
Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Fast Regular Circuits for Network-based
Parallel Data Processing

Valery SKLYAROV, Iouliia SKLIAROVA
University of Aveiro/IEETA, 3810-193, Portugal

skl@ua.pt, iouliia@ua.pt

1Abstract—This paper is dedicated to the design,

implementation, and evaluation of fast circuits executing
operations that are frequently required in data processing
which are: 1) discovering the maximum and minimum values
in a given set of data; and 2) sorting data items. We found that
minimizing the number of circuit components does not
guarantee minimal hardware resources. This is because
interconnections also influence the complexity significantly.
Network-based circuits are often considered to be
combinational. However, this does not mean that they are
faster than sequential circuits solving the same problem
because propagation delays can be considerable. We revised
the existing network-based solutions and proposed regular
circuits which provide a good compromise between hardware
resources and performance.

Index Terms—data processing, field-programmable gate
arrays, parallel processing, reconfigurable architectures,
sorting.

I. INTRODUCTION

Parallel data processing frequently uses sorting networks
to enable multiple operations to be applied simultaneously.
A review of recent results in this area can be found in [1-3].
Such a comparison-based technique is especially beneficial
for field-programmable gate arrays (FPGA) and graphics
processing units (GPU) that execute operations over streams
and apply a single instruction multiple data (SIMD) strategy.
The research efforts are mainly concentrated on networks
with minimal depth/number of comparators [1,2] and on co-
design, rationally splitting the problem between software
and hardware [2]. To our knowledge, the regularity of the
designed circuits and interconnections are almost never
taken into account. The only report appeared in [4] where a
generator for networks with reusable components was
proposed. The networks in [4] were discussed just in terms
of circuit sizes and performance was not shown. We would
like to present research results which permit the following
conclusions to be drawn:

• Although measuring the complexity of circuits is
often based on the number of components used, it is not
always correct because complexity of interconnections
might involve significant resources exceeding resources of
the components.

• In many practical applications combinational
operations over data executing in one clock cycle might be
slower than sequential multi-cycle operations due to

difference in propagation delays.

1This research was supported by FEDER through the Operational

Program Competitiveness Factors - COMPETE and by National Funds
through FCT - Foundation for Science and Technology in the context of the
projects FCOMP-01-0124-FEDER-022682 (FCT reference PEst-
C/EEI/UI0127/2011) and Incentivo/EEI/UI0127/2013.

• We found that the best designs rely on regular
circuits, rationally combining parallel and sequential
operations and allowing propagation delay and hardware
resources to be minimized.

II. REGULAR AND EASILY SCALABLE NETWORKS

An analysis of different networks permits to conclude that
even-odd transition [3] and the described in the paper max-
min networks are among the most regular and easily
scalable. However, they are often characterized as
considerably slower and more resource consuming [3]
comparing with potential alternatives such as even-odd
merge and bitonic merge (which are among the fastest
known [1,2]). We would like to demonstrate that such
conclusion is not always correct and besides, for circuits that
can potentially be implemented in FPGAs, even-odd
transition and max-min networks are not slower and they are
significantly less resource consuming. Let us first compare
even-odd transition (EOT), even-odd merge (EOM) and
bitonic merge (BM) networks on a simple example. It is
known [2,5,6] that for N data items the number of
comparators C(N=2p) for EOT, EOM and BM is equal
accordingly: C(N)=N×(N-1)/2, C(N=2p)=(p2-p+4)×2p-2-1,
C(N=2p) = (p2+p)×2p-2. Yet for small values of N (let us say
N=128) these networks cannot be implemented even in
advanced FPGAs due to the lack of hardware resources (see
the results of experiments in [2]). However, regularity of the
EOT network (and also the max-min network) permits to
find elegant solutions, which cannot be applied to the EOM
and BM networks for which the existing methods [4]
undoubtedly require numerous multiplexers and complex
interconnections that increase propagation delays and
decrease throughput.

Let us look at an example in Fig. 1 where the EOT
network is shown for N=8 data items and it can easily be
scaled for any number N. N=8 input data (27, 31, 14, 99, 62,
7, 9, and 31) are converted to output by the network of
comparators, which can be described in VHDL, as shown on
the top-left corner of Fig. 1a. The first network (Fig. 1a)
sorts the input data and the second network (Fig. 1b) finds
the items with maximum and minimum values.

