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Abstract—For passive type RFID tags, EPCglobal Class 1 

Generation-2 Revision is used widely as a de facto standard. As 
it was designed for low cost, it is quite vulnerable to security 
issues, such as privacy concerns. This paper1 presents a new 
RFID mutual authentication protocol, which is designed to be 
configured on EPC Gen2 platform and to meet various security 
requirements while providing efficiency using PRNG (Pseudo 
Random Number Generator). Group-ID is used to minimize 
the authentication time. Security analysis of the proposed 
protocol is discussed. 

 
Index Terms—Authentication, Communication System 

Security, Identity Management Systems, RFID Tags, Security. 

I. INTRODUCTION 

The RFID (Radio-frequency identification) system, which 
exchanges data between tags and readers via a wireless radio 
frequency band, is being used actively in many areas [5-7], 
such as the supply chain, production management, etc. As a 
currently popular standard of the RFID systems, EPCglobal 
class 1 generation 2 is used most commonly [1]. EPCglobal 
class 1 generation 2 standards focus on minimizing the 
production cost so they provide the minimal security 
features for the low-cost production of RFID tags. 

One of the most important security features for RFID is to 
hide the tag's identity (ID) for anonymity, e.g., if a tag ID is 
exposed to anyone, it can be replicated and tracked through 
by scanning wherever the owner goes. 

The EPCglobal Class 1 Generation-2 protocol, a de facto 
standard protocol, is considered to be vulnerable for security 
and privacy. Secure standard cryptographic primitives, such 
as AES or SHA-1 can be used to cope with such 
vulnerabilities. However, these measures increase the 
manufacturing cost of RFID tags considerably. This paper 
proposes a new mutual authentication protocol, which can 
be considered a variant of the EPCglobal Class 1 
Generation-2 protocol since it relies on only PRNG of the 
standard. Moreover, Group-ID is introduced to minimize the 
authentication time.  

This paper is organized as follows. Section 2 explains the 
RFID security threats and security requirements and Section 
3 describes the proposed protocol. Section 4 shows the 
security analysis results and Section 5 concludes the paper. 

II. THREATS AND SECURITY REQUIREMENTS OF THE RFID 

PROTOCOL 

This section describes the security threats that can occur 

during protocol execution in a RFID system and the security 
requirements to counteract them. The following is a list of 
security threats that can occur when the protocol runs: 
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Eavesdropping - Because communication between the 
tag and reader is wireless, anyone can obtain important 
information of tags/readers. 

Traffic analysis – The predictable response of the tag 
provides information that the tag and tag owner's identity 
can be connected. 

Spoofing/impersonation attack - After collecting the 
communication histories, the attacker can masquerade as 
legitimate tags/readers. 

Tracking - RFID tags that receive the query message 
from the reader are always supposed to respond to any 
message. If the tag's response is fixed or predictable to the 
attacker, it can cause privacy issues.  

Replay attack – RFID tags may be vulnerable to a replay 
attack that reuses authentication information, which was 
captured in previous transactions. 

Offline man-in-the-middle attack - An attacker can 
interfere with the communications between the tag and 
reader, and can also exchange messages (possibly modified).  

De-synchronization attack - The synchronization of the 
state between the tag and its reader needs to be made 
consistent in spite of interruption, intervention, de-
synchronization attacks.  

The following information is the security requirements to 
defend against security threats: 

Mutual authentication – To defend against spoofing, the 
tags and readers must authenticate each other. 

Untraceability - The tags must not be traced such that the 
attacker should not be able to collect the data related to the 
tag itself or information stored in the tag. 

Availability – It should defend against a de-
synchronization attack. 

Resistance to various attacks - The defense should make 
spoofing more difficult for both sides of the tag and reader, 
and must not allow interruption or interception attacks. It 
should be able to resist a replay attack and offline-man-in-
the-middle attack.  

Forward Security [2] - Once the secret in the tag is 
stolen, all the previous activities can be traced by searching 
the past logs. The forward security ensures that the latest 
memory in the tag does not give a hint to guess the previous 
outputs. Therefore, the previous activities can be protected 
from tampering. 

