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1Abstract—This paper is dedicated to the design, 

implementation, and evaluation of fast circuits executing 
operations that are frequently required in data processing 
which are: 1) discovering the maximum and minimum values 
in a given set of data; and 2) sorting data items. We found that 
minimizing the number of circuit components does not 
guarantee minimal hardware resources. This is because 
interconnections also influence the complexity significantly. 
Network-based circuits are often considered to be 
combinational. However, this does not mean that they are 
faster than sequential circuits solving the same problem 
because propagation delays can be considerable. We revised 
the existing network-based solutions and proposed regular 
circuits which provide a good compromise between hardware 
resources and performance. 
 

Index Terms—data processing, field-programmable gate 
arrays, parallel processing, reconfigurable architectures, 
sorting. 

I. INTRODUCTION 

Parallel data processing frequently uses sorting networks 
to enable multiple operations to be applied simultaneously. 
A review of recent results in this area can be found in [1-3]. 
Such a comparison-based technique is especially beneficial 
for field-programmable gate arrays (FPGA) and graphics 
processing units (GPU) that execute operations over streams 
and apply a single instruction multiple data (SIMD) strategy. 
The research efforts are mainly concentrated on networks 
with minimal depth/number of comparators [1,2] and on co-
design, rationally splitting the problem between software 
and hardware [2]. To our knowledge, the regularity of the 
designed circuits and interconnections are almost never 
taken into account. The only report appeared in [4] where a 
generator for networks with reusable components was 
proposed. The networks in [4] were discussed just in terms 
of circuit sizes and performance was not shown. We would 
like to present research results which permit the following 
conclusions to be drawn: 

• Although measuring the complexity of circuits is 
often based on the number of components used, it is not 
always correct because complexity of interconnections 
might involve significant resources exceeding resources of 
the components. 

• In many practical applications combinational 
operations over data executing in one clock cycle might be 
slower than sequential multi-cycle operations due to 

difference in propagation delays.  
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• We found that the best designs rely on regular 
circuits, rationally combining parallel and sequential 
operations and allowing propagation delay and hardware 
resources to be minimized. 

II. REGULAR AND EASILY SCALABLE NETWORKS 

An analysis of different networks permits to conclude that 
even-odd transition [3] and the described in the paper max-
min networks are among the most regular and easily 
scalable. However, they are often characterized as 
considerably slower and more resource consuming [3] 
comparing with potential alternatives such as even-odd 
merge and bitonic merge (which are among the fastest 
known [1,2]). We would like to demonstrate that such 
conclusion is not always correct and besides, for circuits that 
can potentially be implemented in FPGAs, even-odd 
transition and max-min networks are not slower and they are 
significantly less resource consuming. Let us first compare 
even-odd transition (EOT), even-odd merge (EOM) and 
bitonic merge (BM) networks on a simple example. It is 
known [2,5,6] that for N data items the number of 
comparators C(N=2p) for EOT, EOM and BM is equal 
accordingly: C(N)=N×(N-1)/2, C(N=2p)=(p2-p+4)×2p-2-1, 
C(N=2p) = (p2+p)×2p-2. Yet for small values of N (let us say 
N=128) these networks cannot be implemented even in 
advanced FPGAs due to the lack of hardware resources (see 
the results of experiments in [2]). However, regularity of the 
EOT network (and also the max-min network) permits to 
find elegant solutions, which cannot be applied to the EOM 
and BM networks for which the existing methods [4] 
undoubtedly require numerous multiplexers and complex 
interconnections that increase propagation delays and 
decrease throughput.  

Let us look at an example in Fig. 1 where the EOT 
network is shown for N=8 data items and it can easily be 
scaled for any number N. N=8 input data (27, 31, 14, 99, 62, 
7, 9, and 31) are converted to output by the network of 
comparators, which can be described in VHDL, as shown on 
the top-left corner of Fig. 1a. The first network (Fig. 1a) 
sorts the input data and the second network (Fig. 1b) finds 
the items with maximum and minimum values. 

