change easily the degree of
FPGA resources utilization;

4. predictability - values obtained as a result of testing
device operations can be calculated in advance. These
values can also be compared.

III. PIPELINED ERROR-DETECTING CODES GENERATORS

More precisely, these requirements meet the pipeline
computer systems. Each stage consists of register and
logical elements that implement a selected function. These
systems are scaled by varying the number of pipeline stages.
Values of the FPGA inputs can be used as initial values. The
regular structure is another advantage of pipeline computer
systems. It simplifies the placing stage of FPGA
development.

As basic test functions, generator error-detecting codes
are proposed. The input data for these generators is the input
data of the test system. Output data consists of error
detection bits calculated for this input data. The result of
pipeline’s each stage operation is the intermediate value of
error detection bits, which is computed for i bits of the input
data stream. Here, i is the number of the current stage of the
pipeline. In addition, intermediate values and signs that are
used to perform the next step of the algorithm can be passed
between stages.

The input bit array is called the input stream. We separate
the concept of the reference input stream and the actual
input stream. Reference input stream is the set of binary
values, which were forwarded to the inputs of the test
system or calculated as the result of self-test nodes correct
work. The actual input stream is the set of binary values
adopted by the device or received from internal hosts. The
pipelined generator performs the calculation of the error
detection code for the actual input stream. Failure
occurrence causes the difference between reference input
stream and actual input stream, or distort error detection
bits. The combination of the reference input stream and the
corresponding error detection bits is called the reference
error detection code.

Reference input stream can be set constant or variable
values. Constant values are set to the entrances of the test
system before starting the test, and do not change before the
end of the test.

The input stream from the variable values is an array of

 57
1582-7445 © 2014 AECE

Digital Object Identifier 10.4316/AECE.2014.02010

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

multiple input vectors. The new input vector is sent to the
inputs of the system under test at each step. The result of
system work is a set of error detection codes calculated for
different input vectors. We consider that the input vector is
sent to all inputs simultaneously, so the new input value will
be obtained by all stages of the pipeline.

Let there be a reference input stream S. So, by definition:
},...,,{ 21 tVVVS  (1)

tVVV ,...,, 21 - input vectors, and:

},...,,{ ,2,1, niiii bbbV  (2)

where bi,1, bi,2, …, bi,n are bits of the input vector Vi, i.e.
these bits will be transmitted to the inputs of the system
under test at ith step.

Let R be the set of output vectors:
},...,,{ 21 tRRRR  (3)

and R1, R2,…, Rt is the set of error detection codes in the
corresponding moments of time. Then:

},...,,{ ,2,1, kiiii rrrR  (4)

where ri,1, ri,2,… ri,k are error detection bits that make up
the ith error detection code.

We can say that:
)(sFR  (5)

So, the test system is a pipeline and none of its stages has
elements of long-term data storage (it is using data received
from the inputs or calculated in the previous stage). Ri
depends on all input vectors V that were transmitted to the
entrances of the test system during n steps before the ith step,
and n is the number of pipeline stages. The last input vector
used for Ri calculation has been read from the input for one
step before Ri calculation has been finished. So:

),...,(1,1  ininii VVVFR (6)

At each step in the calculation of Ri only one bit of the
input stream was used, and all intermediate values were
calculated in the appropriate steps (number of intermediate
value of Ri equal to the number of pipeline stage for which it
was calculated). Thus, we have:

),...,,(,12,1,1 nininii bbbFR  (7)

Bits of input array S, included in the Vi vectors and used
in calculation of Ri are shown in Table I.

Any generation algorithm of the error detection codes
working with the incoming input data stream can be used to
solve the testing problem. Typically, these algorithms are
cyclical and should be converted.

TABLE I. DYNAMIC INPUT STREAM PIPELINE’S INPUT DATA

The algorithm is converted into a pipeline structure, and

each stage of the pipeline is allocated the corresponding bit
of the input stream. The main element of the test system is

the unit that implements the selected algorithm of the error-
detection code generator.

For failure place detection, test firmware must rely on
algorithms of self-corrected codes generator.

A. Algorithm of device testing

We determine the method of input values generation and
value of the input stream bits. Flow chart of the device
testing algorithm is shown in Figure 1.

Figure 1. Algorithm of device testing.

General view of the test system is shown in Fig. 1

Figure 2. General view of test system.

 58

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

Fig. 3 (A) and (B) show a general view of the reference
and pipelined algorithms.

Figure 3. Reference (A) and pipelined (B) algorithms.

The block diagrams of devices, and the implementation of
reference and pipelined algorithms are presented in Fig. 4
and Fig. 5, respectively.

