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Abstract—This article approaches the solution of FPGA 

testing and research of characteristics at early development 
stages. The approach offers error-detection code based on 
universal test firmware. The performed test firmware based on 
CRC and Hamming codes detect single and multiple faults, and 
locate fault place (for Hamming code based test firmware). 

Index Terms—Field programmable gate arrays, Design for 
testability, Automatic testing, Cyclic redundancy check codes, 
Error correction codes 

I. INTRODUCTION 

FPGA (Field-Programmable Gate Array) based system 
design ensures a variety of tasks among which the FPGA 
environment testing. At some stage, these tasks may require 
not only error detection but also the determination of the 
location of the error. Existing approaches do not guarantee 
identification of multiple failures, and do not allow accurate 
finding of a failure place. In addition, they require the 
creation of a separate firmware for each development stage 
and do not meet the scalability requirements. 

In this paper, a new approach for creation of the test 
firmware base on pipelined error-detection code generator 
realization is proposed. It allows detecting failures and their 
occurrence place. 

II. REQUIREMENTS TO THE TEST FIRMWARE 

We introduce the definitions of target firmware and test 
firmware. Test firmware is intended to perform a test or test 
group. Target firmware is intended to perform all functions 
that are specified in the assignment for the development of a 
system. 

In addition, we introduce the definition of input vector 
concept. It is set of binary values transmitted on system 
inputs at this moment. 

Test firmware is used in the following stages of the 
system testing: 

-  hardware platform selection; 
-  FPGA chips grading (selection the most suitable chips); 
- FPGA environment testing (system board and its 

subsystems). 
Existing approaches described in [1] and [2] have the 

following disadvantages: 
 - cannot guarantee detection of single or multiple  

failures;  
- do not provide precise location of failure;  
- require the development of the test firmware for each of 

the testing phases;  
- do not guarantee the correct handling of multiple 

failures.  
The test firmware must meet the following requirements: 

1. being synthesizable – the functional description must 
precede synthesis, tracing and firmware generation 
successfully, i.e. ensuring FPGA platform restrictions; 

2. fault sensitivity – providing maximum sensitivity of 
faults, including multiple faults; 

3. scalability - allowing to change easily the degree of 
FPGA resources utilization; 

4. predictability - values obtained as a result of testing 
device operations can be calculated in advance. These 
values can also be compared. 

III. PIPELINED ERROR-DETECTING CODES GENERATORS 

More precisely, these requirements meet the pipeline 
computer systems. Each stage consists of register and 
logical elements that implement a selected function. These 
systems are scaled by varying the number of pipeline stages. 
Values of the FPGA inputs can be used as initial values. The 
regular structure is another advantage of pipeline computer 
systems. It simplifies the placing stage of FPGA 
development.  

As basic test functions, generator error-detecting codes 
are proposed. The input data for these generators is the input 
data of the test system. Output data consists of error 
detection bits calculated for this input data. The result of 
pipeline’s each stage operation is the intermediate value of 
error detection bits, which is computed for i bits of the input 
data stream. Here, i is the number of the current stage of the 
pipeline. In addition, intermediate values and signs that are 
used to perform the next step of the algorithm can be passed 
between stages.  

The input bit array is called the input stream. We separate 
the concept of the reference input stream and the actual 
input stream. Reference input stream is the set of binary 
values, which were forwarded to the inputs of the test 
system or calculated as the result of self-test nodes correct 
work. The actual input stream is the set of binary values 
adopted by the device or received from internal hosts. The 
pipelined generator performs the calculation of the error 
detection code for the actual input stream. Failure 
occurrence causes the difference between reference input 
stream and actual input stream, or distort error detection 
bits. The combination of the reference input stream and the 
corresponding error detection bits is called the reference 
error detection code. 

Reference input stream can be set constant or variable 
values. Constant values are set to the entrances of the test 
system before starting the test, and do not change before the 
end of the test.  

The input stream from the variable values is an array of 
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multiple input vectors. The new input vector is sent to the 
inputs of the system under test at each step. The result of 
system work is a set of error detection codes calculated for 
different input vectors. We consider that the input vector is 
sent to all inputs simultaneously, so the new input value will 
be obtained by all stages of the pipeline.  

Let there be a reference input stream S. So, by definition: 
},...,,{ 21 tVVVS   (1) 

tVVV ,...,, 21 - input vectors, and: 

},...,,{ ,2,1, niiii bbbV   (2) 

where bi,1, bi,2, …, bi,n are bits of the input vector Vi, i.e. 
these bits will be transmitted to the inputs of the system 
under test at ith step. 