The circuits in Fig. 1 can be implemented either non-
sequentially or sequentially. Non-sequential (combinational) 
implementations have many limitations. For example, the 
results of [2] show that even in the relatively advanced and 
expensive FPGA XC5VFX130T from the Xilinx Virtex-5 
family, the maximum number of input data items (of size 
M=32 bit) is 64. In addition, signal propagation through 
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many vertical levels involves excessive delay. We suggest 
an alternative solution to the circuits in Fig. 1a/1b, which is 
outlined in Fig. 2a/2b. 
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Figure 1. Networks of comparators: Network for sorting N data items (a); 
Network for discovering minimum and maximum values (b) 

 
The idea is to use a feedback Register R and to activate 

different levels sequentially, still using many parallel 
operations at each level. Initially N data items are copied in 
parallel to the Register R. Thus, there are N multiplexers at 
the register inputs taking data from outside (before 
processing) and from the comparators (during processing). 
The circuits in Fig. 2 provide the following advantages: 

• Hardware resources are obviously decreased. 
Indeed, the circuits in Fig. 1a and in Fig. 1b require N×(N-

1)/2 and  comparators, respectively, 

whereas the circuits in Fig. 2a and Fig. 2b require N-1 and 
N/2 comparators, respectively. 
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• The implementation of the circuits in Fig. 2 is very 
regular, easily scalable for any N, and does not require 
complex interconnections. 

• The number of paths through vertical levels of 
comparators is decreased. Indeed, the result of sorting in 
Fig. 1a is produced at level 1, but since the network is 
hardwired, the remaining levels (2 and 3) are involved, 
causing two unnecessary paths to be followed and additional 
propagation delay. The circuit in Fig. 2a does not involve 
additional iterations. As soon as the enable signal that is 
produced at each level is 0, sorting is finished. Thus, only 
the two iterations that are actually needed are executed. 

Since the depth of comparators is just 2 in Fig. 2a and just 
1 in Fig. 2b, the propagation delay is reduced. 

The circuit in Fig. 2a sorts N input data items in Ts clock 
cycles and Ts ≤ N/2 [3]. Indeed, there are N/2 levels in Fig. 

1a [3] and the number of cycles in Fig. 2a is less or equal to 
N/2 because the result can be produced before passing 
through all the levels of Fig. 1a. The circuit in Fig. 2b finds 
the minimum and maximum values in Tf clock cycles and Tf 

= (log2N)-1. Indeed, at the iteration (log2N)-1 the results are 
already on the outputs of the combinational comparators. 
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Figure 2. One-level sequential circuits vs. multi-level circuits in Fig. 1: 
Circuit for sorting N data items (a); Circuit for discovering the minimum 
and maximum values (b) 

 
The charts in Fig. 3 present the results of analysis and 

comparison of the circuits in Fig. 1 and Fig. 2 in hardware. 
All the experiments were done in the Atlys prototyping 
board containing one FPGA XC6SLX45 of Xilinx Spartan-6 
family. Synthesis and implementation of the circuits was 
carried out in the Xilinx ISE 14.4 environment. The 
optimization goal for ISE 14.4 was set to speed and the 
optimization effort was set to normal. 

Hardware resources for the circuits in Fig. 2 are decreased 
(see Fig. 3a) compared to the circuits in Fig. 1. This is 
obvious and does not require additional comments. What is 
important is that the results of experiments show that the 
sequential circuits in Fig. 2b have the same performance as 
the combinational circuits in Fig. 1b. This is because 
Tf×Cmin  D, where Cmin is the minimum clock period of the 
circuits in Fig. 2b, and D is the propagation delay of the 
circuits in Fig. 1b. Thus, the same performance has been 
achieved with significantly less hardware resources and 
more complicated circuits have been built on the same 
microchip. The sequential circuits in Fig. 2a also have 
practically the same performance as the circuits in Fig. 1a. 
However, we were able to build a sequential circuit for 
N=256, while the available resources only allowed 
combinational circuits to be constructed for N≤24. Thus, the 
difference in problem size that can be accommodated is a 
factor of 10.7. The results of [2] demonstrate that even for 
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the more advanced FPGA XC5VFX130T of Virtex-5 
family, N≤64. Therefore, combinational networks only 
permit very limited number of data items to be processed. 
We found that the hardware resources required for our 
sequential circuits can be further decreased if comparators 
are built from the embedded in the FPGA XC6SLX45 
digital signal processing slices DSP48A1. Two 16-bit 
comparators (M=16) or one 48-bit comparator (M=48) were 
implemented in one DSP slice and tested. The results 
demonstrated that the number of occupied FPGA slices can 
be decreased by about 20%. 
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Figure 3. The results of experiments for M=32: Percentage of FPGA 
resources used for different values of N (a); Maximum attainable clock 
frequency for different values of N (b) 