Figure 4. Reference algorithm realization.

Figure 5. Pipelined algorithm realization.

Work cart of pipeline with constant input data is shown in
Figure 6. This figure shows the beginning of the work
process and error processing. The values of R1…R5 are
intermediate values, when working without failures. R1…R5
values are the result of the work stages 1 to 5 in processing
the error values. The last calculated value (here, it is R5) is
transmitted to test system outputs. In case of normal
operation, the R5 value is set by the test system output,
which is compared with a reference value.

Figure 6. Timing diagram of the pipelined test system work.

If R5 and reference values are equal, then we assume that
no errors were detected in the tested system. If a system
error occurs, the outputs will be set to 5 (not equal to P5),
and such value does not match reference value. At the end
of the external impact, pipeline work will be restored, and
the outputs of the test system will be set to R5 again.

B. Test system based on pipelined CRC-generator

Cyclic redundancy check (CRC) generators are often used
for the failure detection during data transmission. The
following example shows CRC-based test system creation.
General scheme of the reference CRC generator is shown in
Figure 7.

Figure 7. CRC generator scheme.

This scheme allows processing of the input data stream
received from the block “input”. Current value of the CRC
code is stored in the register formed by storage elements R.
After receiving the next bit from the input stream, the
register value is shifted to the left by one position. Value in
upper bit of the register determines the action, which is done
at this step (“shift left” or “XOR data in register and
polynomial and shift left”). The value obtained from the
input stream after the calculation is written in the lowest bit
of the register.

FPGA testing requires simultaneous receiving of the
current input vector bits at all stages of the pipeline. Test
system should provide new error detection code at each step
after the end of the pipeline acceleration.

Pipeline consists of the following stages: register (the
length is equal to the degree of a polynomial), and XOR
logical element.

The number of bits of the input stream is equal to the
number of stages in the pipeline. At each step during
operation, each stage (of the test system pipeline) receives
an intermediate value of the error detection code from
previous stage, and then executes the current action, defined
by the intermediate value and the corresponding bit of the
input stream. After that, this value is passed to the next
stage. Stage block diagram is shown in Figure 8.

Since this scheme is an advanced implementation of the
CRC generator, it preserves all properties of the basic CRC
generator scheme. The result of the pipeline work is the
correct value of CRC for the test system outputs.

During testing, the emergence of failure will lead to a
significant change in CRC. Depending on the subsequent
behavior, we can make conclusions about the duration and
failure type.

Figure 8. Pipelined CRC generator scheme.

 59

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 60

C. Result of test CRC-based firmware implementation

This work was performed to implement the CRC-based
test firmware. Source codes of the test system are written in
the SystemVerilog 2005 (IEEE 1800-2005) HDL language.
Results of synthesis obtained by Mentor Graphics Precision
Synthesis are shown in Table II.

TABLE II. PIPELINED CRC GENERATOR SYNTHESIS RESULT

 Altera Stratix FPGA Xilinx Virtex FPGA

Stages
Cell
used

Freq
(MHz) nets LCs Inst. LUTs CLB

Freq
(MHz)

100 765 925.926 794 765 784 271 382 698.324
200 1565 819.672 1594 1565 1584 571 782 677.507
300 2365 819.672 2394 2365 2384 871 1182 663.570
400 3165 819.672 3194 3165 3184 1171 1582 663.570
500 3965 819.672 3994 3965 3984 1471 1982 663.570
600 4765 819.672 4794 4765 4784 1771 2382 663.570
700 5565 819.672 5594 5565 5584 2071 2782 663.570
800 6365 819.672 6394 6365 6384 2371 3182 663.570
900 7165 819.672 7194 7165 7184 2671 3582 663.570

Two FPGAs from different manufacturers obtained

similar results: linear increase of the employed resources
relative to the number of pipeline stages. The maximum
system frequency is close to the maximum possible for the
appropriate FPGA model. This confirms the fulfillment of
the requirements for scalability.

D. Test system based on pipelined Hamming-codes
generator.

Let us consider a system defining the place of failure. The
basic algorithm is pipelined Hamming codes generator that
detects two errors and is able to correct one error.

Each of the pipeline stages in this test system handles a
single bit of the input stream. To ensure the minimal
changes in the algorithm, and simplify the transformations,
stages with numbers 0, 1, 2, 4…,2n do not perform actions
except for storing the data (these stages are registers).

The processing of each bit represents the addition modulo
2 of this bit, and error detection bits of code, from the same
error detection group. The diagram of the test system is
shown in Figure 9.

