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1Abstract—A microphone clustering and back propagation 

(BP) neural network based acoustic source localization method 
using distributed microphone arrays in an intelligent meeting 
room is proposed. In the proposed method, a novel clustering 
method is first used to divide all microphones into several 
clusters where each one corresponds to a specified BP network. 
Afterwards, the energy-based cluster selecting scheme is 
applied to the select the clusters which are small and close to 
the acoustic source. In each chosen cluster, the time difference 
of arrival of each microphone pair is estimated, and then all 
estimated time delays act as input of the corresponding BP 
network for position estimation. Finally, all estimated positions 
from the chosen clusters are fused for global position 
estimation. Only subsets rather than all the microphones are 
responsible for acoustic source localization, which leads to less 
computational cost; moreover, the local estimation in each 
chosen cluster can be processed in parallel, which expects to 
improve the localization speed potentially. Simulation results 
from comparison with other related localization methods 
confirm the validity of the proposed method. 
 

Index Terms—acoustic source localization, BP neural 
network, microphone clustering, GCC-PHAT, TDOA. 

I. INTRODUCTION 

Acoustic source localization using microphone arrays has 
been widely used in various applications, ranging from 
teleconference, audio/video supervision, human computer 
interaction to hearing aids [1-3], etc. Correspondingly, 
various localization methods [4-7] have been proposed for 
different applications. Altogether, localization methods may 
be broadly grouped into indirect and direct approaches. The 
generalized cross-correlation and phase transform (GCC-
PHAT) based localization method is a popular indirect 
approach, which first estimates the time difference of arrival 
(TDOA) of received signals at different microphones, and 
then estimates the source position. The steered response 
power and phase transform (SRP-PHAT) method [8] is a 
typical direct approach, which can perform the TDOA 
estimation and acoustic source localization in one step. 
However, most localization literatures focus on a single 
regular microphone array [9]. In fact, in some special 
scenarios with distributed microphone arrays which have 
large microphone spacing, numerous microphones and 

irregular topology, these traditional methods can not be 
applied directly. With large microphone spacing, some 
localization methods may fail due to the spatial aliasing 
effect. Moreover, signal qualities received at different 
microphones may rather different. Generally speaking, the 
microphones closer to the speaker may yield more accurate 
position estimation than those far away [10]. Therefore, it is 
necessary to develop localization methods suitable for 
distributed microphone arrays. 
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 There have been some valuable works on acoustic source 
localization using distributed microphone arrays. In the 
Aarabi approach [10], each microphone subarray produces 
an individual spatial likelihood function (SLF), and then 
fuses all the SLFs by a weighted summation for the final 
source position estimation, but its computational load is 
large. Elahi [11], proposed a similar method which fuses all 
the SLFs by simple summation to estimate the speaker 
position, and modeled prior information about the speaker 
position to reduce the computational complexity. Takagi et 
al. [12] divided the whole microphone network into several 
microphone subarrays (considered each subarray as a node), 
and presented a hierarchical localization method. In the 
Takagi method, in the node layer, the multiple signal 
classification (MUSIC) algorithm was employed for 
direction estimation; in the network layer, the intersections 
were calculated from estimated data and microphone 
coordinates, and finally the intersections were fused for 
robust position estimation. As described in [10-12], to 
circumvent the spatial aliasing due to large microphone 
spacing, it is sensible to perform traditional localization 
methods on the small subarrays, and then fuse the estimated 
results from each subarray for robust position estimation. 
However, in these literatures, the microphone subarrays are 
naturally implied and each one has regular topology, they 
did not mention how to partition the microphones into 
subarrays. Valenzise et al. [13], from the perspective of 
resource consumption, proposed a resource constrained 
efficient acoustic source localization approach where 
according to the performance constrains (i.e., Cramer-Rao 
low bound CRLB) and resource constrains, the optimal 
subset of microphones rather than the whole array is 
selected for acoustic source localization. 

