
Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Group-ID based RFID Mutual Authentication

Yongsu PARK1 , Younho LEE2*
1Division of Computer Science and Engineering, Hanyang University, Korea

2IT Management Programme, SeoulTech, Korea
yongsu@hanyang.ac.kr, younholee@seoultech.ac.kr

Abstract—For passive type RFID tags, EPCglobal Class 1

Generation-2 Revision is used widely as a de facto standard. As
it was designed for low cost, it is quite vulnerable to security
issues, such as privacy concerns. This paper1 presents a new
RFID mutual authentication protocol, which is designed to be
configured on EPC Gen2 platform and to meet various security
requirements while providing efficiency using PRNG (Pseudo
Random Number Generator). Group-ID is used to minimize
the authentication time. Security analysis of the proposed
protocol is discussed.

Index Terms—Authentication, Communication System

Security, Identity Management Systems, RFID Tags, Security.

I. INTRODUCTION

The RFID (Radio-frequency identification) system, which
exchanges data between tags and readers via a wireless radio
frequency band, is being used actively in many areas [5-7],
such as the supply chain, production management, etc. As a
currently popular standard of the RFID systems, EPCglobal
class 1 generation 2 is used most commonly [1]. EPCglobal
class 1 generation 2 standards focus on minimizing the
production cost so they provide the minimal security
features for the low-cost production of RFID tags.

One of the most important security features for RFID is to
hide the tag's identity (ID) for anonymity, e.g., if a tag ID is
exposed to anyone, it can be replicated and tracked through
by scanning wherever the owner goes.

The EPCglobal Class 1 Generation-2 protocol, a de facto
standard protocol, is considered to be vulnerable for security
and privacy. Secure standard cryptographic primitives, such
as AES or SHA-1 can be used to cope with such
vulnerabilities. However, these measures increase the
manufacturing cost of RFID tags considerably. This paper
proposes a new mutual authentication protocol, which can
be considered a variant of the EPCglobal Class 1
Generation-2 protocol since it relies on only PRNG of the
standard. Moreover, Group-ID is introduced to minimize the
authentication time.

This paper is organized as follows. Section 2 explains the
RFID security threats and security requirements and Section
3 describes the proposed protocol. Section 4 shows the
security analysis results and Section 5 concludes the paper.

II. THREATS AND SECURITY REQUIREMENTS OF THE RFID

PROTOCOL

This section describes the security threats that can occur

during protocol execution in a RFID system and the security
requirements to counteract them. The following is a list of
security threats that can occur when the protocol runs:

*Corresponding author: Younho Lee
This work was supported by the IT R&D program of
MSIP/KEIT.[No.10047212, Development of homomorphic encryption
supporting arithmetics on ciphertexts of size less than 1kB and its
applications]

Eavesdropping - Because communication between the
tag and reader is wireless, anyone can obtain important
information of tags/readers.

Traffic analysis – The predictable response of the tag
provides information that the tag and tag owner's identity
can be connected.

Spoofing/impersonation attack - After collecting the
communication histories, the attacker can masquerade as
legitimate tags/readers.

Tracking - RFID tags that receive the query message
from the reader are always supposed to respond to any
message. If the tag's response is fixed or predictable to the
attacker, it can cause privacy issues.

Replay attack – RFID tags may be vulnerable to a replay
attack that reuses authentication information, which was
captured in previous transactions.

Offline man-in-the-middle attack - An attacker can
interfere with the communications between the tag and
reader, and can also exchange messages (possibly modified).

De-synchronization attack - The synchronization of the
state between the tag and its reader needs to be made
consistent in spite of interruption, intervention, de-
synchronization attacks.

The following information is the security requirements to
defend against security threats:

Mutual authentication – To defend against spoofing, the
tags and readers must authenticate each other.

Untraceability - The tags must not be traced such that the
attacker should not be able to collect the data related to the
tag itself or information stored in the tag.

Availability – It should defend against a de-
synchronization attack.

Resistance to various attacks - The defense should make
spoofing more difficult for both sides of the tag and reader,
and must not allow interruption or interception attacks. It
should be able to resist a replay attack and offline-man-in-
the-middle attack.

Forward Security [2] - Once the secret in the tag is
stolen, all the previous activities can be traced by searching
the past logs. The forward security ensures that the latest
memory in the tag does not give a hint to guess the previous
outputs. Therefore, the previous activities can be protected
from tampering.

Backward Security [3] - The backward security protects
future tag interrogations from traffic analysis (correlation)
attacks, in which the adversary uses the information leaked
by the tags to find their inner state.