III. LARGE SCALE DATA SETS 

Both circuits (Fig. 2a and Fig. 2 b) can be used for sorting 
in such a way that large data sets with  items are divided 
into sub-sets with up to N items that are sorted and then 
merged. For advanced FPGA, the value of N can be up to 
several thousands. For example, synthesis in ISE 14.4 for 
the Virtex-6 XC6VLX240t FPGA, without using the 
available 768 DSP slices 48E1, produces a circuit with the 
structure shown in Fig. 2a for N=1024, M=32, operating 
with the maximum frequency of 154 MHz and requiring 
21772 (58 %) FPGA slices. Assuming that indices of the 
first and of the last outputs are Ifirst=0 and Ilast=N-1, the 
circuit in Fig. 2b might be used as follows: 1) discovering 
the maximum and the minimum values; 2) incrementing Ifirst 
and decrementing Ilast and repeating step 1) while Ifirst < Ilast. 
The experiments have demonstrated that if we need to sort 
all data items before outputting the result, then the circuit in 
Fig. 2a is faster. However, if we need to output the sorted 
data as soon as possible, the second circuit is better and it is 
very fast. Indeed, once the input data are copied to the 
Register R, the first sorted item (maximum, minimum, or 
both) can be outputted practically immediately (the delay is 
less than 25 ns for N=1024, M=32 in the indicated above 
Virtex-6 FPGA for which 40% of slices are used with the 
maximum attainable clock frequency 454 MHz). All 
subsequent output items are produced with the same delay.  

Now let us discuss the search problem (searching for the 
maximum/minimum value). From Fig. 2b we can see that at 
each clock cycle N/2 data items, which include the 
maximum/minimum value, will be copied to the top/bottom 

segment of the Register R. Thus, the remaining (either 
bottom or top) part of the Register R can be reused to load a 
new portion of data. This technique enables the 
maximum/minimum values in very large data sets to be 
found even in low-cost FPGAs (such as the considered 
above XC6SLX45). Fig. 4 gives necessary details.  
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Figure 4. Using the circuit in Fig. 2b for large scale data sets: discovering 
the maximum value (a); discovering the maximum and the minimum values 
(b); example for Fig. 4a (c); example for Fig. 4b (d) 
 

The circuit in Fig. 4a copies the even outputs of the 
network containing the maximum value (see Fig. 2b) to the 
upper N/2 M-bit words of the Register R. The bottom N/2 
M-bit words of the Register R cannot contain the maximum 
value and may be reused to load a new portion of data items 
(such as 127, 511, 87, and 3 shown in the example in Fig. 
4c). Since a new portion can be loaded at each clock cycle, 
the maximum value for data sets containing  items can be 
discovered in =2×(-N)/N+log2N clock cycles. For 
instance, if  = 220 = 1 048 576, N=512, then  = 4103.  

The circuit in Fig. 4b discovers both the maximum and 
the minimum values in =4×(-N)/N+log2N clock cycles. 
At the beginning, two cycles are needed to produce (in the 
Register R) the upper N/4 M-bit words with the maximum 
value and the bottom N/4 M-bit words with the minimum 
value. After that the middle N/2 M-bit words (of the 
Register R) can be reused to load a new portion of N/2 data 
items and once again the maximum and the minimum values 
will be transferred to the upper and to the bottom quarters of 
the Register R in 2 clock cycles. Thus, 2×(-N)/(N/2) = 
4×(-N)/N cycles are required to process (to upload) all 
data and log2N cycles to propagate the last portion through 
the max-min circuit. If  = 220, N=512, then  = 8197.  

Thus, the proposed technique enables processing large 
data sets in low-cost FPGAs with external memory 
supplying input data. Fast data exchange between the FPGA 
and a higher-level host system can be provided through 
high-performance on-chip interface such as that is available 
for Zynq all programmable system-on-chip [7]. 