Let R be the set of output vectors: 
},...,,{ 21 tRRRR   (3) 

and R1, R2,…, Rt is the set of error detection codes in the 
corresponding moments of time. Then:  

},...,,{ ,2,1, kiiii rrrR   (4) 

where ri,1, ri,2,… ri,k are error detection bits that make up 
the ith error detection code. 

We can say that: 
)(sFR   (5) 

So, the test system is a pipeline and none of its stages has 
elements of long-term data storage (it is using data received 
from the inputs or calculated in the previous stage). Ri 
depends on all input vectors V that were transmitted to the 
entrances of the test system during n steps before the ith step, 
and n is the number of pipeline stages. The last input vector 
used for Ri calculation has been read from the input for one 
step before Ri calculation has been finished. So: 

),...,( 1,1  ininii VVVFR  (6) 

At each step in the calculation of Ri only one bit of the 
input stream was used, and all intermediate values were 
calculated in the appropriate steps (number of intermediate 
value of Ri equal to the number of pipeline stage for which it 
was calculated). Thus, we have: 

),...,,( ,12,1,1 nininii bbbFR   (7) 

Bits of input array S, included in the Vi vectors and used 
in calculation of Ri  are shown in Table I. 

Any generation algorithm of the error detection codes 
working with the incoming input data stream can be used to 
solve the testing problem. Typically, these algorithms are 
cyclical and should be converted.  

 
TABLE I. DYNAMIC INPUT STREAM PIPELINE’S INPUT DATA 

 
The algorithm is converted into a pipeline structure, and 

each stage of the pipeline is allocated the corresponding bit 
of the input stream. The main element of the test system is 

the unit that implements the selected algorithm of the error-
detection code generator.  

For failure place detection, test firmware must rely on 
algorithms of self-corrected codes generator. 

A. Algorithm of device testing 

We determine the method of input values generation and 
value of the input stream bits. Flow chart of the device 
testing algorithm is shown in Figure 1. 

 
Figure 1. Algorithm of device testing.  
 

General view of the test system is shown in Fig. 1 

 
Figure 2. General view of test system.  
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Fig. 3 (A) and (B) show a general view of the reference 
and pipelined algorithms.  

 
Figure 3. Reference (A) and pipelined (B) algorithms.  
 

The block diagrams of devices, and the implementation of 
reference and pipelined algorithms are presented in Fig. 4 
and Fig. 5, respectively. 

 
Figure 4. Reference algorithm realization.  
 

 
Figure 5. Pipelined algorithm realization.  
 

Work cart of pipeline with constant input data is shown in 
Figure 6. This figure shows the beginning of the work 
process and error processing. The values of R1…R5 are 
intermediate values, when working without failures. R1…R5 
values are the result of the work stages 1 to 5 in processing 
the error values. The last calculated value (here, it is R5) is 
transmitted to test system outputs. In case of normal 
operation, the R5 value is set by the test system output, 
which is compared with a reference value.  

 

 
Figure 6. Timing diagram of the pipelined test system work.  
 

If R5 and reference values are equal, then we assume that 
no errors were detected in the tested system. If a system 
error occurs, the outputs will be set to 5 (not equal to P5), 
and such value does not match reference value. At the end 
of the external impact, pipeline work will be restored, and 
the outputs of the test system will be set to R5 again. 

B. Test system based on pipelined CRC-generator  

Cyclic redundancy check (CRC) generators are often used 
for the failure detection during data transmission. The 
following example shows CRC-based test system creation. 
General scheme of the reference CRC generator is shown in 
Figure 7. 

 
Figure 7. CRC generator scheme.  
 

This scheme allows processing of the input data stream 
received from the block “input”. Current value of the CRC 
code is stored in the register formed by storage elements R. 
After receiving the next bit from the input stream, the 
register value is shifted to the left by one position. Value in 
upper bit of the register determines the action, which is done 
at this step (“shift left” or “XOR data in register and 
polynomial and shift left”). The value obtained from the 
input stream after the calculation is written in the lowest bit 
of the register.  

FPGA testing requires simultaneous receiving of the 
current input vector bits at all stages of the pipeline. Test 
system should provide new error detection code at each step 
after the end of the pipeline acceleration.  

Pipeline consists of the following stages: register (the 
length is equal to the degree of a polynomial), and XOR 
logical element.  