 9

Digital Object Identifier 10.4316/AECE.2013.04002

1582-7445 © 2013 AECE

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 01:19:31 (UTC) by 44.222.116.199. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

III. PROPOSED PROTOCOL

This section describes the structure and operation process
of the proposed protocol. The proposed protocol was
designed to use only XOR (Exclusive OR) and an insecure
lightweight hash function to provide security, which is
called PRNG (Pseudo Random Number Generator). The
RFID reader and server were assumed to be connected to
each other and were protected to be safe. Whenever tag
authentication is performed, the tag identification
information and authentication information are randomized.
Synchronization of these values is also performed
simultaneously. A lightweight hash function provides weak
safety. Therefore, our scheme use the method that the reader
always transmits a secure random number (RND) to refresh
the hash function’s internal status.

The components of the proposed protocol are as follows:
① Tag's components: M1, RN1, RN2, State, K.
M1: obfuscated group ID.
RN1, RN2: Random numbers used for to change the tag's

response continuously to provide untraceability.
State: internal state values of PRNG.
K: the key value used to refresh the state values. An

access password can be used for K.
② The reader's components: Gold, Gnew, Skey, RN1cur,

RN2cur, RN3cur, RN1next, State, K.
Gid (=Gold): (old) Group ID that has not yet been updated.
Gnew: newly updated Group ID.
RN1cur, RN2cur, RN3cur: random numbers generated from

PRNG.
RN1next: random number generated from the updated

PRNG.
RND: securely generated random number.
State: internal state values of PRNG.
K: key value used for refreshing state values. Access

password of EPCglobal-Class1-Gen2-type tags can be used
for K.

Figure 1 presents an overview of the proposed protocol.
The detailed procedure is explained as follows.

STEP 1: R (reader)  T (tag): Query transmission.
STEP 2: T  R: After receiving the Query message, the

tag sends stored values (M1=Gid  Skey, RN1) to R. M1 is
used to identify the group ID and RN1 is used to identify the
tag in the group.

STEP 3: R  T: R computes M1  Skey to obtain the
group ID, Gid, and then searches the tag information in the
group. T is identified successfully if R finds RN1cur or

RN1next in the database. These two cases are explained as
follows.

RN1=RN1cur: R checks whether the group ID is the old or
new value. If Gid = Gold, Gnew:= a new random value.
Otherwise (Gid=Gnew), Gold:= Gnew, Gnew:= a new random
value. R then generates M2’, M1’, and M3’ as follows: M2’ =
RND  RN3cur, M1’ = Gnew  Skey, and M3’ = M1’  RN3cur.
Finally, R sends M2’, M3’, RN2cur to T.

RN1=RN1next: R updates RN1cur as RN1next. Then, R
refreshes RN2cur, RN3cur, and RN4cur from PRNG. In
addition, R refreshes the State value (states of PRNG) using
RND, K and State: refresh(RND, K, State). R then checks
whether the group ID is the old or new value. If Gid = Gold,
Gold:= Gnew and Gnew:= a new random value from PRNG.
Otherwise (Gid=Gnew), Gnew = a new random value from
PRNG. R then generates M2’, M1’, and M3’ as follows: M2’
= RND  RN3cur, M1’ = Gnew  Skey, and M3’ = M1’ 
RN3cur. Finally, R sends M2’, M3’, and RN2cur to T.

STEP 4: T  R: After receiving M2’, M3’ and RN2cur, T
saves the State to State_copy in the DRAM and generates
RN2 from PRNG. If RN2 is not equal to RN2cur,
communication terminates with authentication failure and T
restores the State value from the State_copy. Otherwise, if
RN2 = RN2cur, T successfully authenticates R. In this case,
T generates RN3 from PRNG and calculates RND=M2’ 
RN3 and stores M1=M3’  RN3. T generates RN4 from
PRNG. T refreshes the State value of PRNG from refresh
(RND, K, State). T generates RN1 from PRNG and stores it
in the non-volatile memory. Finally, T sends RN4 to R.

STEP 5: R  T: When R receives RN4 from T, it
compares RN4 with RN4cur. If they are identical, R
successfully authenticates T. R then refreshes the State value
of PRNG from refresh(RND, K, State) and generates
RN1next, copies RN1next to RN1cur and generates RN2cur,
RN3cur, and RN4cur from PRNG. For resilience of the
protocol, R generates/stores RN1next from additionally
refreshed PRNG. Finally, R sends RN1cur to T. If T receives
this, T compares it with RN1. If they are identical to each
other, T successfully authenticates R.