Backward Security [3] - The backward security protects 
future tag interrogations from traffic analysis (correlation) 
attacks, in which the adversary uses the information leaked 
by the tags to find their inner state.  
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III. PROPOSED PROTOCOL 

This section describes the structure and operation process 
of the proposed protocol. The proposed protocol was 
designed to use only XOR (Exclusive OR) and an insecure 
lightweight hash function to provide security, which is 
called PRNG (Pseudo Random Number Generator). The 
RFID reader and server were assumed to be connected to 
each other and were protected to be safe. Whenever tag 
authentication is performed, the tag identification 
information and authentication information are randomized. 
Synchronization of these values is also performed 
simultaneously. A lightweight hash function provides weak 
safety. Therefore, our scheme use the method that the reader 
always transmits a secure random number (RND) to refresh 
the hash function’s internal status. 

The components of the proposed protocol are as follows: 
① Tag's components: M1, RN1, RN2, State, K. 
M1: obfuscated group ID. 
RN1, RN2: Random numbers used for to change the tag's 

response continuously to provide untraceability. 
State: internal state values of PRNG. 
K: the key value used to refresh the state values. An 

access password can be used for K.  
② The reader's components: Gold, Gnew, Skey, RN1cur, 

RN2cur, RN3cur, RN1next, State, K. 
Gid (=Gold): (old) Group ID that has not yet been updated. 
Gnew: newly updated Group ID. 
RN1cur, RN2cur, RN3cur: random numbers generated from 

PRNG. 
RN1next: random number generated from the updated 

PRNG. 
RND: securely generated random number. 
State: internal state values of PRNG. 
K: key value used for refreshing state values. Access 

password of EPCglobal-Class1-Gen2-type tags can be used 
for K. 

Figure 1 presents an overview of the proposed protocol. 
The detailed procedure is explained as follows. 

STEP 1: R (reader)  T (tag): Query transmission.  
STEP 2: T  R: After receiving the Query message, the 

tag sends stored values (M1=Gid  Skey, RN1) to R. M1 is 
used to identify the group ID and RN1 is used to identify the 
tag in the group. 

STEP 3: R  T: R computes M1  Skey to obtain the 
group ID, Gid, and then searches the tag information in the 
group. T is identified successfully if R finds RN1cur or 

RN1next in the database. These two cases are explained as 
follows. 

RN1=RN1cur: R checks whether the group ID is the old or 
new value. If Gid = Gold, Gnew:= a new random value. 
Otherwise (Gid=Gnew), Gold:= Gnew, Gnew:= a new random 
value. R then generates M2’, M1’, and M3’ as follows: M2’ = 
RND  RN3cur, M1’ = Gnew  Skey, and M3’ = M1’  RN3cur. 
Finally, R sends M2’, M3’, RN2cur to T.  

RN1=RN1next: R updates RN1cur as RN1next. Then, R 
refreshes RN2cur, RN3cur, and RN4cur from PRNG. In 
addition, R refreshes the State value (states of PRNG) using 
RND, K and State: refresh(RND, K, State). R then checks 
whether the group ID is the old or new value. If Gid = Gold, 
Gold:= Gnew and Gnew:= a new random value from PRNG. 
Otherwise (Gid=Gnew), Gnew = a new random value from 
PRNG. R then generates M2’, M1’, and M3’ as follows: M2’ 
= RND  RN3cur, M1’ = Gnew  Skey, and M3’ = M1’  
RN3cur. Finally, R sends M2’, M3’, and RN2cur to T.  

STEP 4: T  R: After receiving M2’, M3’ and RN2cur, T 
saves the State to State_copy in the DRAM and generates 
RN2 from PRNG. If RN2 is not equal to RN2cur, 
communication terminates with authentication failure and T 
restores the State value from the State_copy. Otherwise, if 
RN2 = RN2cur, T successfully authenticates R. In this case, 
T generates RN3 from PRNG and calculates RND=M2’  
RN3 and stores M1=M3’  RN3. T generates RN4 from 
PRNG. T refreshes the State value of PRNG from refresh 
(RND, K, State). T generates RN1 from PRNG and stores it 
in the non-volatile memory. Finally, T sends RN4 to R. 