The circuits in Fig. 1 can be implemented either non-
sequentially or sequentially. Non-sequential (combinational)
implementations have many limitations. For example, the
results of [2] show that even in the relatively advanced and
expensive FPGA XC5VFX130T from the Xilinx Virtex-5
family, the maximum number of input data items (of size
M=32 bit) is 64. In addition, signal propagation through

 47

Digital Object Identifier 10.4316/AECE.2013.04008

1582-7445 © 2013 AECE

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:40:36 (UTC) by 3.82.58.213. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

many vertical levels involves excessive delay. We suggest
an alternative solution to the circuits in Fig. 1a/1b, which is
outlined in Fig. 2a/2b.

27
31
14
99
62
7
9
31

31
99
27
62
14
31
7
9

99
62
31
31
27
14
9
7

99
62
31
31
27
14
9
7

99
62
31
31
27
14
9
7

This circuit can be combinational

sorted

Level 0

A <= A when A >= B else B;
B <= B when A >= B else A;

A
B

A
B

V
H
D
L

a)

27
31
14
99
62
7
9
31

31
27
99
14
62
7
31
9

99
27
31
14
62
9
31
7

99 –
27
31
14
62
9
31
7 –

This circuit can be
combinational

b)

Level 1 Level 2 Level 3
= N/2‐1

Level 0 Level 1 Level 2 =
log2N‐1

N
 in
p
u
t
d
at
a
it
em

s

N
 s
o
rt
ed

 o
u
tp
u
t
d
at
a
it
em

s

N
 in
p
u
t
d
at
a
it
em

s

maximum
value in input
data items

minimum
value in input
data items

Figure 1. Networks of comparators: Network for sorting N data items (a);
Network for discovering minimum and maximum values (b)

The idea is to use a feedback Register R and to activate

different levels sequentially, still using many parallel
operations at each level. Initially N data items are copied in
parallel to the Register R. Thus, there are N multiplexers at
the register inputs taking data from outside (before
processing) and from the comparators (during processing).
The circuits in Fig. 2 provide the following advantages:

• Hardware resources are obviously decreased.
Indeed, the circuits in Fig. 1a and in Fig. 1b require N×(N-

1)/2 and comparators, respectively,

whereas the circuits in Fig. 2a and Fig. 2b require N-1 and
N/2 comparators, respectively.

 




2)(log

1

2 2
N

n

nN

• The implementation of the circuits in Fig. 2 is very
regular, easily scalable for any N, and does not require
complex interconnections.

• The number of paths through vertical levels of
comparators is decreased. Indeed, the result of sorting in
Fig. 1a is produced at level 1, but since the network is
hardwired, the remaining levels (2 and 3) are involved,
causing two unnecessary paths to be followed and additional
propagation delay. The circuit in Fig. 2a does not involve
additional iterations. As soon as the enable signal that is
produced at each level is 0, sorting is finished. Thus, only
the two iterations that are actually needed are executed.

Since the depth of comparators is just 2 in Fig. 2a and just
1 in Fig. 2b, the propagation delay is reduced.

The circuit in Fig. 2a sorts N input data items in Ts clock
cycles and Ts ≤ N/2 [3]. Indeed, there are N/2 levels in Fig.

1a [3] and the number of cycles in Fig. 2a is less or equal to
N/2 because the result can be produced before passing
through all the levels of Fig. 1a. The circuit in Fig. 2b finds
the minimum and maximum values in Tf clock cycles and Tf

= (log2N)-1. Indeed, at the iteration (log2N)-1 the results are
already on the outputs of the combinational comparators.