IV. EXPERIMENTS 

Synthesis in Xilinx ISE 14.4 for different FPGAs 
demonstrates that the proposed circuits (see Fig. 2) for up to 
thousands of items (M=32) can be implemented in one 
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(more advanced) FPGA microchip and they operate with 
high clock frequency (see Sections II, III where the results 
of some projects are given).  

From Fig. 3b we can see that the throughput of different 
circuits varies from 185 to 195 million items per second. 
Indeed, sorting 256 items (32-bit each) by the circuit in Fig. 
2a can be done with the maximum clock frequency Fmax = 
92.6 MHz = 92 600 000 Hz. If the enable signal is not used 
(i.e. for the worst case) then 128 iterations are required to 
sort 256 items. Thus, we spend titem = {[(109 / 92 600 000 
Hz)  128 iterations] / 256 data items} ns per data item, and 
the throughput is 109 ns / titem = 185 200 000 items per 
second. It is easy to show that the throughput for the circuit 
in Fig. 2a for any value of N is equal to [Fmax(in Hz)  2] 
items per second. From Fig. 3b we can see that the 
maximum/minimum value for N items can be found in tmax-

min = [(109 / 202 865 000 Hz)  log2N iterations] ns and, 
thus, for N=512, tmax-min = 45 ns. For pure combinational 
max-min circuit from Fig. 1b and N=256, tmax-min = 34 ns. 
Note that a combinational circuit for N=512 cannot be 
implemented in the FPGA XC6SLX45. If we compare the 
results above with [1,2,4,8-20] we can see that our circuits 
provide either similar or better throughput. For example, in 
[2] processing median operators in FPGA of Virtex-5 family 
for large data sets requires approximately 19 ns per data 
item. In our case this time is about 5.5 ns. Sorting of 16×220 
data items in GPU in [1] took between 500 and 1000 ms. So, 
the throughput is ≤ 34 million data items per second.  

To demonstrate usefulness of the proposed circuits and 
their applicability to large data sets, a hybrid merge sort 
algorithm (similar to [8]) was described in C++ and used 
without (i.e. as a pure merge sort) and with the proposed 
circuits. For the latter case the number N in each preliminary 
sorted by the circuit in Fig. 2a subset was changed from 8 to 
2048 and the size  of the initial (unsorted) set was taken as 
1, 10, and 100 millions of data items. 1000 experiments with 
randomly generated data were done for each instance 
characterized by N/ and an average value was taken. The 
acceleration achieved varies from 1.4 (for smaller values of 
N) to 4.6 (for larger N). Thus, the more data are pre-sorted 
in FPGA in each sub-set the faster results are produced.  

The analysis of Fig. 3 clearly demonstrates that resources 
for the proposed solutions are significantly smaller 
comparing to [2,4,8,9,10,12,13,14] allowing larger data sets 
to be handled in FPGA and permitting communication 
overhead to be reduced (e.g. burst mode can be applied 
more efficiently for transmitting larger sets of data). The 
comparison of performance and resources of the proposed 
networks with other known results leads to the following 
conclusions: 
 Neither from the FPGA-based implementations 

[2,4,8,9,10,12,13,14] permits to construct circuits with 
so small hardware resources.  

 The proposed solutions permit better compromise 
between resource consumption and performance to be 
achieved than in the other known designs.  

V. CONCLUSION 

Sequential circuits that implement functionality similar to 
combinational sorting networks are proposed and discussed. 

They consume significantly less resources and, thus, the 
same hardware can be used for processing substantially 
larger sets of data with similar performance. Furthermore, 
outputting sorted and maximum/minimum values can be 
done with a very small delay even in low-cost microchips. 

ACKNOWLEDGMENT 

The authors wish to thank Ivor Horton for very useful 
comments and suggestions.  

REFERENCES 
[1] G. Gapannini, F. Silvestri, and R. Baraglia, “Sorting on GPU for large 

scale datasets: A through comparison,” Information Processing and 
Management, 2012, vol. 48, no. 5, pp. 903–917. 

[2] R. Mueller, J. Teubner, and G. Alonso, “Sorting Networks on 
FPGAs,” The International Journal on Very Large Data Bases, vol. 
21, no. 1, 2012, pp. 1-23. 