Note that in each communication, Gid, is encrypted with
the securely generated random number, Skey, which
enhances the security of the protocol.

Example 1: We provide an example to help understand
our protocol. Suppose that T stores the following
information: M1=0x4125, RN1=0x1111. Assume that T’s
information is stored in S/R as follows: Gid=0x0064,
Skey=0x4141, RN1cur=0x1111, RN2cur=0x2222, RN3cur

=0x3333, RN4cur=0x4444, RN1next=0x7777. Suppose that

Figure 1. The overview of the proposed protocol.

 10

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 01:19:31 (UTC) by 44.222.116.199. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

RND is set to 0x4a7e. After STEP 1, in STEP 2, T sends
M1=0x4125 and RN1=0x1111 to R. In STEP 3, R finds T’s
Gid=0x0064 by computing M1Skey = 0x4125  0x4141
=0x0064. R finds T’s information in the database with the
group Gid because RN1cur=RN1=0x1111. R generates a new
Group ID Gnew = 0x0065, computes M1’=Gnew  Skey =
(0x0065  0x4141)=0x4124, M2’=RND  RN3cur = 0x4a7e
 0x3333 = 0x794d, and M3’=M1’  RN3cur= 0x4124 
0x3333 = 0x7217. Finally, R sends M2’, M3’, and RN2cur to
T. In STEP 4, T generates RN2=0x2222 from PRNG and
authenticates R by checking that RN2=RN2cur. Then, T
generates RN3=0x3333 from PRNG, computes
RND=M2’RN3= 0x794d  0x3333 = 0x4a7e, stores M1=
M3’  RN3=0x7217  0x3333=0x4124. T generates
RN4=0x4444 from PRNG and refreshes the State value in
PRNG by executing refresh(RND=0x4a7e, K, State), where
State is current state value of PRNG, K is the access
password in the EPCglobal-Gen2-type standard tag. Then, T
generates a new RN1=0x7777 from PRNG and stores it in
the non-volatile memory. Finally, T sends RN4=0x4444 to
R. In STEP 5, R authenticates T by checking
RN4=RN4cur=0x4444. R then refreshes the state of PRNG
using refresh() and generates RN1cur (=0x7777), RN2cur

(=0x8888), RN3cur, and RN4cur. R stores RN1next =0xcccc
which was from additionally refreshed PRNG. R sends
RN1cur=0x7777 it to T. After T receives this, T successfully
authenticates R because RN1cur=RN1=0x7777.

In the above example, for better understanding we
intentionally chose the weak PRNG which produces easily
predictable random numbers from 0x1111 to 0xcccc.
However, PRNG is one of the major cryptographic
primitives of EPCglobal Gen2 type tags and the standard
document [1] specifies that PRNG should meet the
following conditions for security.
 The probability of any RN16, 16-bit number drawn from

PRNG, should meet the following condition: for any i (0
 i  216-1), 0.18/216 < Prob(RN16 = i) < 1.25/216.

 For a tag population of up to 10,000 tags, the probability
that any of two or more tags generate the same RN16s
should be less than 0.1%.

 An RN16 drawn from a tag's PRNG 10 ms after the end
of transaction shall not be predictable with a probability
greater than 0.025% if the outcomes of prior draws from
PRNG are known under the same condition.

Note that this protocol uses Gid (group ID) to reduce the
search space in R. Without Gid, for every transaction, R
should find RN1cur or RN1next in the entire content of the
database. Generally R/S should support a large number of
tags, which implies a slow search speed. To minimize the
search speed, initially tags are grouped and each group has a
group id, Gid. R computes M1Skey to obtain the group ID
and then searches the tag information in the group. The size
of Gid is 16 bits and the search space can be reduced up to
1/(216)=1/65535.

IV. SECURITY AND PERFORMANCE ANALYSIS

First, the security of this protocol was analyzed in terms
of mutual authentication, untraceability, resistance to the
replay attack, resistance to impersonation attack, and
resistance to an offline man-in-the-middle attack,

forward/backward security, and resistance to a de-
synchronization attack.

Mutual authentication - M1 is used to identify the group
in the reader, and RN1 is used to identify the tag in the
reader’s database. R compares RN4 with RN4cur. If they are
identical, R successfully authenticates the tag. The tag
compares RN1cur with RN1. If they are identical, the tag
successfully authenticates the reader R.