The number of bits of the input stream is equal to the 
number of stages in the pipeline. At each step during 
operation, each stage (of the test system pipeline) receives 
an intermediate value of the error detection code from 
previous stage, and then executes the current action, defined 
by the intermediate value and the corresponding bit of the 
input stream. After that, this value is passed to the next 
stage. Stage block diagram is shown in Figure 8. 

Since this scheme is an advanced implementation of the 
CRC generator, it preserves all properties of the basic CRC 
generator scheme. The result of the pipeline work is the 
correct value of CRC for the test system outputs. 

During testing, the emergence of failure will lead to a 
significant change in CRC. Depending on the subsequent 
behavior, we can make conclusions about the duration and 
failure type.  

 
Figure 8. Pipelined CRC generator scheme.  
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C. Result of test CRC-based firmware implementation 

This work was performed to implement the CRC-based 
test firmware. Source codes of the test system are written in 
the SystemVerilog 2005 (IEEE 1800-2005) HDL language. 
Results of synthesis obtained by Mentor Graphics Precision 
Synthesis are shown in Table II. 

 
TABLE II. PIPELINED CRC GENERATOR SYNTHESIS RESULT 

 Altera Stratix FPGA Xilinx Virtex FPGA 

Stages  
Cell 
used 

Freq 
(MHz) nets LCs Inst. LUTs CLB 

Freq 
(MHz) 

100 765 925.926 794 765 784 271 382 698.324 
200 1565 819.672 1594 1565 1584 571 782 677.507 
300 2365 819.672 2394 2365 2384 871 1182 663.570 
400 3165 819.672 3194 3165 3184 1171 1582 663.570 
500 3965 819.672 3994 3965 3984 1471 1982 663.570 
600 4765 819.672 4794 4765 4784 1771 2382 663.570 
700 5565 819.672 5594 5565 5584 2071 2782 663.570 
800 6365 819.672 6394 6365 6384 2371 3182 663.570 
900 7165 819.672 7194 7165 7184 2671 3582 663.570 

 
Two FPGAs from different manufacturers obtained 

similar results: linear increase of the employed resources 
relative to the number of pipeline stages. The maximum 
system frequency is close to the maximum possible for the 
appropriate FPGA model. This confirms the fulfillment of 
the requirements for scalability. 

D. Test system based on pipelined Hamming-codes 
generator. 

Let us consider a system defining the place of failure. The 
basic algorithm is pipelined Hamming codes generator that 
detects two errors and is able to correct one error.  

Each of the pipeline stages in this test system handles a 
single bit of the input stream. To ensure the minimal 
changes in the algorithm, and simplify the transformations, 
stages with numbers 0, 1, 2, 4…,2n do not perform actions 
except for storing the data (these stages are registers).  

The processing of each bit represents the addition modulo 
2 of this bit, and error detection bits of code, from the same 
error detection group. The diagram of the test system is 
shown in Figure 9. 

The diagram represents the alternation of the processing 
stages (generator), and non-processing stages (the register). 
Each of the processing stages is the addition modulo 2-bit 
input (bi) with one or several error detection bits. The 
numbers of the error detection bits involved in the process 
depends on the stage number. For example, for the 
Hamming code H (2, 1), the 1st and 2nd bits of the error 
detection code will be used at stage 3, the 1st and 3rd at stage 
5, etc. 

In accordance with the above formula, we have to 
calculate the error detection bits ri to obtain the final value. 
This value is to be added to the module 2 to all data bits, 
related to jth error detection group. The operation of addition 

modulo 2 has the property of associativity, so: 

jkkjj brr ,1,   , (8) 

jkjkkjj bbrr ,,12,     (9) 

jkjkjjj bbbrr ,,1,21, ...    (10) 

rj,1… rj,k-1 are intermediate results of addition modulo 2 
information bits j, the error detection group. In this case, at 
each processing stage of the pipeline calculation, the next 
value rj can be implemented.  

Let R be the set of error detection bits in this stage. Then: 
),...,,( 21 krrrR   (11) 

where k is the number of error detection bits (error 
detection groups). In fact, Ri is a set of error detection bits 
for the input stream length i. 