The diagram represents the alternation of the processing
stages (generator), and non-processing stages (the register).
Each of the processing stages is the addition modulo 2-bit
input (bi) with one or several error detection bits. The
numbers of the error detection bits involved in the process
depends on the stage number. For example, for the
Hamming code H (2, 1), the 1st and 2nd bits of the error
detection code will be used at stage 3, the 1st and 3rd at stage
5, etc.

In accordance with the above formula, we have to
calculate the error detection bits ri to obtain the final value.
This value is to be added to the module 2 to all data bits,
related to jth error detection group. The operation of addition

modulo 2 has the property of associativity, so:

jkkjj brr ,1,   , (8)

jkjkkjj bbrr ,,12,   (9)

jkjkjjj bbbrr ,,1,21, ...   (10)

rj,1… rj,k-1 are intermediate results of addition modulo 2
information bits j, the error detection group. In this case, at
each processing stage of the pipeline calculation, the next
value rj can be implemented.

Let R be the set of error detection bits in this stage. Then:
),...,,(21 krrrR  (11)

where k is the number of error detection bits (error
detection groups). In fact, Ri is a set of error detection bits
for the input stream length i.

As shown above, due to the property of associativity of
operation “addition modulo 2”, each of the following R can
be calculated based on the previous values. In this case, for
each set of error detection bits Ri at the ith stage of the
pipeline, we have the following:

),,(1 iii biRHR  (12)

where H is the function that computes the next set of error
detection bits of Hamming code, i is the number of stages,
and bi is the ith bit of the input stream. Then the task of
converting the algorithm for computing the Hamming code
is to get H-function. In accordance with the algorithm of
Hamming code calculating, each error detection bit is the
result of addition modulo 2 of all data bits of the
corresponding error detection group. Then, from (4), (5) and
(12), we can conclude that:

),,(1,, iljlj blrhr  (13)

So, an error detection bit of jth error detection group at
stage l depends on error detection bits of the same error
detection group at stage l-1, stage number, and the
appropriate bit of the input stream.

Since calculation of the current value of rj t uses bits only
from error detection group j, at processing stage l, we have:













Jlbr

Jlr
r

llj

lj
lj ,

,

1,

1,
, (14)

In this formula, J is a set of the elements jth of the error
detection group. In Hamming codes algorithm, each error
detection bit covers all bits, where the bitwise AND of the
error detection position and the bit position are non-zero.
During rj,t calculation, we will check the value of the jth bit
at binary-coded stage number.

Non-processing stage ensures the correctness of the
calculation of the error detection code, and it is does not
perform any calculations. Numbers of non-processing stages
are 1, 2, 4, 8..2m. For non-processing stages, we have:









]0[,

]0[,,0

1,
, Jlr

JlJl
r

lj
lj (15)

Figure 9. Structural diagram of the Hamming code-based test system.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

So, at this stage, a new error detection group calculation
begins and error detection bits from this error detection
group were not previously used. Initial value of the error
detection bit is 0.

For double failure evaluation, an overall error detection
bit has been added. It checks parity of the overall error
detection code and indicates (but does not correct) double
failures.

The diagram of the pipeline stage (processing stage) is
shown in Figure 10

Figure 10. Pipelined Hamming code generator stage.

Stage number is a constant. DC bit is the overall parity bit
for this Hamming code.

Here is an example: set the input stream 10111001. In this
case, stage calculation results are the values shown in the
first row of Table. If failure is caused during system test
operation, the 3rd bit of input stream changes to 1. Stage
calculation results are shown in the second row of Table.
When the correction of the failure ends, pipeline operation
will be restored. These values are shown in the third row of
Table. The following example shows output value
calculation.

Stage 1
It is a non-processing stage. First error detection bit has 0

value. At this stage, we do not know values of other error
detection bits and suppose that they are equal to 0.

Stage 2
Similarly with the stage 1, it is a non-processing stage.

Second error detection bit has value 0.
Stage 3
It is the first processing stage. Input bit value is 1. Binary

coded stage number is 00011, so:
1103,1 r

1103,2 r

Overall parity bit is:
1103, OPr

Values of the 3rd and 4th error detection bits were not
changed.

Stage 4
It is a non-processing stage. Fourth error detection bit has

value 0.
Stage 5
It is the second processing stage. Input bit value is 1.

Binary coded stage number is 00101, so:
1015,1 r

115,2 r

0005,3 r

005,4 r

1015, OPr

After making similar calculations for the stages 6-12,
calculations for changed input stream and for restored input
stream, we can fill in Table III.