In this paper, a microphone clustering and BP neural 
network based localization method is proposed for acoustic 
source localization in an intelligent meeting room with 
distributed microphone arrays. The main idea of this method 
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is to divide the distributed microphone arrays into several 
small microphone clusters (i.e., subarrays); each cluster may 
carry on local estimation of the acoustic source position in 
parallel, and all local estimated results from these clusters 
are fused for the global acoustic source position. In order to 
reduce the computational cost and gain robust estimation, 
the energy based cluster selecting method is used to select 
the clusters which are tight and close to the speaker for 
acoustic source localization. Each microphone cluster 
corresponds to a specified BP neural network whose inputs 
are the estimated TDOAs from the cluster and output is the 
estimated source position. During the acoustic source 
localization, in each selected cluster, the TDOA estimation 
is first carried on with the GCC-PHAT method; then, all the 
estimated TDOAs act as the inputs to the corresponding BP 
network for position estimation.  

This paper is organized as follows. In Section II the basic 
theory for acoustic source localization is presented. In 
Section III, the proposed acoustic source localization 
method using distributed microphone arrays is described in 
detail, including the microphone clustering, cluster 
selecting, BP networks for position estimation, and 
estimated results fusion. Simulated results are given in 
Section IV. Finally, some conclusions are drawn in Section 
V. 

II. BASIC THEORY FOR ACOUSTIC SOURCE LOCALIZATION 

A. Signal Model in Distributed Microphone Arrays 
  Consider a single acoustic source in a typical noisy and 

reverberant environment with distributed microphone arrays 
of M microphones elements. The signal received at the 
microphone i is modeled as 

Mitntsthtx irii ,1,2,),()()()(                        (1) 

where hi(t) denotes the impulse response from the acoustic 
source sr(t) to the microphone i, '  ' denotes the linear 
convolution operator; and ni(t) is an additive noise at 
microphone i and assumed to be uncorrelated with each 
other as well as sr(t). 



B.  GCC-PHAT Method for TDOA Estimation 
Assume that xi(t) and xj(t) are signals acquired by 

microphones i and j ( ) respectively. The 

generalized cross-correlation (GCC) function [14] 
between microphone pair (i, j) is 
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where Φ (f) is the frequency-domain weighting function, 
and different patterns of Φ(f) may lead to various GCC 
methods, among which the phase transform (PHAT) method 
is widely used. In the GCC-PHAT method [15], the cross-
correlation function is 
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where ‘  ’ denotes the conjugation operator, and the 

weighting function is
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The relative time difference of arrival (TDOA)  

between microphones i and j corresponds to the time tag 

when the cross-correlation  reaches the peak 
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C. TDOA based Acoustic Source Localization 
Assume that the position coordinates of microphones i 

and j in 3-D space are and , 

respectively, and the Euclidian distance between them 

is

ir  T),,( jjjj zyxr 

jiij rrd  . For an acoustic source at , 

the relative time delay

T
ssss zyxr ),,(

ij , i.e., TDOA between microphones 

i and j satisfies 

(
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where c is the sound propagation speed, and (5) is an 
equation in vector form  which can be also expressed as 
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Obviously, given the positions and TDOA ij of 

microphone pair (i, j), (6) is an equation with three unknown 
variables xs, ys, zs. Thus it needs at least three different 
equations for an acoustic source position. In other words, at 
least three microphone pairs are required for TDOA based 
acoustic localization. 

D. Adaptive K-Means++ Clustering method 
Assume that the k-th microphone cluster contains nk 

microphones, whose coordinates in vector form 

are . The clustering procedure of the 

distributed microphone arrays using the Adaptive K-
Means++ method is as follows [15]: 

},2,1,{ k
k

i nir 

1) Set k = 1 and the first initial center to be the median of 
the microphone coordinates. 

2) Carry on the K-Means clustering method. 
3) Calculate the variance of each microphone cluster k. 
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where is the center coordinates of cluster k. kr0

4) Check the stop condition for clustering 
  clusterkv )(                                                                 (8) 

where the threshold cluster is estimated in the practice. 

5) If the variances of all the clusters satisfy the condition 
(8), the clustering is stopped; otherwise, k = k +1, and 
calculate the initial center of the new cluster according to 
the K-Means++ algorithm [15], i.e. 
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rriD  denotes the shortest distance 

between microphone i and all the current cluster centers. 
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The schedule diagram of the Adaptive K-Means+ + 
clustering method is shown in Fig. 1. 