Untraceability - For every communication, internal states
of the tag and the reader are updated, which implies all the
messages (except for the 1st message) are different for every
transaction. This means that in the communication, the
group id is encrypted with the securely generated random
number Skey. In addition, even if M1 and RN2cur are exposed
to an attacker, if it cannot transmit RN3 and RN1cur, mutual
authentication fails and the transaction aborts.

Resistance to the replay attack - To make the replay
attack available, the attacker should be able to use the
previous history of the communication, which is collected
by eavesdropping. On the other hand, all the communication
messages of the proposed protocol were randomized using
PRNG (pseudo-random number generator) for every time
the communication between the tag and reader was initiated.
Therefore, the replay attack is impossible.

Resistance to the impersonation attack - The proposed
protocol updates the state of PRNG for attackers to make it
extremely difficult to guess the communication message
values, which indicates resistance to an impersonation attack.

The resistance to the offline Man-in-the-middle attack
–The attackers can eavesdrop and reuse the second and third
message. On the other hand, they cannot reuse the 4th and 5th
messages because every time, the tag and reader update the
internal state of the PRNG and use it with the next
communication.

The forward/backward security - In the proposed
protocol, the tag performs the update process of the internal
status of PRNG using the secure random number (RND) that
is received from the reader. After the update process, it is
difficult to guess the previous/next communication.

The resistance to the de-synchronization attack - The
following describes the resistance of de-synchronization
attacks for blocking each message in the protocol, as
follows:

The case in which the attacker blocks the exchange of the
second message: In this case, T and R use the same internal
state for the next communication and the state is
synchronized.

The case in which the attacker blocks the exchange of the
third message of the protocol: R has the old and new values
of the group IDs, which prevents de-synchronization attacks.

The case in which the attacker blocks the exchange of the
fourth message of the protocol: For the normal case, where
there is no de-synchronization attack, R matches RN1 with
RN1cur. For the de-synchronization attack, R matches RN1
with RN1next and continues the communication.

The case in which the attacker blocks the fifth message:
Both T and R already updated the internal status of PRNG,
and there is no de-synchronization.

For estimating efficiency, the proposed protocol is
compared with previous work. Tables I and II show the
additional memory requirements in a flyweight RFID

 11

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 01:19:31 (UTC) by 44.222.116.199. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 12

Protocol [3] and the proposed protocol. In the proposed
scheme, compared with [3], the flash memory size is
reduced to 48-bits and the RAM size is reduced to 16-bits.

Moreover, the number of gates required to implement
PRNG is much smaller than AES or SHA-1. If PRNG is
implemented by LAMED on the tag, the proposed protocol
requires only 1,566 gates. On the other hand, if the AES is
implemented on the tag, the number of gates required is at
least 3,595 [4].

Recently, a large number of research achievements have
been made with respect to RFID mutual authentication [2-
25]. Table 3 compares the security functionalities with the
other recently released lightweight protocols, which shows
that the proposed protocol has all major security features.

[5] R. John Robles and T. Kim, “A Review on Security in Smart Home
Development”, Advanced Science Letters, vol. 15, pp. 13-22, 2010.

[6] A. Irshad, W. Noshairwan, M. Shafiq, S. Khurram, E. Irshad, M.
Usman, “Security Enhancement in MANET Authentication by
checking the CRL status of Servers”, Advanced Science Letters, vol.
1, pp. 91-98, 2008.

[7] N. Omer, F. Elssied, O. Ibrahim, A. Ali A.alaziz and A. Yousif,
“Review Paper: Security in E-government Using Fuzzy Methods”,
Advanced Science Letters, vol. 37, pp. 99-112, 2011.

[8] J. Cho, S. Yeo, Sung Kwon Kim, “Securing against brute-force
attack: A hash-based RFID mutual authentication protocol using a
secret value”, Computer Communications vol. 34, no. 3, pp. 391–397,
2011.

[9] T. Li, “Vulnerability Analysis of EMAP-An Efficient RFID Mutual
Authentication Protocol”, Proc. ARES 2007, pp. 238-245, 2007.

[10] H. Chien, C. Chen, “Mutual authentication protocol for RFID
conforming to EPC Class 1 Generation 2 standards”, Computer
Standards & Interfaces, vol. 29, no. 2, Pages 254–259, 2007.

[11] P. Peris-Lopez, J. Cesar Hernandez-Castro, J. M. Estevez-Tapiador, A.
Ribagorda, “EMAP: An Efficient Mutual-Authentication Protocol for
Low-Cost RFID Tags”, Proc. OTM 2006 Workshop, LNCS vol. 4277,
pp. 352-361, 2006.

TABLE I. MEMORY REQUIREMENTS OF THE FLYWEIGHT

PROTOCOL [3].