STEP 5: R  T: When R receives RN4 from T, it 
compares RN4 with RN4cur. If they are identical, R 
successfully authenticates T. R then refreshes the State value 
of PRNG from refresh(RND, K, State) and generates 
RN1next, copies RN1next to RN1cur and generates RN2cur, 
RN3cur, and RN4cur from PRNG. For resilience of the 
protocol, R generates/stores RN1next from additionally 
refreshed PRNG. Finally, R sends RN1cur to T. If T receives 
this, T compares it with RN1. If they are identical to each 
other, T successfully authenticates R.  

Note that in each communication, Gid, is encrypted with 
the securely generated random number, Skey, which 
enhances the security of the protocol.  

Example 1: We provide an example to help understand 
our protocol. Suppose that T stores the following 
information: M1=0x4125, RN1=0x1111. Assume that T’s 
information is stored in S/R as follows: Gid=0x0064, 
Skey=0x4141, RN1cur=0x1111, RN2cur=0x2222, RN3cur 

=0x3333, RN4cur=0x4444, RN1next=0x7777. Suppose that 

 
Figure 1. The overview of the proposed protocol. 
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RND is set to 0x4a7e. After STEP 1, in STEP 2, T sends 
M1=0x4125 and RN1=0x1111 to R. In STEP 3, R finds T’s 
Gid=0x0064 by computing M1Skey = 0x4125  0x4141 
=0x0064. R finds T’s information in the database with the 
group Gid because RN1cur=RN1=0x1111. R generates a new 
Group ID Gnew = 0x0065, computes M1’=Gnew  Skey = 
(0x0065  0x4141)=0x4124, M2’=RND  RN3cur = 0x4a7e 
 0x3333 = 0x794d, and M3’=M1’  RN3cur= 0x4124  
0x3333 = 0x7217.  Finally, R sends M2’, M3’, and RN2cur to 
T. In STEP 4, T generates RN2=0x2222 from PRNG and 
authenticates R by checking that RN2=RN2cur. Then, T 
generates RN3=0x3333 from PRNG, computes 
RND=M2’RN3= 0x794d  0x3333 = 0x4a7e, stores M1= 
M3’  RN3=0x7217  0x3333=0x4124. T generates 
RN4=0x4444 from PRNG and refreshes the State value in 
PRNG by executing refresh(RND=0x4a7e, K, State), where 
State is current state value of PRNG, K is the access 
password in the EPCglobal-Gen2-type standard tag. Then, T 
generates a new RN1=0x7777 from PRNG and stores it in 
the non-volatile memory. Finally, T sends RN4=0x4444 to 
R. In STEP 5, R authenticates T by checking 
RN4=RN4cur=0x4444. R then refreshes the state of PRNG 
using refresh() and generates RN1cur (=0x7777), RN2cur 

(=0x8888), RN3cur, and RN4cur. R stores RN1next =0xcccc 
which was from additionally refreshed PRNG. R sends 
RN1cur=0x7777 it to T. After T receives this, T successfully 
authenticates R because RN1cur=RN1=0x7777.  

In the above example, for better understanding we 
intentionally chose the weak PRNG which produces easily 
predictable random numbers from 0x1111 to 0xcccc. 
However, PRNG is one of the major cryptographic 
primitives of EPCglobal Gen2 type tags and the standard 
document [1] specifies that PRNG should meet the 
following conditions for security.  
 The probability of any RN16, 16-bit number drawn from 

PRNG, should meet the following condition: for any i (0 
 i  216-1), 0.18/216 < Prob(RN16 = i) < 1.25/216. 

 For a tag population of up to 10,000 tags, the probability 
that any of two or more tags generate the same RN16s 
should be less than 0.1%. 

 An RN16 drawn from a tag's PRNG 10 ms after the end 
of transaction shall not be predictable with a probability 
greater than 0.025% if the outcomes of prior draws from 
PRNG are known under the same condition. 