As shown above, due to the property of associativity of 
operation “addition modulo 2”, each of the following R can 
be calculated based on the previous values. In this case, for 
each set of error detection bits Ri at the ith stage of the 
pipeline, we have the following: 

),,( 1 iii biRHR   (12) 

where H is the function that computes the next set of error 
detection bits of Hamming code, i is the number of stages, 
and bi is the ith bit of the input stream. Then the task of 
converting the algorithm for computing the Hamming code 
is to get H-function. In accordance with the algorithm of 
Hamming code calculating, each error detection bit is the 
result of addition modulo 2 of all data bits of the 
corresponding error detection group. Then, from (4), (5) and 
(12), we can conclude that: 

),,( 1,, iljlj blrhr   (13) 

So, an error detection bit of jth error detection group at 
stage l depends on error detection bits of the same error 
detection group at stage l-1, stage number, and the 
appropriate bit of the input stream.  

Since calculation of the current value of rj t uses bits only 
from error detection group j, at processing stage l, we have: 













Jlbr

Jlr
r

llj

lj
lj ,

,
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In this formula, J is a set of the elements jth of the error 
detection group. In Hamming codes algorithm, each error 
detection bit covers all bits, where the bitwise AND of the 
error detection position and the bit position are non-zero. 
During rj,t calculation, we will check the value of the jth bit 
at binary-coded stage number. 

Non-processing stage ensures the correctness of the 
calculation of the error detection code, and it is does not 
perform any calculations. Numbers of non-processing stages 
are 1, 2, 4, 8..2m. For non-processing stages, we have: 
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Figure 9. Structural diagram of the Hamming code-based test system.  
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So, at this stage, a new error detection group calculation 
begins and error detection bits from this error detection 
group were not previously used. Initial value of the error 
detection bit is 0.  

For double failure evaluation, an overall error detection 
bit has been added. It checks parity of the overall error 
detection code and indicates (but does not correct) double 
failures.  

The diagram of the pipeline stage (processing stage) is 
shown in Figure 10  

 
Figure 10. Pipelined Hamming code generator stage.  
 

Stage number is a constant. DC bit is the overall parity bit 
for this Hamming code. 

Here is an example: set the input stream 10111001. In this 
case, stage calculation results are the values shown in the 
first row of Table. If failure is caused during system test 
operation, the 3rd bit of input stream changes to 1. Stage 
calculation results are shown in the second row of Table. 
When the correction of the failure ends, pipeline operation 
will be restored. These values are shown in the third row of 
Table. The following example shows output value 
calculation. 

Stage 1 
It is a non-processing stage. First error detection bit has 0 

value. At this stage, we do not know values of other error 
detection bits and suppose that they are equal to 0. 

Stage 2 
Similarly with the stage 1, it is a non-processing stage. 

Second error detection bit has value 0.  
Stage 3 
It is the first processing stage. Input bit value is 1. Binary 

coded stage number is 00011, so: 
1103,1 r  

1103,2 r  

Overall parity bit is:  
1103, OPr  

Values of the 3rd and 4th error detection bits were not 
changed.  

Stage 4 
It is a non-processing stage. Fourth error detection bit has 

value 0. 
Stage 5 
It is the second processing stage. Input bit value is 1. 

Binary coded stage number is 00101, so: 
1015,1 r  

115,2 r  

0005,3 r  

005,4 r  

1015, OPr  

After making similar calculations for the stages 6-12, 
calculations for changed input stream and for restored input 
stream, we can fill in Table III.  

 
TABLE III. INTERMEDIATE VALUE OF THE ERROR DETECTION BITS AT EACH 

STAGES OUTPUT 
Stage number Input 

bits 
before 
failure

Error 
detectio
n bits 
before 
failure 

Input 
bits 
after 
failure  

Error 
detectio
n bits 
after 
failure 

Input bits 
after 
restore  

Error 
detection 
bits after 
restore 

110 = (00001)2 - 00000 - 00000 - 00000 
210 = (00010)2 - 00000 - 00000 - 00000 
310 = (00011)2 1 10011 1 10011 1 10011 
410 = (00100)2 - 10011 - 10011 - 10011 
510 = (00101)2 0 10011 0 10011 0 10011 
610 = (00110)2 0 10011 1 00101 0 10011 
710 = (00111)2 1 00100 1 10010 1 00100 
810 = (01000)2 - 00100 - 10010 - 00100 
910 = (01001)2 1 11101 1 01011 1 11101 

1010= 
(01010)2 

1 00111 1 10001 1 00111 

1110= 
(01011)2 

0 00111 0 10001 0 00111 

1210= 
(01100)2 

1 11011 1 01101 1 11011 

 

Note: overall parity bit in this table (calculated for input 
stream values only) does not consider error detection bits. 
Calculation of the error detection bit is not executed because 
the values at all stages (except the final one) are 
intermediate. The double-check bit (which is the part of 
error detection bits) is calculated for all bits of the actual 
input stream (excluding error detection bits itself). Before 
Hamming code decoding, it is necessary to update the 
overall parity bit value considering the final error detection 
code value. Therefore, for example, in Table III, the result 
values of overall parity bits are:  

- Before failure - «0» 
- After failure - «1» 
- After restore - «0». 