R
eg
is
te
r
(R
)

0

7

1
2
3
4
5
6

1
2
3
4
5
6

clock

clock
enable

enable = 1 if there is at least
one data swap in the second
level, else enable = 0

R
eg
is
te
r
(R
)

a)

b)

0
1
2
3
4
5
6
7

0
2
4
6
1
3
5
7

clockclock

en
a
b
le
 =
 1
 w
it
h
in
 f
ir
st
 (
lo
g 2
N
)‐
1

cl
o
ck
 c
yc
le
s,
 e
ls
e
en

a
b
le
 =
 0

M
a
xi
m
u
m
 v
a
lu
e
at

cl
o
ck
 c
yc
le
 (
lo
g 2
N
)‐
1

M
in
im

u
m
 v
a
lu
e
at

cl
o
ck
 c
yc
le
 (
lo
g 2
N
)‐
1

Figure 2. One-level sequential circuits vs. multi-level circuits in Fig. 1:
Circuit for sorting N data items (a); Circuit for discovering the minimum
and maximum values (b)

The charts in Fig. 3 present the results of analysis and

comparison of the circuits in Fig. 1 and Fig. 2 in hardware.
All the experiments were done in the Atlys prototyping
board containing one FPGA XC6SLX45 of Xilinx Spartan-6
family. Synthesis and implementation of the circuits was
carried out in the Xilinx ISE 14.4 environment. The
optimization goal for ISE 14.4 was set to speed and the
optimization effort was set to normal.

Hardware resources for the circuits in Fig. 2 are decreased
(see Fig. 3a) compared to the circuits in Fig. 1. This is
obvious and does not require additional comments. What is
important is that the results of experiments show that the
sequential circuits in Fig. 2b have the same performance as
the combinational circuits in Fig. 1b. This is because
Tf×Cmin  D, where Cmin is the minimum clock period of the
circuits in Fig. 2b, and D is the propagation delay of the
circuits in Fig. 1b. Thus, the same performance has been
achieved with significantly less hardware resources and
more complicated circuits have been built on the same
microchip. The sequential circuits in Fig. 2a also have
practically the same performance as the circuits in Fig. 1a.
However, we were able to build a sequential circuit for
N=256, while the available resources only allowed
combinational circuits to be constructed for N≤24. Thus, the
difference in problem size that can be accommodated is a
factor of 10.7. The results of [2] demonstrate that even for

 48

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:40:36 (UTC) by 3.82.58.213. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

the more advanced FPGA XC5VFX130T of Virtex-5
family, N≤64. Therefore, combinational networks only
permit very limited number of data items to be processed.
We found that the hardware resources required for our
sequential circuits can be further decreased if comparators
are built from the embedded in the FPGA XC6SLX45
digital signal processing slices DSP48A1. Two 16-bit
comparators (M=16) or one 48-bit comparator (M=48) were
implemented in one DSP slice and tested. The results
demonstrated that the number of occupied FPGA slices can
be decreased by about 20%.

0

50

100

150

200

250

comb MAX

comb MAX_MIN

seq MAX_MIN

seq EVEN_ODD

0

10

20

30

40

50

60

70

80

90

100

comb MAX

comb MAX_MIN

seq MAX_MIN

seq EVEN_ODD

P
e
rc
e
n
ta
ge
 o
f
FP
G
A
 r
es
o
u
rc
es
 (
sl
ic
es
)

M
ax
im

u
m
 f
re
q
u
e
n
cy
 in

 M
H
z

a) b)

Maximum value N for comb EVEN_ODD
is 24. The circuit consumes 91% of
FPGA slices and works with the
maximum frequency 10 MHz

comb – pure combinational circuits (see Fig. 1); seq – sequential circuits (see Fig. 2)

MAX – finding the maximum value;
MAX_MIN – finding maximum and minimum value;
EVEN_ODD – data sort by circuits of Fig. 1a/2a

Figure 3. The results of experiments for M=32: Percentage of FPGA
resources used for different values of N (a); Maximum attainable clock
frequency for different values of N (b)