 
Figure 1. Adaptive K-Means++ clustering method 
 
E. BP Neural Network 

The Artificial Neural Network (ANN) has been 
introduced into microphone array processing for acoustic 
source localization [17-20]. BP neural network is a classic 
artificial neural network, and may be used for mathematical 
modeling and prediction. In the learning process of BP 
network, the training pattern's input propagates forward 
across the network, whereas the errors propagate backward 
from the output nodes to the inner nodes. BP network 
typically has a three-layer structure: input layer, hidden 
layer and output layer, as shown in Fig. 2. 

 
Figure 2.  BP neural network 

 
In this paper, several BP networks have been built with 

each one corresponding to a specific microphone cluster. In 
the training phase of BP network, the positions of acoustic 
source are used as the output and the true TDOAs from the 
microphone cluster act as the input; in the simulation phase, 
the estimated TDOAs from the microphone cluster act as the 
input of the built BP network for an estimated acoustic 
source position. 

III. ACOUSTIC SOURCE LOCALIZATION WITH DISTRIBUTED 

MICROPHONE ARRAYS 

In the noisy and reverberant environment with distributed 
microphone arrays, the acoustic signal qualities acquired by 
microphones at different positions are rather different due to 
the large coverage of the whole array. Microphones which 
are close to the acoustic source can provide more reliable 
estimates than those far away [10]. Additionally, when the 
number of microphones is very large, it will have large 
computational and communication cost if using all the 
microphones for the acoustic source localization.  

In this paper, the main goal is to select the microphone 
subsets which are close to the speaker for acoustic source 
localization. In order to achieve the goal, four essential 
aspects need to be considered: 1) how to group the 
microphones into several small clusters (i.e., subsets); 2) 
how to determine which microphone cluster or clusters are 
close to the acoustic source and then select it or them for 
localization; 3) what method to use for the acoustic source 
localization in the selected cluster or clusters; 4) if more 
than one microphone cluster is selected, how to fuse the 
estimated results from each cluster. Correspondingly, the 
implementation of the proposed approach herein mainly 
contains four modules as Fig. 3. 

 
Figure 3. Microphone clustering and BP network-based acoustic source 
localization method 

 
As shown in Fig. 3, given the microphone positions, a 

neighborhood measure based microphone clustering is first 
applied to group the microphones into several clusters; 
afterwards several BP networks are built with each one 
corresponding to a specific cluster. During the localization, 
one or more microphone clusters are first selected on basis 
of some energy scheme; then the TDOA estimation is 
carried on in each selected cluster; next the TDOAs from 
each cluster act as the inputs of the corresponding BP 
network whose output is the estimated acoustic source 
position; finally, estimated positions from all the selected 
clusters are fused for a robust result of the acoustic source 
localization.  

A. Clustering of Distributed Microphone Arrays 
Many clustering methods have been applied for data 

classification [21-25]. We herein introduce the Adaptive 
K-Means++ method [17] into microphone clustering and 
propose an alternative clustering method according to the 
characteristic of the localization method with the distributed 
microphone arrays. 

The proposed clustering method aims to divide the 
distributed microphone arrays into several small microphone 
clusters, and each cluster is available for acoustic source 
localization. In this method, the Euclidian distance dij 
between microphones i and j is used as the proximity 
measure, and the variance v(k) is adopted as the intensive 
measure of microphone cluster k.  
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As analyzed above, at least three microphone pairs are 
required for the acoustic source localization. Thus during the 
clustering procedure, the smallest cluster may contain at 
least three pairs of microphones.  

The clustering procedure is given as follows: 
1) Any two microphones i and j may constitute a pair     

(i, j), and keep all the pairs in which the microphones are 
close enough to each other into a set P 

 

jiMjiddjiP spaij     ,,,2,1,},),{(                  (10) 

where dspa is the distance threshold.  
2) In the microphone set P generated from step 1), any 

three microphone pairs may constitute a potential 

microphone cluster k. 
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3) Calculate the variance v(k) of each potential cluster k 
and check 

clukv )(                                                                       (12) 

where the threshold clu is estimated in the practice.  

4) If microphone pair set Mk of cluster k satisfies 
condition (12), its microphones may form an initial 
microphone cluster k. 

5) Merge the initial microphone clusters generated from 
step 4). Clusters k1 and k2 are merged into a single cluster k, 
if they share the same microphones, and the corresponding 
microphone pair sets and are merged as follows: 

1kM
2kM

21 kkk MMM                                                             (13) 

where Mk is the microphone pair set of the merged cluster k, 
and the ‘ ’ represents the union operation of set.  

