
Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Improved Low Power FPGA Binding of
Datapaths from Data Flow Graphs with NSGA

II -based Schedule Selection

Dasanpotty Sai Harish RAM1, Mugasimangalam Chinnadurai BHUVANESWARI2, Suresh UMADEVI1

1Amrita Vishwa Vidyapeetham University, Coimbatore, 641112, India
2PSG College of Technology, Coimbatore,641004, India

ds_harishram@cb.amrita.edu

Abstract—FPGAs are increasingly being used to implement

data path intensive algorithms for signal processing and image
processing applications. In High Level Synthesis of Data Flow
Graphs targeted at FPGAs, the effect of interconnect resources
such as multiplexers must be considered since they contribute
significantly to the area and switching power. We propose a
binding framework for behavioral synthesis of Data Flow
Graphs (DFGs) onto FPGA targets with power reduction as the
main criterion. The technique uses a multi-objective GA,
NSGA II for design space exploration to identify schedules that
have the potential to yield low-power bindings from a
population of non-dominated solutions. A greedy constructive
binding technique reported in the literature is adapted for
interconnect minimization. The binding is further subjected to
a perturbation process by altering the register and multiplexer
assignments. Results obtained on standard DFG benchmarks
indicate that our technique yields better power aware bindings
than the constructive binding approach with little or no area
overhead.

Index terms— High level synthesis, Field programmable gate
arrays, Power dissipation, Genetic algorithms, Reconfigurable
logic

I. INTRODUCTION

High-level or Behavioral synthesis (HLS) is the process
of converting a high-level algorithmic description into an
RTL design. The algorithm may be represented in the form
of a program or a Data Flow Graph (DFG). The HLS flow
consists of the subtasks of scheduling, allocation, and
binding which may be executed in any order. However, the
result of one subtask shall influence the others. Scheduling
assigns time-steps to each operation node in the input DFG.
Allocation fixes the number of functional units or FUs
(adders, multipliers etc) and registers for executing the
algorithm. Binding maps the execution of each operation
into a specific FU and also assigns registers for storing the
results. Nodes whose execution times do not overlap can
share registers. Similarly nodes executing the same
operation can share functional units if they are compatible
i.e., they do not execute in the same time step. The sharing
of functional units necessitates use of multiplexers (MUXes)
for selecting the inputs driving the FUs during a particular
time step and also selecting the FU output for loading a
register. Thus a proper estimate of the area of a binding
should take into account the FUs as well as the overhead in
terms of registers and MUXes.

 In an aggressively low-power design flow, it will be

desirable to incorporate power reduction in the HLS stage
itself so that different tradeoffs in terms of delay and area
can be explored well before the design is implemented in
hardware. However, power optimization during behavioral
synthesis involves computing the power cost of a candidate
solution with the help of simulations and characterizations
which might be computationally expensive. In the proposed
methodology, an initial GA-based design space exploration
phase identifies schedules that are likely to yield power
efficient bindings. We use an NSGA II based approach [1-4]
using an encoding scheme described in [5]. The likelihood
of a schedule to produce low-power bindings is used as the
power cost of the GA. Actual power estimates are not used.

The schedules identified using the NSGA II step are
subjected to a binding step using a constructive technique
described in [6], which schedules one node at a time. We
have adapted this technique for a pre-scheduled graph. Each
iteration in the binding process computes the appropriate
bit-widths required for the FUs, before allocating FUs,
registers and interconnect resources such as MUXes. This is
especially important since using a worst case bit-width for a
binding leads to over design and thereby wastage of
resources and excess area as well as delay for the
implementations. The register and FU bindings in each
iteration use a weighted bipartite matching approach [6][7]
that tries to minimize the incremental area cost of an
existing binding when a new node in the DFG is scheduled.
The total MUX count is also optimized since steering logic
such as MUXes are not implemented efficiently in FPGAs
and may contribute significantly to the area and power cost
of a binding.

The resultant RTL is subjected to a further rebinding step
in which the register binding is perturbed with a view to
eliminate MUXes or reduce their port count. The RTL
obtained after the rebinding step is synthesized to an FPGA
target using Xilinx ISE tool and evaluated for power, area
and delay. The results on standard DFG benchmarks
indicate notable reduction in dynamic power dissipation of
the bindings over the constructive method. Schedules
obtained from the NSGA run were found to be more
amenable to interconnect optimization and the subsequent
rebinding step for power reduction than the constructive
approach. It is proposed that this approach can serve as the
framework for automating the low-power binding process
using a transformational heuristic approach. The random

 85
1582-7445 © 2013 AECE

Digital Object Identifier 10.4316/AECE.2013.04015

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

perturbation can be further improved and used as a mutation
operator in a GA or a velocity function in a PSO engine to
generate low-power bindings for FPGA targets.