[12] P. Peris-Lopez, J. Cesar Hernandez-Castro, J. M. Estevez-Tapiador, A.
Ribagorda, “M2AP: A Minimalist Mutual-Authentication Protocol for
Low-Cost RFID Tags”, Ubiquitous Intelligence and Computing,
LNCS vol. 4159, pp. 912-923, 2006.

[13] S. Kang, D. Lee, I. Lee, “A study on secure RFID mutual
authentication scheme in pervasive computing environment”,
Computer Communications, vol. 31, no. 18, pp. 4248–4254, 2008.

TABLE II. MEMORY REQUIREMENTS OF THE PROPOSED

PROTOCOL. [14] R. Paise, S. Vaudenay, “Mutual authentication in RFID: security and
privacy”, in Proc. of ASIACCS '08, pp. 292-299, 2008.

[15] H. Chien, “SASI: A New Ultralightweight RFID Authentication
Protocol Providing Strong Authentication and Strong Integrity”, IEEE
Trans. on Dependable and Secure Computing, vol. 4, no. 4, pp. 337-
340, 2007.

[16] Y. Lee, Y. Park, “A New Privacy-preserving Path Authentication
Scheme using RFID for Supply Chain Management”, Advances in
Electrical and Computer Engineering, vol. 13, no. 1, pp. 23-26, 2013. V. CONCLUSION

A secure and efficient mutual authentication protocol was
designed using a pseudo random number generator for
passive tags. The resistance to various security threats is
analyzed. The proposed protocol uses less memory than the
Flyweight Protocol and the tag identification time is smaller.
Furthermore, due to use of the standard PRNG, the
manufacturing cost of proposed scheme is lower than that of
other RFID authentication schemes. If PRNG is
implemented by LAMED on the tag, the proposed protocol
requires 1,566 gates. On the other hand, if the AES is
implemented on the tag, the number of gates required is at
least 3,595.

[17] T. Li, W. Luo, Z. Mo, and S. Chen, “Privacy-preserving RFID
Authentication based on Cryptographical Encoding” Proc. IEEE
INFOCOM'12, pp. 2174-2182, 2012.

[18] Q. Yao, Y. Qi, J. Han, J. Zhao, X. Li, and Y. Liu, "Randomizing
RFID Private Authentication," Proc. IEEE PERCOM, 2009.

[19] T. Dimitriou, "A Secure and Efficient RFID Protocol that could make
Big Brother (partially) Obsolete," Proc. IEEE PERCOM, 2006.

[20] L. Lu, J. Han, L. Hu, Y. Liu, and L. Ni, "Dynamic Key-Updating:
Privacy-Preserving Authentication for RFID Systems," Proc. IEEE
PERCOM, 2007.

[21] L. Lu, J. Han, R. Xiao, and Y. Liu, "ACTION: Breaking the Privacy
Barrier for RFID Systems," Proc. of IEEE INFOCOM, 2009.

[22] L. Lu, Y. Liu, and X. Li, "Refresh: Weak Privacy Model for RFID
Systems," Proc. of IEEE INFOCOM, 2010.

[23] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Efficient Hash-Chain
based RFID Privacy Protection Scheme”, Proc. Of UbiComp
Workshop Privacy, 2004.

[24] T. Dimitriou, “A Lightweight RFID Protocol to Protect Against
Traceability and Cloning Attacks”, in Proc. Of SecureComm, 2005. REFERENCES

[25] D. Henrici, P Mu ̈ller, “Providing Security and Privacy in RFID
Systems Using Triggered Hash Chains”, Proc. of IEEE PerCom, 2008.

[1] EPCGlobal Class 1 Generation 2 Revison, available at
http://www.epcglobalinc.org/standards/uhfc1g2.

[2] M. Ohkubo, K. Suzuki and S. Kinoshita, "Cryptographic Approach to
Privacy-friendly Tags", in Proc. RFID Privacy Workshop, MIT, 2003.

[3] Burmester, M., and Munilla, J. “A Flyweight RFID Authentication
Protocol”, Proc. the 5th Workshop on RFID Security, 2009.

[4] M. O’Neill, “Low-cost SHA-1 Hash Function Architecture for RFID
Tags”, Proc. RFIDSec’08, 2008.

TABLE III. COMPARISON OF THE PRESENT PROTOCOL WITH THE OTHER RECENTLY
RELEASED LIGHTWEIGHT PROTOCOLS [5-7].

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 01:19:31 (UTC) by 44.222.116.199. Redistribution subject to AECE license or copyright.]