B. Microphone Cluster Selecting 
As mentioned above, in distributed microphone arrays, 

large microphone spacing may lead to erroneous TDOA 
estimation due to the spatial aliasing, which further affects 
the acoustic source position estimation. It is logical to use 
the subset rather than all microphones for acoustic source 
localization. Additionally, the microphones or arrays which 
are close to the speaker can obtain better signal quality. 
Generally speaking, given the same background SNR and 
geometry structures for two different microphone arrays, the 
array closer to the speaker will ordinarily yield more 
accurate location estimation than the array far away [10]. 
Theoretically, the acoustic energy is inversely proportional 
to the square of the distance between the sound source and 
the microphone [26], thus it may be rational to assume that 
the microphone cluster with high received acoustic energy is 
closer to the speaker than the one with low acoustic energy. 
Herein two potential energy-based proposals are presented 
for cluster selection. 

Cluster selecting method-I: Individual microphone 
signal energy based method 

Assume that a person is speaking in a specific position of 
the room. The procedure of cluster selecting is as follows. 

1) Assign a specified wall number wl, l=1,2, 3,4,5, to each 
microphone i, and i(wl) indicates microphone i is on wall wl. 

2) Calculate the short-time energy s(i) of the signal 
received at each microphone i: 
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where L is the signal length in samples. 
3) Search M0 microphones with the largest short-time 

energies, and determine the corresponding wall numbers. 
4) As to each selected wall from step 3), calculate the 

average signal energy Se(k) of all microphones for each 
cluster k on it. 
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where ik denotes the microphone i in cluster k, and nk is the 
microphone number of cluster k. 

5) For each selected wall from step 3), select the 
microphone cluster k0 with the largest average energy on it. 

k
e kSk )(maxarg0                                                         (16) 

In this cluster selecting method, the walls which are close 
to the speaker are first determined, and then the microphone 
cluster with largest average signal energy corresponding to 
each selected wall is further selected for acoustic source 
localization.  

Cluster selecting method-II: Average energy to energy 
variance ratio based cluster selecting method 

Alternatively, another cluster selecting method is 
presented as well, and the cluster selecting process is 
described as follows. 

1) Calculate the short-time signal energy s(i) of each 
microphone i using equation (14). 

2) Calculate the average signal energy Se(k) of all 
microphones for each cluster k using equation (15).  

3) Initially select the microphone clusters with large 
energy 

})({ Ee SkSk                                                               (17) 

where SE is the energy threshold, and SE = γSemax, and Semax is 
the maximum average energy of all clusters, and γ is a ratio 
factor. 

4) Calculate energy variance ev(k) of each cluster k 
generated from step 3) 
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5) Calculate the ratio of average energy Se(k) to energy 
variance ev(k) for each selected cluster k from step 3) 
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v

e
sv                                                               (19) 

6) Further select microphone cluster k, if it satisfies 

vsv Eke s)(                                                                   (20) 

where Esv = βevmin, and evmin is the minimum energy variance 
of all microphone clusters, and β is a ratio factor. 

In the cluster selecting method-I, each selected wall can 
contribute only one cluster for acoustic localization, whereas 
in the cluster selecting method-II, more than one cluster on 
one wall may be selected. Moreover, the cluster selecting 
method-II is more computation consuming as it requires the 
average signal energies of all available clusters.  

C. BP Networks for Source Position Estimation 
Each BP network in this paper has a three-layer network 
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structure, but different BP networks have dissimilar 
parameter setups. The input layer has as many neurons as 
the dimension of the input vector. In the hidden layer, the 
number of hidden units is optimized in the experiment. The 
output layer has three neurons corresponding to the 
dimension of the estimated speaker position in 3-D space.  