III. LARGE SCALE DATA SETS

Both circuits (Fig. 2a and Fig. 2 b) can be used for sorting
in such a way that large data sets with  items are divided
into sub-sets with up to N items that are sorted and then
merged. For advanced FPGA, the value of N can be up to
several thousands. For example, synthesis in ISE 14.4 for
the Virtex-6 XC6VLX240t FPGA, without using the
available 768 DSP slices 48E1, produces a circuit with the
structure shown in Fig. 2a for N=1024, M=32, operating
with the maximum frequency of 154 MHz and requiring
21772 (58 %) FPGA slices. Assuming that indices of the
first and of the last outputs are Ifirst=0 and Ilast=N-1, the
circuit in Fig. 2b might be used as follows: 1) discovering
the maximum and the minimum values; 2) incrementing Ifirst
and decrementing Ilast and repeating step 1) while Ifirst < Ilast.
The experiments have demonstrated that if we need to sort
all data items before outputting the result, then the circuit in
Fig. 2a is faster. However, if we need to output the sorted
data as soon as possible, the second circuit is better and it is
very fast. Indeed, once the input data are copied to the
Register R, the first sorted item (maximum, minimum, or
both) can be outputted practically immediately (the delay is
less than 25 ns for N=1024, M=32 in the indicated above
Virtex-6 FPGA for which 40% of slices are used with the
maximum attainable clock frequency 454 MHz). All
subsequent output items are produced with the same delay.

Now let us discuss the search problem (searching for the
maximum/minimum value). From Fig. 2b we can see that at
each clock cycle N/2 data items, which include the
maximum/minimum value, will be copied to the top/bottom

segment of the Register R. Thus, the remaining (either
bottom or top) part of the Register R can be reused to load a
new portion of data. This technique enables the
maximum/minimum values in very large data sets to be
found even in low-cost FPGAs (such as the considered
above XC6SLX45). Fig. 4 gives necessary details.

0
1
2

0
2
4

N/2‐1

N
e
w
 s
eg
m
e
nt
 o
f

N
/2
 d
at
a
it
em

s

Max‐min
circuit

shown in
Fig. 2b

0
1
2

0
2
4

New
segment of
N/2 items
on even

clock cycle
or feedback
from max‐
min circuit
on odd clock

cycle

Max‐min
circuit

shown in
Fig. 2b

On each
clock cycle

Maximum
value

N‐1
N‐3
N‐5

M
ax
im

u
m

va
lu
e

M
in
im

u
m

va
lu
e

R
eg
is
te
r
R

R
eg
is
te
r
R

27 31 99
31 99 62
14 62 511
99 31 87
62 127
7 511
9 87
31 3

1) 2)
27 31 99 99 511
31 99 62 511 87
14 62 127 87
99 31 511 14
62 27 87 62
7 14 3 127
9 7 14 3 62
31 9 7 7 3

m
ax
 is
 h
er
e

m
ax
 is
 h
er
e

Clock cycles

a)
b)

c) d)

N
ew

 p
o
rt
io
n

o
f
d
a
ta
 it
em

s

N
ew

 p
o
rt
io
n

o
f
d
a
ta
 it
em

s

N
/4
 it
em

s

N/2

N‐1

M
u
lt
ip
le
xe
r

N
/4
 it
em

s

6, 8, and other even outputs

N‐7, N‐9, and other odd outputs

1) 2) 3) 4)

Figure 4. Using the circuit in Fig. 2b for large scale data sets: discovering
the maximum value (a); discovering the maximum and the minimum values
(b); example for Fig. 4a (c); example for Fig. 4b (d)

The circuit in Fig. 4a copies the even outputs of the
network containing the maximum value (see Fig. 2b) to the
upper N/2 M-bit words of the Register R. The bottom N/2
M-bit words of the Register R cannot contain the maximum
value and may be reused to load a new portion of data items
(such as 127, 511, 87, and 3 shown in the example in Fig.
4c). Since a new portion can be loaded at each clock cycle,
the maximum value for data sets containing  items can be
discovered in =2×(-N)/N+log2N clock cycles. For
instance, if  = 220 = 1 048 576, N=512, then  = 4103.

The circuit in Fig. 4b discovers both the maximum and
the minimum values in =4×(-N)/N+log2N clock cycles.
At the beginning, two cycles are needed to produce (in the
Register R) the upper N/4 M-bit words with the maximum
value and the bottom N/4 M-bit words with the minimum
value. After that the middle N/2 M-bit words (of the
Register R) can be reused to load a new portion of N/2 data
items and once again the maximum and the minimum values
will be transferred to the upper and to the bottom quarters of
the Register R in 2 clock cycles. Thus, 2×(-N)/(N/2) =
4×(-N)/N cycles are required to process (to upload) all
data and log2N cycles to propagate the last portion through
the max-min circuit. If  = 220, N=512, then  = 8197.