TABLE III. INTERMEDIATE VALUE OF THE ERROR DETECTION BITS AT EACH

STAGES OUTPUT
Stage number Input

bits
before
failure

Error
detectio
n bits
before
failure

Input
bits
after
failure

Error
detectio
n bits
after
failure

Input bits
after
restore

Error
detection
bits after
restore

110 = (00001)2 - 00000 - 00000 - 00000
210 = (00010)2 - 00000 - 00000 - 00000
310 = (00011)2 1 10011 1 10011 1 10011
410 = (00100)2 - 10011 - 10011 - 10011
510 = (00101)2 0 10011 0 10011 0 10011
610 = (00110)2 0 10011 1 00101 0 10011
710 = (00111)2 1 00100 1 10010 1 00100
810 = (01000)2 - 00100 - 10010 - 00100
910 = (01001)2 1 11101 1 01011 1 11101

1010=
(01010)2

1 00111 1 10001 1 00111

1110=
(01011)2

0 00111 0 10001 0 00111

1210=
(01100)2

1 11011 1 01101 1 11011

Note: overall parity bit in this table (calculated for input
stream values only) does not consider error detection bits.
Calculation of the error detection bit is not executed because
the values at all stages (except the final one) are
intermediate. The double-check bit (which is the part of
error detection bits) is calculated for all bits of the actual
input stream (excluding error detection bits itself). Before
Hamming code decoding, it is necessary to update the
overall parity bit value considering the final error detection
code value. Therefore, for example, in Table III, the result
values of overall parity bits are:

- Before failure - «0»
- After failure - «1»
- After restore - «0».

E. Result of CRC-based firmware implementation test

The source codes of the test system are written in
SystemVerilog 2005 (IEEE 1800-2005) HDL language. The
timing diagram for constant input stream with failure
evaluation and restoring is shown in Figure 11.

Testing system consists of:
- module that implements a single stage of a testing

pipeline;
- testing pipeline itself (predefined number of connected

modules);
- it can also be supplemented by the nodes that implement

checks of inner FPGA subsystems or realize any additional
processing of input values.

F. Detecting a place of failure

To solve this problem, we replace the error detection code
in the reference code with the Hamming code generated by
the test system. After that, we calculate the error syndrome
and the number of the segment where the failure occurred.

Reference Hamming code for this input stream is
0101111000111. After replacing error detection code, the
result code is 101111001101. Error syndrome calculation
gives the value 00110. It means that an error occurred in the
6th Hamming code bit, that corresponds to 3rd information
(input stream) bit.

 61

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 62

Figure 11. Simulation result of the Hamming code-base test system.

Synthesis result for FPGA Actel APA 1000 is shown in
Table IV.

TABLE IIV. PIPELINED HAMMING CODE GENERATOR SYNTHESIS RESULT

Stages Tiles Resource used %
Freq
(MHz)

100 1629 2.89 336.36
200 3695 6.56 336.36
300 5948 10.56 336.36
400 8313 14.76 336.36
500 10774 19.13 336.36
600 13305 23.62 336.36
700 15912 28.25 336.36
800 18551 32.94 336.36
900 21224 37.68 336.36

Similar to pipelined CRC-based test systems, these test

systems obtain linear increase of employed resources
relative to the number of pipeline stages. The maximum
system frequency is close to the maximum possible for this
FPGA. This confirms the fulfillment of the requirements for
scalability.

Testing has shown that test system confirms requirement
of failure detection and localization.

IV. CONCLUSION

In this paper, we proposed and implemented a method for
testing the FPGA-based data storage and data processing
systems using pipelined error detection code generators.
Compared with conventional testing methods, this method is
more flexible and more sensitive to single and multiple
failures. In addition, this method allows not only to detect
errors, but also to define the place of their occurrence.

REFERENCES
[1] B. Pratt, M. Caffrey, P. Graham, K. Morgan, M. Wirthlin, “Improving

FPGA Design Robustness with Partial TMR,” IRPS 2006.
[2] D.V. Bobrovsky, O.A. Kalashnikov, P.V.Nekrasov, “Functional

Control Technique for FPGA Total Ionizing Dose Testing,”
Proceedings of the Conference RADECS-2012.

[3] R.N. Williams. A Painless Guide to CRC Error Detection Algorithms.
Rocksoft Pty Ltd., Australia, 1993.

[4] P.P. Shirvani, E.J. McCluskey, “Fault-Tolerant Systems in a Space
Environment: The CRC ARGOS Project,” CRC Technical Report No.
98-2 (CSL TR No. 98-774), December 1998, Center For Reliable
Computing, Computer Systems Laboratory, Departments of Electrical
Engineering and Computer Science, Stanford University, Stanford,
California 94305.

[5] IEEE Standard for SystemVerilog— Unified Hardware Design,
Specification, and Verification Language, The Institute of Electrical
and Electronics Engineers, Inc. 3 Park Avenue, New York, NY
10016-5997, USA, 2005.

