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Abstract—The paper aims to investigate issues related to one 

cycle controlled buck converters stability, in the situation when 
the integration capacitor discharging is performed through a 
non-zero value resistor, as it happens in practice. It is known 
that in this case the exponential discharge makes capacitor 
voltage theoretically never reach zero. Under these conditions, 
instability phenomena are expected when the discharge time is 
short, that is at high duty cycles. The stability condition is 
analytically derived with respect to the control voltage. It is 
shown that instability occurs with period doubling leading to a 
half switching frequency subharmonic. Computer simulations 
confirm the validity of theoretical considerations. 
 

Index Terms—bifurcation, converter, one cycle control, 
simulation, stability. 

I. INTRODUCTION 

One cycle control (OCC) technique was introduced by 
Smedley and Ćuk [1-2], and several models for it were 
proposed [3-4]. It has been a very promising control when 
applied to buck or Ćuk converters. This control technique 
was then extended by Lai and Smedley to the so called 
“integration control” [5-6] and applied to different switching 
converters [7-10].  

Chaotic and bifurcation aspects related to dc-dc switching 
converters operating in different modes have been 
intensively reported [11-19]. As OCC principle assumes an 
inherent loop, it becomes natural that stability and 
eventually bifurcation and/or chaotic behavior to be 
investigated. Several attempts in this direction were made 
[20-22]. Most of them assumed ideal components, but 
operation with nonideal devices could also lead to instability 
when the converters are operated in peculiar regimes.  

 The OCC principle is illustrated in Fig. 1 when used in 
conjunction with a buck converter. 

 
Figure 1. A buck converter employing one-cycle control.  
 

A narrow pulse clock sets the constant switching 
frequency and determines the moments when the transistor 
is switched on. The same time the transistor starts to conduct 
the diode voltage is integrated till the threshold imposed by 
the control voltage is reached. When the integrator output 
voltage equals the control voltage the transistor is switched 
off for the rest of current switching cycle. When the 
threshold is reached also the integrator is reset. 

It has been shown that converters using this technique 
reject input voltage perturbations in exactly one switching 
cycle and tightly follow the control reference very quickly. 
Therefore, the OCC technique is suitable for large-signal 
robust control of PWM switching converters, but also for 
quasi resonant converters or inverters and rectifiers as well. 
With capitals denoting dc values, transistor on time can be 
found solving the equation: 
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where Ts is the switching period. However, in practice, the 
switches are not ideal and the integrator reset is not 
instantaneous. Therefore, the accuracy of OCC is greatly 
dependent upon circuit design. 

II. STEADY STATE ANALYSIS OF THE OCC CONTROLLED 

BUCK CONVERTER 

A practical implementation for a buck converter with 
OCC, operating in CCM mode, is shown in Fig. 2. 

Figure 2. Practical implementation of an OCC controlled Buck converter. 
 

Voltage variation across the integration capacitor in the 
two complementary topological states ( ) of the 

circuit active switch is shown in Fig. 3, assuming stable 
OFFON tt ,
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operation. With constant vg, the absolute value of the voltage 
variation across the integration capacitor is linear and 
consistent with its charging law, as in equation (2).  
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It is considered that, at the initial moment, the integration 
capacitor equals some nonzero value, VCi(0), In Fig. 3, it 
corresponds to the increasing part, with a positive slope, 
from VCi(0), to Vm : 

Figure 3. OCC Buck integration capacitor in steady state. 
 

In steady state, the maximum value attainable by 
capacitor voltage is reached at the end of the conduction 
time of the transistor, that is after a time period equal to DTs. 
On the other side, this value is equal to the control voltage 
Vm, as shown in equation (3): 
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Expressing the integral in equation (3), we obtain: 
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From the OCC loop, when VCi=Vm, the Flip-Flop  circuit 
switches off  the transistor but also sends the control signal 
to close the switch in parallel to the integration capacitor Ci. 
Thus, the capacitor is discharged though resistor r according 
to an exponential discharge law. In practice this resistance is 
necessary in order not to have an excessive high discharge 
current through the discharge switch. In the second 
topological phase, when the transistor is off, the capacitor 
discharges according to the law given by equation (5), until 
this voltage, in a steady state, reaches again the value VCi(0). 
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This is the moment when the transistor is back into 
conduction and a new charging-discharging cycle starts.  