Input definition 
The estimated TDOAs of each microphone cluster act as 

the input vector of the corresponding BP network. Consider 
a microphone cluster p with n estimated TDOA values from 
n pairs of microphones, the input vector to the specified BP 
network is 

T
,2,1, ],,[ nppp                                                          (21) 

where is the relative time delay from microphone pair i 

of the cluster p, and ‘ ’ denotes the vector or matrix 

transposition. Obviously, microphone clusters with different 
numbers of microphone pairs may have different input 
vector dimensions for specified BP networks.  

ip,
T][

Output definition 
The output of each BP network is the estimated position 

coordinates which act as the acoustic position estimation of 
the specific microphone cluster. In 3-D space the output 
vector format is: 

T],,[ sss zyx                                                                   (22) 

Microphone cluster table  
When all the BP networks are trained, a microphone 

cluster table has been completely built. In the cluster table, 
each BP network item corresponds to a specified 
microphone cluster. During the acoustic source localization 
stage, once the microphone clusters are selected, the 
corresponding BP networks in the microphone cluster table 
are then taken for source position estimation. 

D. Position Estimation of Acoustic Source 
As mentioned above, more than one microphone clusters 

may be selected for acoustic source localization. Thus, data 
fusion is adopted for final global estimated result. 

Weighting factor 
Assume that sk microphone clusters are selected for local 

acoustic position estimation. For each selected microphone 
cluster k, a weighting factor J(k) is introduced as 

ke sk
kv

kSkJ ,,2,1  ,
)(

1
)()( 




                           (23) 

where is a ratio factor, and Se(k) and v(k) are defined as 
before. 

The weighting factor J(k) may be normalized as  
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Next, the normalized weighting factor )(kJ is adopted for 

the fusion of local estimated results. 
Data fusion 
Let rs denotes the acoustic source position vector, 

and  is the estimated source position from cluster k. 

The final global position estimation is calculated by the 
weighted fusion 

)(ˆ krs

 
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E. Computational Cost 
In this subsection, we attempt to provide an upper bound 

estimation of the computational cost in terms of 
multiplications and accumulations (MACs) for the proposed 
method and the method using one ANN network for all 
microphones [20] ( we call it single ANN method afterwards 
in this paper ) as well as the SRP-PHAT method [8].  

In the proposed method, the microphone clustering and 
BP networks training can be completed offline before the 
localization, therefore the associated processing does not 
involve additional computational cost. Denote M as the 
number of microphones, Nc as the number of clusters in total, 
Pc as the number of microphone pairs in one cluster, sk as 
the number of selected clusters; and ni, nh, no as the number 
of neural units in input-layer, hidden-layer and output-layer, 
respectively. The upper bound of the parameters above is 
given as: M = 36, Nc = 39, Pc = 6, sk = 4, ni = 6，nh = 14, no 
= 3. In the method of all microphones with one single ANN, 
the number of microphone pairs is pall = 34. The parameters 

of the ANN network are  

respectively. In the SRP-PHAT method, the 

number of microphone pairs is pSRP-PHAT = 34, and the 
number of grid positions is r = 5556. 

,34all
in ,34allp ,68all

hn

,3all
on

Let mac denote the numbers of multiplications and 
accumulation of one TDOA computation. The 
computational cost of the three methods in terms of MACs 
is estimated in Table I. 

 
TABLE I. COMPARISSON OF COMPUTATIONAL COST  FOR THREE METHODS 

Method Number of MACs 
Proposed 
method 5.110324

1)(5.1
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As shown in Table I, the proposed method expects to have 
less computational cost than the other two methods. 

IV. SIMULATION AND RESULT DISCUSSION 

A. Simulation Setups 
 Simulation environment setups 
The simulation environment is a smart meeting room of 

size m3m6m5  with 36 microphones distributed on four 
walls (walls w1, w2, w3, w4) and the ceiling (w5). As shown 
in Fig. 4, walls w1 and w2 contain four microphones around 
the central region, respectively; walls w3 and w4 contain six 
microphones around the central region severally; the ceiling 
w5 contains four T-shaped microphone subarrays. The 
distance between adjacent microphones is 25cm. 

 BP network training and simulation 
Each BP network has a three-layer structure as described 

in Section III, which has as many neural units as the 
estimated TDOAs from the corresponding cluster in the 
input layer, 14 neural units in the hidden layer and 3 neural 
units in the output layer. The BP networks were simulated in 
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Matlab-2010a, and the transfer function from the input layer 
to hidden layer was tansig, the transfer function from the 
hidden layer to the output layer was purelin, the training 
function was trainbr, and the learning ratio was 0.0001. 