[6] K. Arshak, E. Jafer, C. Ibala, “Testing FPGA based digital system
using XILINX ChipScope logic analyzer,” in Electronics Technology.

ISSE '06, pp. 355-360, May 10-14, 2006. doi:
10.1109/ISSE.2006.365129.

[7] K.S. Morgan, D.E. Johnson, B.H. Pratt, M.J. Wirthlin, M.P. Caffrey,
P.S. Graham, “SEU Induced Error Propagation in FPGAs,” in
Proceedings of NSREC Conference, Seattle, WA, July 11-15, 2005,
Brigham Young University, 459 CB Provo, UT 84602, Los Alamos
National Laboratory, Los Alamos, NM 87545.

[8] H.H. Schmit, S. Cadamni, M. Moe, S.C. Goldstein, “Pipeline
Reconfigurable FPGAs,” Journal of VLSI Signal Processing Systems
24, Kluwer Academic Publishers, pp. 129–146, 2000.

[9] M. Abramovici, C.E. Stroud, “BIST-Based Delay-Fault Testing in
FPGAs,” in Journal of Electronic Testing: Theory and Applications
archive, Volume 19 Issue 5, October 2003, pp. 549-558, Kluwer
Academic Publishers Norwell, MA, USA

[10] M. B. Tahoori, “Application-Dependent Diagnosis of FPGAs,” in
Proceedings of ITC 2004, pp. 645-654, Oct 26-28, 2004, doi:
10.1109/TEST.2004.1387002

[11] B.F. Dutton, C.E. Stroud, “Built-In Self-Test of Configurable Logic
Blocks in Virtex-5 FPGAs,” in Proceedings of 41st Southeastern
Symposium on System Theory, pp. 230-234, 2009.

[12] I.G. Harris, Russell Tessier, “Testing and Diagnosis of Interconnect
Faults in Cluster-Based FPGA Architectures,” in ICCAD'00
Proceedings of 2000 IEEE/ACM International Conference on
Computer-aided design, pp. 472-476, IEEE Press Piscataway, NJ,
USA ©2000.

[13] M.Latha, M.Senthilmurugan, “Fault Detection and Fault Diagnosis in
SRAM-Based FPGA Using BIST,” in IRACST – Engineering
Science and Technology: An International Journal (ESTIJ), ISSN:
2250-3498, Vol.2, No. 4, August 2012 609

[14] A. Sarvi, C.A. Sharma, R.F. DeMara, “Bist-Based Group Testing for
Diagnosis of Embedded FPGA Cores,” ESA, pp. 279-283, CSREA
Press, 2008.

[15] Dr.K.Babulu, M.K. Kumar, “FPGA Realization of Multiple Fault
Diagnosis Technique for Faults in SRAM Based FPGAs,” in
International Journal of Engineering Science and Innovative
Technology (IJESIT), Volume 1, Issue 1, September 2012, 48, ISSN:
2319

[16] M. Rozkovec, J. Jenicheck, Z. Pliva, “Using deterministic test vectors
to test FPGA circuit,” Proceedings of the 2013 IEEE 16th International
Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), pp. 175-180, 2013.

[17] F. Noorbasha, K. Harikishore, Ch. Hemanth, A. Sivasairam, V. Vijaya
Raju, “LFSR Test Pattern For Fault Detection and Diagnosis for
FPGA CLB Cells,” International Journal of Advances in Engineering
& Technology, ISSN: 2231-1963, 240, Vol. 3, Issue 1, pp. 240-246,
March 2012.

[18] C.-F. Wu, C.-W. Wu, “Testing and Diagnosing Dynamic
Reconfigurable FPGA,” VLSI Design, Volume 10, Issue 3, pp. 321-
333, 2000.

[19] M.G. Gericota , G.R. Alves , M.L. Silva , J.M. Ferreira, “Active
Replication: Towards a Truly SRAM-Based FPGA On-Line
Concurrent Testing,” Proceedings of the Proceedings of The Eighth
IEEE International On-Line Testing Workshop (IOLTW'02), p.165,
July 08-10, 2002

[20] Y.-B. Liao, P. Li, A.-W. Ruan, Y.-W. Wang, W.-C. Li, “A HW/SW
Co-Verification Technique for FPGA Test,” Journal of Electronic
Science and Technology of China, Vol. 7, No. 4, 390, December
2009.

[21] Y.-C. Chiu, B. Tarun, S. Ye, P.-I Yeh, P.-A. Shen, “The FPGA test
system. Project Final Report,” Group 5, University of Southern
California, December 2010.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]