Replacing (5) in (4) we obtain: 
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On the other side, it is known that for the ideal buck 
converter the duty cycle is given by:  
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Substituting (7) into (6) and rearranging the terms, it 
follows that:  
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Relationship (8) provides the correspondence between the 
control voltage Vm and the output voltage, as well as the 
switching period and the values of the circuit elements in the 
OCC loop. 

To find a relationship between Vm  and VCi(0), we 
substitute the value of the duty cycle from equation (4) in 
equation (6), obtaining:  
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III. ANALYSIS OF THE OCC CONTROLLED BUCK 

CONVERTER IN THE PRESENCE OF PERTURBATIONS 

In the analysis below the perturbations will be denoted by 
hatted variables. In the presence of a small perturbation in 
the control voltage, the integrating capacitor voltage 
changes from steady state as depicted in Fig. 4. 

 
Figure 4. Capacitor Ci  voltage in the presence of a small perturbation   mv̂

 

With the perturbation applied, equations (3) and (5) 
modify as:  
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Obviously, also the minimum capacitor value and the 
duty cycle will be perturbed, too, as equation (10) shows. 

The first equation in (10) corresponds to the first 
topological state, when the transistor is on and the 
integration capacitor is linearly charged directly from the 
supply voltage until the ramp meets the perturbed reference 
voltage value, mm vV ˆ . The second equation in (10) is the 

equation describing the capacitor discharge while the 
transistor is blocked, until capacitor voltage reaches the 
value V )0(ˆCiv)0(Ci  . 

IV. OCC BUCK CONVERTER DISCRETE EQUATIONS IN THE 

PRESENCE OF PERTURBATIONS 

Stability analysis can be carried out in discrete time with 
the index defined by the period number. The purpose is to 
determine the recurrence that exists between the integration 
capacitor voltage values at the beginning of two consecutive 
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periods: nTs and (n+1)Ts. Referring to the waveforms 
enfaced in Fig. 5, we can write that: 

 
Figure 5. Waveforms after n+1 periods of PWM for the OCC Buck 
converter: unperturbed steady state (blue) and perturbed state (red) 
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where 

mmmnn vVvdDd ˆ;ˆ     (12) 

Linearizing the equations in (11) around the operating 
point , , under small signal assumptions 

 and  and expressing  from the first 

linearized equation resulting from (11), after some algebra 
one obtains: 
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From the second equation in (13), it is clear that a 
dependency of the form: 
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will result substituting  from the first equation in the 

second one. After rearranging the terms, one obtains: 
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Recurrence (15) is of the type:  
    msCisCi vknTvaTnv ˆˆ)1(ˆ     (16) 

with a and k constants easily identified from (15).As the 
perturbation was assumed to be constant, we can define 

, with b also a constant. Consequently, relationship 

(16) is in fact a sequence with the general term defined by 
the classical recurrence: 

mvkb ˆ
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with constant a and b. 
It is known from calculus that the solution for the general 

term of the sequence is given by: 
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Identifying a and b in (15), recurrence (18) becomes: 
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(19) 
Equation (19) relates the value , after n+1 

periods, to the initial perturbation, . It has to be 

remarked that there is a sign alternation for 

 sCi Tnv )1ˆ 
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consecutive periods. When instability will occur, then 
   sCisCi TkvkTv )1(ˆˆ  , as shown in Fig. 5. 