For the BP network training and simulation, 4575 
acoustic source positions were uniformly sampled from the 
rectangular region of with the height from 145cm 
to 175cm，and the grid size is . All the 
positions were divided into two complementary segments: 
training data denoted by TD is used for BP network training 
phase and simulation data denoted by SD is used for BP 
network simulation phase, with the proportions are 70% and 
30%, respectively and with no intersection between them.  

m4m3 
cm10cm10cm10 

 Microphones clustering 
In order to evaluate the proposed microphones clustering 

method, a comparison with the Adaptive K-Means++ 
clustering method was carried on in a scenario of Fig. 6(a), 
where six microphones are distributed within an area 
of . The distance between two adjacent 
microphones is dspa = 25cm, In the acoustic source 
localization experiment, all the microphone clusters in Fig. 4 
were generated using the proposed clustering method and 
the threshold for clustering is δcluster = 657. 

m4m3 

 
Figure 4. Distributed microphone arrays in a room 

 
m3m6m5 

Acoustic source localization 
The room impulse response (RIR) of the scenario, as 

shown in Fig. 4, was simulated from the image model 
method [27]. The acoustic source was a 32 kHz sampled, 
600ms female speech utterance with silence removed 
beforehand. Fig. 5 shows the original speech and the 
simulated signal received at one microphone in the 
reverberant environment with SNR = 20dB and RT60 = 
0.2s. During the TDOA estimation using GCC-PHAT 
method, a frame length of 125ms with 4000 samples, frame 
shift of 2000 samples and Hamming window were adopted. 
In the clusters selecting phase, the two parameters were set 
as   γ = 0.9 and β = 1.15, respectively. 

During localization experiments, three segments from the 
positions SD with the female speech as speaker were used 
for position estimation: SD1 represents that the speaker is in 
the center region of the room; SD2 represents the speaker is 
close to one wall and SD3 represents the speaker is 
positioned in the corner. 

 In order to evaluate the localization performance of the 
proposed method, a comparison with the single ANN 
method [20] was first carried on in two different noise 
environments: background noise and localized noise source 
environment. In both scenarios the RT60 = 0.2s and the 
SNR varies. In the localized noise environment, the noise 
was positioned at [15,560,170] (cm). As a second 

comparison, the proposed localization method was also 
compared with the SRP-PHAT method in the reverberant 
environment where SNR varies and RT60 = 0.2s. Speaker 
positions were in the x-y plane with z fixed to150cm. The 
grid size of SRP-PHAT method is , and 5556 grid 
positions are considered.  

cm6cm6 

 
(a) 

 
(b) 

Figure 5.  (a) The original female speech (b) The received signal of one 
microphone using image model method 
 
B. Simulation Results  

Microphone clustering  
In the scenario of Fig. 6(a), the proposed microphone 

clustering method was compared with the Adaptive K-
Means++ method. Fig. 6(b) shows that using the 
Adaptive K-Means++ method, only two topologies of 
clusters (i.e., subarrays) are generated and different clusters 
have no intersections (microphones). Whereas using the 
proposed clustering method, as shown in Fig. 7, six clusters 
with three topologies are generated, and different clusters 
may have intersections. Simulation results show that the 
proposed method can provide more clusters (i.e., various 
combinations of microphones) available for localization 
than the Adaptive K-Means++ method, which is 
especially beneficial in the scenario where the speaker is 
moving. Additionally, the Adaptive K-Means++ 
method may be affected by the center initialization, whereas 
the proposed method does not have this limitation.  

 
(a) 

 
(b) 

Figure 6. Microphone clusters generated by the Adaptive K-Means++ 

method with  480cluster
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Figure 7. Microphone clusters generated by the proposed clustering method 

with  480cluster

 
Acoustic source localization in background noise 

environment 
The estimated results in background noise environment 

are shown in Table II. From the Table II, we can observe 
that the proposed localization method with cluster selecting 
is not as good as the single ANN method in high SNR 
conditions, whereas it performs better in low SNR 
conditions. The advantage of the proposed method lies in 
that the computational cost is less.   