Thus, the proposed technique enables processing large
data sets in low-cost FPGAs with external memory
supplying input data. Fast data exchange between the FPGA
and a higher-level host system can be provided through
high-performance on-chip interface such as that is available
for Zynq all programmable system-on-chip [7].

IV. EXPERIMENTS

Synthesis in Xilinx ISE 14.4 for different FPGAs
demonstrates that the proposed circuits (see Fig. 2) for up to
thousands of items (M=32) can be implemented in one

 49

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:40:36 (UTC) by 3.82.58.213. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 50

(more advanced) FPGA microchip and they operate with
high clock frequency (see Sections II, III where the results
of some projects are given).

From Fig. 3b we can see that the throughput of different
circuits varies from 185 to 195 million items per second.
Indeed, sorting 256 items (32-bit each) by the circuit in Fig.
2a can be done with the maximum clock frequency Fmax =
92.6 MHz = 92 600 000 Hz. If the enable signal is not used
(i.e. for the worst case) then 128 iterations are required to
sort 256 items. Thus, we spend titem = {[(109 / 92 600 000
Hz)  128 iterations] / 256 data items} ns per data item, and
the throughput is 109 ns / titem = 185 200 000 items per
second. It is easy to show that the throughput for the circuit
in Fig. 2a for any value of N is equal to [Fmax(in Hz)  2]
items per second. From Fig. 3b we can see that the
maximum/minimum value for N items can be found in tmax-

min = [(109 / 202 865 000 Hz)  log2N iterations] ns and,
thus, for N=512, tmax-min = 45 ns. For pure combinational
max-min circuit from Fig. 1b and N=256, tmax-min = 34 ns.
Note that a combinational circuit for N=512 cannot be
implemented in the FPGA XC6SLX45. If we compare the
results above with [1,2,4,8-20] we can see that our circuits
provide either similar or better throughput. For example, in
[2] processing median operators in FPGA of Virtex-5 family
for large data sets requires approximately 19 ns per data
item. In our case this time is about 5.5 ns. Sorting of 16×220
data items in GPU in [1] took between 500 and 1000 ms. So,
the throughput is ≤ 34 million data items per second.

To demonstrate usefulness of the proposed circuits and
their applicability to large data sets, a hybrid merge sort
algorithm (similar to [8]) was described in C++ and used
without (i.e. as a pure merge sort) and with the proposed
circuits. For the latter case the number N in each preliminary
sorted by the circuit in Fig. 2a subset was changed from 8 to
2048 and the size  of the initial (unsorted) set was taken as
1, 10, and 100 millions of data items. 1000 experiments with
randomly generated data were done for each instance
characterized by N/ and an average value was taken. The
acceleration achieved varies from 1.4 (for smaller values of
N) to 4.6 (for larger N). Thus, the more data are pre-sorted
in FPGA in each sub-set the faster results are produced.

The analysis of Fig. 3 clearly demonstrates that resources
for the proposed solutions are significantly smaller
comparing to [2,4,8,9,10,12,13,14] allowing larger data sets
to be handled in FPGA and permitting communication
overhead to be reduced (e.g. burst mode can be applied
more efficiently for transmitting larger sets of data). The
comparison of performance and resources of the proposed
networks with other known results leads to the following
conclusions:
 Neither from the FPGA-based implementations

[2,4,8,9,10,12,13,14] permits to construct circuits with
so small hardware resources.

 The proposed solutions permit better compromise
between resource consumption and performance to be
achieved than in the other known designs.

V. CONCLUSION

Sequential circuits that implement functionality similar to
combinational sorting networks are proposed and discussed.

They consume significantly less resources and, thus, the
same hardware can be used for processing substantially
larger sets of data with similar performance. Furthermore,
outputting sorted and maximum/minimum values can be
done with a very small delay even in low-cost microchips.

ACKNOWLEDGMENT

The authors wish to thank Ivor Horton for very useful
comments and suggestions.