V. OCC BUCK CONVERTER STABILITY ANALYSIS  

Taking (18) to the limit we have:  
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Keeping in mind that xn is a perturbation, in order to have 
a stable control the perturbation has to vanish in time. From 
the mathematical point of view this implies that 
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As a is the coefficient of  from (19), the stability 

condition is: 

 0ˆCiv

i

s

rC

TD

m

g

i

eV

rV

R
)1(

1



     (21)  

 Highlighting the value of Vm in (21), the condition can be 
rewritten as: 
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Replacing the value of Vm from (8) into (22), the final 
form is found: 
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Relationship (23) provides the general stability condition 
for the OCC Buck converter. 

It is interesting to note that ideal operation when  0r  
results as a peculiar case leading to unconditioned 
instability. Indeed, viewing the right hand side as a function 
of r  and taking the limit with , it is easy to prove 
using l’Hospital rule that 

0r
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and thus the stability condition is always fulfilled. 

VI. CALCULATION OF THE THRESHOLD CONTROL VOLTAGE 

VM THAT LEADS THE OCC BUCK CONVERTER INTO 

INSTABILITY 

This assumes the equal sign in relation (22), in order to 
find Vm at the limit between the stability and instability 
regions. 
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Substituting the exponential from (25) in (6) it results 
that: 
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From (26) we can express the duty cycle D: 
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Replacing the value of D from (27) in (25) and 
rearranging, we obtain: 
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Equation (28) is a transcendent equation that provides the 
value of the control voltage Vm that drives the converter into 
instability. 

VII. MATLAB STABILITY ANALYSIS OF THE OCC BUCK 

CONVERTER  

The purpose of this paragraph is to investigate when the 
stability condition is not fulfilled. To simplify the 
calculations we make the notations: 
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It is known that for the buck converter 10  M

sT
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, because in practice usually . With these 

notations equation (23) can be put in the form:  
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We shall represent the function f given by (30) in Matlab, 
considering that M ranges between 0.01 and 0.99, while p is 
between 5 and 1000. The result is depicted in Fig. 6. 

From Fig. 6, it can easily be noted that for high values of 
M, for example 0.8-0.99 and for small values of p, for 
example in the range 5-150, the function values exceed 
unity and even reaches a maximum value of 96.7 (for the 
pair M=0.99 and p=5). This aspect denotes high instability 
in the region where f(M,p)>1. 

In conclusion, the OCC Buck converter is expected to 
become unstable in this area. We shall highlight and check 
this aspect by simulating it in a dedicated circuit simulation 
package in a distinct paragraph. 

VIII. CONTROL VOLTAGE CALCULATION FOR THE OCC 

BUCK CONVERTER STABILITY LIMIT  

If we note: 
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then equation (28) becomes: 
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Figure 6. The 3D graph in Matlab for f(M,p)  
 

Equation (32) is a transcendent equation that will be 
solved by numerical methods. Moreover, the equation has 
always a solution and this solution is unique because the 
function in y in the left hand side of (32) is monotonic, 
continuous and it takes values from  to .  

As an example, we shall consider the buck converter with 
the following component values: 

VVVVkHzfnFCkR ogsii 10;12;50;20;1  ,

srCr i 33.1;67.66   

Consequently, from (29) it results that 15p  and 

833.0 DM . 
Equation (32) is solved in Matlab and the solution is:  

13.3974y      (33) 

from which the value of the control voltage is derived as: 
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g
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It is also interesting to represent the normalized 
dependency between M and the normalized control voltage 

 for the same converter. Under stable operation it is 

known that this dependency is the first bisector, but when 
instability occurs it will deviate from this. In order to draw 
the dependency of M against , just divide (8) by Vg 

and make use of the previously defined notation, obtaining:  
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With fixed p, for each value of Vm the static conversion 
ratio is found by solving (35) and the results are presented in 
Fig.7 for three values of parameter p={10,15,20}. 

To better see the output voltage deviation, we added the 
first bisector with a black trace and also performed a 
magnified view in the range 0.50-0.99 for . It is gm VV /
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remarked that for values of M higher than 0.50, the output 
voltage no longer follows the control voltage and for values 
of Vm close to Vg, the deviation Vm-V0 has significantly high 
values. Also, the more p increases, the difference Vm-V0 will 
also increase to higher values. 