E. Result of CRC-based firmware implementation test 

The source codes of the test system are written in 
SystemVerilog 2005 (IEEE 1800-2005) HDL language. The 
timing diagram for constant input stream with failure 
evaluation and restoring is shown in Figure 11. 

Testing system consists of:  
- module that implements a single stage of a testing 

pipeline; 
- testing pipeline itself (predefined number of connected 

modules); 
- it can also be supplemented by the nodes that implement 

checks of inner FPGA subsystems or realize any additional 
processing of input values. 

F. Detecting a place of failure 

To solve this problem, we replace the error detection code 
in the reference code with the Hamming code generated by 
the test system. After that, we calculate the error syndrome 
and the number of the segment where the failure occurred. 

Reference Hamming code for this input stream is 
0101111000111. After replacing error detection code, the 
result code is 101111001101. Error syndrome calculation 
gives the value 00110. It means that an error occurred in the 
6th Hamming code bit, that corresponds to 3rd information 
(input stream) bit.  
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Figure 11. Simulation result of the Hamming code-base test system.  
 

Synthesis result for FPGA Actel APA 1000 is shown in 
Table IV. 

 
TABLE IIV. PIPELINED HAMMING CODE GENERATOR SYNTHESIS RESULT 

Stages Tiles Resource used % 
Freq 
(MHz) 

100 1629 2.89 336.36 
200 3695 6.56 336.36 
300 5948 10.56 336.36 
400 8313 14.76 336.36 
500 10774 19.13 336.36 
600 13305 23.62 336.36 
700 15912 28.25 336.36 
800 18551 32.94 336.36 
900 21224 37.68 336.36 

 
Similar to pipelined CRC-based test systems, these test 

systems obtain linear increase of employed resources 
relative to the number of pipeline stages. The maximum 
system frequency is close to the maximum possible for this 
FPGA. This confirms the fulfillment of the requirements for 
scalability. 

Testing has shown that test system confirms requirement 
of failure detection and localization. 

IV. CONCLUSION 

In this paper, we proposed and implemented a method for 
testing the FPGA-based data storage and data processing 
systems using pipelined error detection code generators. 
Compared with conventional testing methods, this method is 
more flexible and more sensitive to single and multiple 
failures. In addition, this method allows not only to detect 
errors, but also to define the place of their occurrence. 

REFERENCES 
[1] B. Pratt, M. Caffrey, P. Graham, K. Morgan, M. Wirthlin, “Improving 

FPGA Design Robustness with Partial TMR,” IRPS 2006. 
[2] D.V. Bobrovsky, O.A. Kalashnikov, P.V.Nekrasov, “Functional 

Control Technique for FPGA Total Ionizing Dose Testing,” 
Proceedings of the Conference RADECS-2012. 

[3] R.N. Williams. A Painless Guide to CRC Error Detection Algorithms. 
Rocksoft Pty Ltd., Australia, 1993. 

[4] P.P. Shirvani, E.J. McCluskey, “Fault-Tolerant Systems in a Space 
Environment: The CRC ARGOS Project,” CRC Technical Report No. 
98-2 (CSL TR No. 98-774), December 1998, Center For Reliable 
Computing, Computer Systems Laboratory, Departments of Electrical 
Engineering and Computer Science, Stanford University, Stanford, 
California 94305. 

[5] IEEE Standard for SystemVerilog— Unified Hardware Design, 
Specification, and Verification Language, The Institute of Electrical 
and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 
10016-5997, USA, 2005. 

[6] K. Arshak, E. Jafer, C. Ibala, “Testing FPGA based digital system 
using XILINX ChipScope logic analyzer,” in Electronics Technology. 

ISSE '06, pp. 355-360, May 10-14, 2006. doi: 
10.1109/ISSE.2006.365129. 