[3] GPU Gems, Improved GPU Sorting. [Online]. Available: 
http.developer.nvidia.com/GPUGems2/gpugems2_chapter46.html 

[4] M. Zuluada, P. Milder, and M. Puschel, “Computer Generation of 
Streaming Sorting Networks,” in Proc. 49th Design Automation Conf., 
San Francisco, June, 2012, pp. 1245-1253. 

[5] D.E. Knuth, The Art of Computer Programming. Sorting and 
Searching, vol. III. Addison-Wesley, 1973. 

[6] K.E. Batcher, “Sorting networks and their applications,” in Proc. 
AFIPS Spring Joint Computer Conf., USA, 1968, pp. 307-314. 

[7] Xilinx Inc., Zynq-7000, All Programmable SoC, 2013. [Online]. 
Available: 
http://www.xilinx.com/support/documentation/user_guides/ug585-
Zynq-7000-TRM.pdf 

[8] R.D. Chamberlain and N. Ganesan, “Sorting on Architecturally 
Diverse Computer Systems,” in Proc. 3rd Int. Workshop on High-
Performance Reconfigurable Computing Technology and 
Applications – HPRCTA’09, USA, 2009, pp. 39-46. 

[9] J. Ortiz and D. Andrews, “A Configurable High-Throughput Linear 
Sorter System,” in Proc. of IEEE Int. Symp. on Parallel & Distributed 
Processing, April, 2010, pp. 1-8. 

[10] D.J. Greaves and S. Singh, “Kiwi: Synthesis of FPGA circuits from 
parallel programs,” in Proc. 16th IEEE Int. Symp. on Field-
Programmable Custom Computing Machines  - FCCM’08, USA, 
2008, pp. 3-12. 

[11] S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach, “Accelerating 
Compute-Intensive Applications with GPUs and FPGAs,” in Proc. 
Symp. on Application Specific Processors – SASP’08, USA, 2008, pp. 
101-107. 

[12] R. Mueller, Data Stream Processing on Embedded Devices. Ph.D. 
thesis, ETH, Zurich, 2010. 

[13] D. Koch and J. Torresen, “FPGASort: a high performance sorting 
architecture exploiting run-time reconfiguration on FPGAs for large 
problem sorting,” in Proc. 19th ACM/SIGDA Int. Symp. on Field 
Programmable Gate Arrays – FPGA’11, USA, 2011, pp. 45-54. 

[14] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson, 
“Implementation in FPGA of Address-based Data Sorting,” in Proc. 
21st Int. Conf. on Field-Programmable Logic and Applications – 
FPL’11, Greece, 2011, pp. 405-410. 

[15] X. Ye, D. Fan, W. Lin, N. Yuan, and P. Ienne, “High Performance 
Comparison-Based Sorting Algorithm on Many-Core GPUs,” in Proc. 
IEEE Int. Symp. on Parallel & Distributed Processing – IPDPS’10, 
USA, 2010, pp. 1-10. 

[16] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting 
algorithms for manycore GPUs,” in Proc. IEEE Int. Symp. on Parallel 
& Distributed Processing – IPDPS’09, Italy, 2009, pp. 1-10. 

[17] D. Cederman and P. Tsigas, “A practical quicksort algorithm for 
graphics processors,” in Proc. 16th Annual European Symp. on 
Algorithms – ESA’08, Germany, 2008, pp. 246–258. 

[18] C. Grozea, Z. Bankovic, and P. Laskov, “FPGA vs. Multi-Core CPUs 
vs. GPUs,” in Facing the multicore-challenge, R. Keller, D. Kramer, 
and J.P. Weiss (Eds), Springer-Verlag Berlin, Heidelberg, 2010, pp. 
105-117. 

[19] M. Edahiro, “Parallelizing fundamental algorithms such as sorting on 
multi-core processors for EDA acceleration,” in Proc. 18th Asia and 
South Pacific Design Automation Conf. - ASP-DAC’09, Japan, 2009, 
pp. 230-233. 

[20] H.S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE 
Transactions on Computers, vol. C-20, (2), 1971. 

 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:40:36 (UTC) by 3.82.58.213. Redistribution subject to AECE license or copyright.]