 
Figure 7. Static conversion ration against the normalized control voltage 
dependency: black trace– ideal dependency; colored traces – dependencies 
for different values of parameter p. 

IX. CASPOC SIMULATION FOR THE BUCK CONVERTER 

The final validation will be performed by circuit 
simulation. The simulation schematic in Caspoc [23] is 
depicted in Fig. 8. The integrator was built using a 741 
operational amplifier. 

 
Figure 8. Simulation schematics of the buck converter with OCC. 
 

First a stable operation was investigated corresponding to 
D=M=8/12 and p=15. The difference between V0 and Vm 
was analytically calculated in Matlab and the result was 

. This result was compared and 

validated by Caspoc simulation as a difference of 46.6mV 
was found, that is with only 0.4% relative error.  

mVVVV om 8.46

Next the unstable operation was investigated choosing a 
control voltage Vm=11V, that is higher than the limit value 
10.7178V previously predicted. The results of the simulation 
are presented in Fig. 9. 

Also the simulation confirms the unstable operation. 
Period doubling also brings an undesired increase in the 
output voltage ripple of 0.266V, therefore almost double 
compared to stable operation without OCC in the same 
operating point. 

Instability with the presence of a subharmonic leads to the 

idea that bifurcation phenomena are expected. This aspect 
will be detailed in section X.  

 
Figure 9. Output voltage waveform with period doubling phenomenon 
corresponding to Vm=11V, higher than the limit value 

X. THE BIFURCATION DIAGRAM THROUGH COMPUTER 

SIMULATION 

In order to obtain the bifurcation diagram of the OCC 
controlled buck converter, the control voltage was very 
slowly varied between a minimum value, corresponding to 
stable operation, to an maximum corresponding to deep 
instability. As it can be seen in Fig. 8, the 2 Hz parameter 
associated to the SIGNAL block showing that the control 
voltage is varied between the lower and upper limits in 0.5s. 
This long time allows us to assume that the operation the 
converter passes a sequence of quasi steady states. The SPL 
block performs a sample and hold at a rate equal to the 
switching period, imposing that the value of the output 
voltage at exactly the beginning of the period will be 
displayed. On the other side, the simulation time step has to 
be chosen low enough compared to the switching period in 
order to perform accurate simulation during one switching 
cycle. Of course, the data were displayed corresponding to 
the time the control voltage is swept. Thus the simulation 
time step was dt=5ns and TScreen=400ms. It can be seen that 
a very long simulation time is needed because the ratio 
between the screen length and the time step is quite high. In 
order to accelerate the simulation, data were displayed only 
at the beginning of each switching period as only the 
information at these time moments is needed. The 
bifurcation diagram is enfaced in Fig. 10.  

 
Figure 10. Bifurcation diagram for the OCC controlled buck converter.  
 

It can be easily seen that bifurcation occurs at a value 
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Vm=10.712V corresponding to V0=9.925V differing only by 
5mV and 2mV, respectively, compared to the theoretically 
established values. This confirms the correctness of the 
theoretical considerations 

XI. CONCLUSION 

In spite of the fact that under ideal operation of the 
integrator the OCC controlled buck converter is always 
stable, when the capacitor is discharged through a nonzero 
resistance instability will always occur at high  duty cycles 
and output voltages. The higher the discharge resistance the 
lower will be the limit value of the control voltage that 
marks the border between stable and unstable operation. 

The limit value for the control voltage can be calculated 
and the theoretical results were accurately confirmed by 
simulations. It was shown that instability installs with a 
bifurcation phenomenon that significantly deviates the dc 
output voltage from the control voltage and leads to 
undesired higher voltage ripple.  

Future research will focus on instability and eventually 
chaos behavior in OCC controlled fourth order converters. 
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