REFERENCES
[1] G. Gapannini, F. Silvestri, and R. Baraglia, “Sorting on GPU for large

scale datasets: A through comparison,” Information Processing and
Management, 2012, vol. 48, no. 5, pp. 903–917.

[2] R. Mueller, J. Teubner, and G. Alonso, “Sorting Networks on
FPGAs,” The International Journal on Very Large Data Bases, vol.
21, no. 1, 2012, pp. 1-23.

[3] GPU Gems, Improved GPU Sorting. [Online]. Available:
http.developer.nvidia.com/GPUGems2/gpugems2_chapter46.html

[4] M. Zuluada, P. Milder, and M. Puschel, “Computer Generation of
Streaming Sorting Networks,” in Proc. 49th Design Automation Conf.,
San Francisco, June, 2012, pp. 1245-1253.

[5] D.E. Knuth, The Art of Computer Programming. Sorting and
Searching, vol. III. Addison-Wesley, 1973.

[6] K.E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS Spring Joint Computer Conf., USA, 1968, pp. 307-314.

[7] Xilinx Inc., Zynq-7000, All Programmable SoC, 2013. [Online].
Available:
http://www.xilinx.com/support/documentation/user_guides/ug585-
Zynq-7000-TRM.pdf

[8] R.D. Chamberlain and N. Ganesan, “Sorting on Architecturally
Diverse Computer Systems,” in Proc. 3rd Int. Workshop on High-
Performance Reconfigurable Computing Technology and
Applications – HPRCTA’09, USA, 2009, pp. 39-46.

[9] J. Ortiz and D. Andrews, “A Configurable High-Throughput Linear
Sorter System,” in Proc. of IEEE Int. Symp. on Parallel & Distributed
Processing, April, 2010, pp. 1-8.

[10] D.J. Greaves and S. Singh, “Kiwi: Synthesis of FPGA circuits from
parallel programs,” in Proc. 16th IEEE Int. Symp. on Field-
Programmable Custom Computing Machines - FCCM’08, USA,
2008, pp. 3-12.

[11] S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
Compute-Intensive Applications with GPUs and FPGAs,” in Proc.
Symp. on Application Specific Processors – SASP’08, USA, 2008, pp.
101-107.

[12] R. Mueller, Data Stream Processing on Embedded Devices. Ph.D.
thesis, ETH, Zurich, 2010.

[13] D. Koch and J. Torresen, “FPGASort: a high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting,” in Proc. 19th ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays – FPGA’11, USA, 2011, pp. 45-54.

[14] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson,
“Implementation in FPGA of Address-based Data Sorting,” in Proc.
21st Int. Conf. on Field-Programmable Logic and Applications –
FPL’11, Greece, 2011, pp. 405-410.

[15] X. Ye, D. Fan, W. Lin, N. Yuan, and P. Ienne, “High Performance
Comparison-Based Sorting Algorithm on Many-Core GPUs,” in Proc.
IEEE Int. Symp. on Parallel & Distributed Processing – IPDPS’10,
USA, 2010, pp. 1-10.

[16] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore GPUs,” in Proc. IEEE Int. Symp. on Parallel
& Distributed Processing – IPDPS’09, Italy, 2009, pp. 1-10.

[17] D. Cederman and P. Tsigas, “A practical quicksort algorithm for
graphics processors,” in Proc. 16th Annual European Symp. on
Algorithms – ESA’08, Germany, 2008, pp. 246–258.

[18] C. Grozea, Z. Bankovic, and P. Laskov, “FPGA vs. Multi-Core CPUs
vs. GPUs,” in Facing the multicore-challenge, R. Keller, D. Kramer,
and J.P. Weiss (Eds), Springer-Verlag Berlin, Heidelberg, 2010, pp.
105-117.

[19] M. Edahiro, “Parallelizing fundamental algorithms such as sorting on
multi-core processors for EDA acceleration,” in Proc. 18th Asia and
South Pacific Design Automation Conf. - ASP-DAC’09, Japan, 2009,
pp. 230-233.

[20] H.S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE
Transactions on Computers, vol. C-20, (2), 1971.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 12:40:36 (UTC) by 3.82.58.213. Redistribution subject to AECE license or copyright.]