[7] K.S. Morgan, D.E. Johnson, B.H. Pratt, M.J. Wirthlin, M.P. Caffrey, 
P.S. Graham, “SEU Induced Error Propagation in FPGAs,” in 
Proceedings of NSREC Conference, Seattle, WA, July 11-15, 2005, 
Brigham Young University, 459 CB Provo, UT 84602, Los Alamos 
National Laboratory, Los Alamos, NM 87545. 

[8] H.H. Schmit, S. Cadamni, M. Moe, S.C. Goldstein, “Pipeline 
Reconfigurable FPGAs,” Journal of VLSI Signal Processing Systems 
24, Kluwer Academic Publishers, pp. 129–146, 2000. 

[9] M. Abramovici, C.E. Stroud, “BIST-Based Delay-Fault Testing in 
FPGAs,” in Journal of Electronic Testing: Theory and Applications 
archive, Volume 19 Issue 5, October 2003, pp. 549-558, Kluwer 
Academic Publishers Norwell, MA, USA 

[10] M. B. Tahoori, “Application-Dependent Diagnosis of FPGAs,” in 
Proceedings of ITC 2004, pp. 645-654, Oct 26-28, 2004, doi: 
10.1109/TEST.2004.1387002 

[11] B.F. Dutton, C.E. Stroud, “Built-In Self-Test of Configurable Logic 
Blocks in Virtex-5 FPGAs,” in Proceedings of 41st Southeastern 
Symposium on System Theory, pp. 230-234, 2009. 

[12] I.G. Harris, Russell Tessier, “Testing and Diagnosis of Interconnect 
Faults in Cluster-Based FPGA Architectures,” in ICCAD'00 
Proceedings of 2000 IEEE/ACM International Conference on 
Computer-aided design, pp. 472-476, IEEE Press Piscataway, NJ, 
USA ©2000. 

[13] M.Latha,  M.Senthilmurugan, “Fault Detection and Fault Diagnosis in 
SRAM-Based FPGA Using BIST,” in IRACST – Engineering 
Science and Technology: An International Journal (ESTIJ), ISSN: 
2250-3498, Vol.2, No. 4, August 2012 609 

[14] A. Sarvi, C.A. Sharma, R.F. DeMara, “Bist-Based Group Testing for 
Diagnosis of Embedded FPGA Cores,” ESA, pp. 279-283, CSREA 
Press, 2008. 

[15] Dr.K.Babulu, M.K. Kumar, “FPGA Realization of Multiple Fault 
Diagnosis Technique for Faults in SRAM Based FPGAs,” in 
International Journal of Engineering Science and Innovative 
Technology (IJESIT), Volume 1, Issue 1, September 2012, 48, ISSN: 
2319 

[16] M. Rozkovec, J. Jenicheck, Z. Pliva, “Using deterministic test vectors 
to test FPGA circuit,” Proceedings of the 2013 IEEE 16th International 
Symposium on Design and Diagnostics of Electronic Circuits & 
Systems (DDECS), pp. 175-180, 2013. 

[17] F. Noorbasha, K. Harikishore, Ch. Hemanth, A. Sivasairam, V. Vijaya 
Raju, “LFSR Test Pattern For Fault Detection and Diagnosis for 
FPGA CLB Cells,” International Journal of Advances in Engineering 
& Technology, ISSN: 2231-1963, 240, Vol. 3, Issue 1, pp. 240-246, 
March 2012. 

[18] C.-F. Wu, C.-W. Wu, “Testing and Diagnosing Dynamic 
Reconfigurable FPGA,” VLSI Design, Volume 10, Issue 3, pp. 321-
333, 2000. 

[19] M.G. Gericota , G.R. Alves , M.L. Silva , J.M. Ferreira, “Active 
Replication: Towards a Truly SRAM-Based FPGA On-Line 
Concurrent Testing,” Proceedings of the Proceedings of The Eighth 
IEEE International On-Line Testing Workshop (IOLTW'02), p.165, 
July 08-10, 2002  

[20] Y.-B. Liao, P. Li, A.-W. Ruan, Y.-W. Wang, W.-C. Li, “A HW/SW 
Co-Verification Technique for FPGA Test,” Journal of Electronic 
Science and Technology of China, Vol. 7, No. 4, 390, December 
2009. 

[21] Y.-C. Chiu, B. Tarun, S. Ye, P.-I Yeh, P.-A. Shen, “The FPGA test 
system. Project Final Report,” Group 5, University of Southern 
California, December 2010. 

 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 08:46:35 (UTC) by 35.172.193.238. Redistribution subject to AECE license or copyright.]