Note that this protocol uses Gid (group ID) to reduce the 
search space in R. Without Gid, for every transaction, R 
should find RN1cur or RN1next in the entire content of the 
database. Generally R/S should support a large number of 
tags, which implies a slow search speed. To minimize the 
search speed, initially tags are grouped and each group has a 
group id, Gid. R computes M1Skey to obtain the group ID 
and then searches the tag information in the group. The size 
of Gid is 16 bits and the search space can be reduced up to 
1/(216)=1/65535. 

IV. SECURITY AND PERFORMANCE ANALYSIS 

First, the security of this protocol was analyzed in terms 
of mutual authentication, untraceability, resistance to the 
replay attack, resistance to impersonation attack, and 
resistance to an offline man-in-the-middle attack, 

forward/backward security, and resistance to a de-
synchronization attack.  

Mutual authentication - M1 is used to identify the group 
in the reader, and RN1 is used to identify the tag in the 
reader’s database. R compares RN4 with RN4cur. If they are 
identical, R successfully authenticates the tag. The tag 
compares RN1cur with RN1. If they are identical, the tag 
successfully authenticates the reader R.  

Untraceability - For every communication, internal states 
of the tag and the reader are updated, which implies all the 
messages (except for the 1st message) are different for every 
transaction. This means that in the communication, the 
group id is encrypted with the securely generated random 
number Skey. In addition, even if M1 and RN2cur are exposed 
to an attacker, if it cannot transmit RN3 and RN1cur, mutual 
authentication fails and the transaction aborts. 

Resistance to the replay attack - To make the replay 
attack available, the attacker should be able to use the 
previous history of the communication, which is collected 
by eavesdropping. On the other hand, all the communication 
messages of the proposed protocol were randomized using 
PRNG (pseudo-random number generator) for every time 
the communication between the tag and reader was initiated. 
Therefore, the replay attack is impossible. 

Resistance to the impersonation attack - The proposed 
protocol updates the state of PRNG for attackers to make it 
extremely difficult to guess the communication message 
values, which indicates resistance to an impersonation attack. 

The resistance to the offline Man-in-the-middle attack 
–The attackers can eavesdrop and reuse the second and third 
message. On the other hand, they cannot reuse the 4th and 5th 
messages because every time, the tag and reader update the 
internal state of the PRNG and use it with the next 
communication.  

The forward/backward security - In the proposed 
protocol, the tag performs the update process of the internal 
status of PRNG using the secure random number (RND) that 
is received from the reader. After the update process, it is 
difficult to guess the previous/next communication.  

The resistance to the de-synchronization attack - The 
following describes the resistance of de-synchronization 
attacks for blocking each message in the protocol, as 
follows: 

The case in which the attacker blocks the exchange of the 
second message: In this case, T and R use the same internal 
state for the next communication and the state is 
synchronized.  

The case in which the attacker blocks the exchange of the 
third message of the protocol: R has the old and new values 
of the group IDs, which prevents de-synchronization attacks. 

The case in which the attacker blocks the exchange of the 
fourth message of the protocol: For the normal case, where 
there is no de-synchronization attack, R matches RN1 with 
RN1cur. For the de-synchronization attack, R matches RN1 
with RN1next and continues the communication.  

The case in which the attacker blocks the fifth message: 
Both T and R already updated the internal status of PRNG, 
and there is no de-synchronization. 

For estimating efficiency, the proposed protocol is 
compared with previous work. Tables I and II show the 
additional memory requirements in a flyweight RFID 
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Protocol [3] and the proposed protocol. In the proposed 
scheme, compared with [3], the flash memory size is 
reduced to 48-bits and the RAM size is reduced to 16-bits.  

Moreover, the number of gates required to implement 
PRNG is much smaller than AES or SHA-1. If PRNG is 
implemented by LAMED on the tag, the proposed protocol 
requires only 1,566 gates. On the other hand, if the AES is 
implemented on the tag, the number of gates required is at 
least 3,595 [4].  
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