 
TABLE II. THE AVERAGE POSITION ESTIMATION ERRORS OF THE PROPOSED 

METHOD AND THE SINGLE ANN MEHTOD FOR SPEAKER IN DIFFERENT 

REGIONS OF THE BACKGROUND NOISE ENVIRONMENT 
Noise condition (SNR/dB) 

Average localization errors (cm) 
Data 
sets 

Localization 
methods 

30 20 15 10 5 0 
Cluster 

selecting-I 
13.7 13.8 20.3 20.9 49.5 44.7 

 Cluster 
selecting-II 

18.6 20.9 17.0 17.1 22.3 49.6 SD1 

Single ANN 
method 

4.30 4.94 6.20 7.97 159 313 

Cluster 
selecting-I 

18.5 25.9 20.3 21.7 44.6 46.3 

Cluster 
selecting-II 

16.4 23.1 17.0 17.1 20.7 50.0 SD2 

Single ANN 
method 

5.66 5.74 6.20 7.97 159 311 

Cluster 
selecting-I 

13.9 21.9 32.6 43.6 52.5 66.3 

Cluster 
selecting-II 

21.2 26.0 36.4 46.8 56.1 69.5 SD3 

Single ANN 
method 

4.50 14.9 7.58 8.75 132 248 

 
TABLE III. THE AVERAGE POSITION ESTIMATION ERRORS OF THE PROPOSED 

METHOD AND THE SINGLE ANN  MEHTOD FOR  THE SPEAKER IN DIFFERENT 

REGIONS OF THE LOCALIZED NOISE SOURCE ENVIRONMENT  
Noise condition (SNR/dB) 

Average localization errors 
(cm) 

Data 
sets 

Localization methods 

30dB 20dB 15dB 

Cluster selecting-II 15.7 22.6 30.5 
SD1 

Single ANN method 25.1 36.5 52.0 

Cluster selecting-II 20.2 28.7 43.5 
SD2 

Single ANN method 31.6 42.1 48.3 

Cluster selecting-II 17.6 20.1 25.2 
SD3 

Single ANN method 36.1 46.5 50.4 
 

Acoustic source localization in localized noise 
environment 

In this experiment, the noise source is localized in one 
corner of the room; the acoustic source is positioned in 
different regions. Simulation results from Table III show 

that the proposed localization method with cluster selecting 
outperforms the single ANN method under various SNR 
conditions. 

Additionally, in both noise source environments, when 
the speaker position lies in different regions in the room, the 
performances of the proposed localization method are 
different: when the speaker lies in the central region, the 
estimated results are best; when the speaker lies in the 
corner, estimated results are worst. 

Acoustic source localization with the proposed method 
versus the SRP-PHAT method 

In this experiment, the proposed localization method was 
compared with the SRP-PHAT method, Average errors 
results in Fig. 8 shows that the proposed method is 
comparable to the SRP-PHAT method in low SNR 
conditions, whereas it performs better than the SRP-PHAT 
method as the SNR values becomes larger.  

 
Figure 8. Localization results of the proposed method and the SRP-PHAT 
method in the background noise environment. 

 

V. CONCLUSION 

In this paper, a novel method for acoustic localization in 
distributed microphone arrays was proposed. In the 
proposed method, a microphone clustering method is first 
applied for dividing all the microphones into small clusters 
and each cluster corresponds to a specified BP neural 
network. After clustering selecting, for each chosen cluster 
local position estimation is carries on. Finally, the local 
estimated positions from the chosen clusters are further 
fused for robust global acoustic source position.  

In the microphone clustering experiment, compared with 
the Adaptive K-Means++ method, the proposed 
clustering method may generate more clusters, which means 
more choices for cluster selecting and localization; 
meanwhile, the proposed clustering method is not sensitive 
to the initialization. During the localization experiments, the 
proposed method with cluster selecting is first compared 
with the method with one single ANN for all microphones. 
In the background noise scenario, though the proposed 
method is not as good as the single ANN method in high 
SNR conditions, whereas it performs better in low SNR 
conditions. In the localized noise scenario, the proposed 
method outperforms the single ANN method under different 
SNR conditions. Additionally, when the speaker lies in the 
central region, the estimated results are better than that when 
the speaker is in other regions of the room. Considering the 
microphones’ placement, we may infer that on the condition 
of proper microphones’ arrangement, the proposed method 
may yield expected results. In another comparison, the 
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average localization errors of the proposed localization 
method are comparable to the SRP-PHAT method in low 
SNR conditions, and it performs better in high SNR 
conditions. In addition, the proposed method expects to have 
less computational cost. 
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