The rest of the paper is organized as follows. Section II
reviews literature related to HLS and binding. Section III
deals with the encoding of the chromosomes used in the
NSGA II run and describes how schedules are generated
from a chromosome using a list scheduling heuristic.
Section IV describes the two-phase binding methodology.
The results of the proposed methodology on standard DFG
benchmarks are presented in Section V. Section VI
concludes the paper.

II. REVIEW OF RELATED WORK

High Level Synthesis (HLS) is an area that has been well
researched in the past couple of decades. A survey of HLS
techniques is presented in [5]. A GA based scheme for
datapath synthesis was proposed in [8]. The technique seeks
to optimize FUs, registers and interconnect logic. A bus
based interconnection scheme is used in the work. Power is
not addressed here. In [9], an Integer Linear Programming
(ILP) based approach is used for scheduling and binding of
DFGs to FUs. The power cost function is developed by
obtaining a curve fit from characterizations for different
switching activities. In [10] the authors also propose an ILP
approach but combine it with retiming to obtain power
optimal bindings. A game theoretic approach is suggested in
[11] for obtaining low power bindings.

In [12], the authors describe a methodology for low-
power high level synthesis of DFGs targeted at a generic
LUT-based architecture. A high-level simulation determines
the switching activity between DFG nodes. Interconnect
capacitance estimation is carried out using Rent’s rule.
These parameters are used by a high-level power estimator.
The authors propose a simulated annealing approach for
iteratively improving an initial schedule towards an optimal
solution, guided by the power extracted by the high-level
estimator. The solutions obtained after the simulated
annealing step are subjected to an additional register binding
and port assignment step for optimizing the interconnect
resources (MUXes). This is because FPGAs are inefficient
in realizing wide MUXes and a binding with fewer numbers
of FUs and registers might still incur a large area overhead
due to wide MUXes required to route the registers to the
FUs. Further, in the port assignment step the connection of
registers to FU inputs is revisited to minimize register and
MUX usage. The use of fragmentation to reduce useless
switching activity in datapaths is proposed in [13]. Binding
of multiplications to over-sized FUs leads to unwanted
switching activity in the logic. In fragmentation,
multiplications of larger bit sizes are implemented by
combining smaller multipliers and adders. This makes it
possible to implement multiplications with smaller bit sizes
using tight fitting FUs, thereby reducing switching activity
and dynamic power. A binding scheme with the use of
morphable hardware is proposed in [14][15]. The technique
exploits the mutual exclusivity between addition and
multiplication nodes in DFGs to reconfigure multiplier
blocks into adder chains. In [16] a graph based datapath
merging approach is employed for scheduling computations
in a processor based environment onto runtime

reconfigurable hardware that can execute an extended
instruction set. In [17], an FPGA synthesis flow is modified
to map storage of variables onto RAM blocks in the FPGA
with power reduction as the main objective.

In this paper we have adapted a constructive technique for
combined binding and scheduling for FPGAs proposed in
[6]. The authors incorporate data width also into the
synthesis process so that FUs, registers and MUXes of the
appropriate sizes are chosen for the binding. Here each node
is scheduled and bound based on its priority. The node
priority is computed based on its mobility, number of
successors and data size. Nodes with zero mobility need to
be scheduled in the current time step. Among the rest, nodes
with lower mobility are assigned higher priorities. Each
scheduled node is bound to an FU based on the minimal
incremental path over cost computed from the weighted
bipartite graph of the nodes and FUs derived using the
method described in [7]. Power reduction is not addressed in
this work.

In [18] a multi-objective GA based approach is proposed
for area and delay reduction during FPGA behavioral
synthesis. A multi-chromosome encoding is used in the
work. The assignment field specifies the FU assigned to
execute each DFG node. Separate fields are allotted for
scheduling, register binding and interconnect binding. These
fields contain the algorithm to be used for each. Thus the
choice of binding and scheduling algorithms is randomized
for better design space exploration.

III. GA ENCODING AND SCHEDULING

A. GA encoding

A multi-chromosome encoding [5] is used for the NSGA
II phase. The scheduling priority field specifies the order in
which nodes are taken up for scheduling in a list scheduling
heuristic. The module allocation field specifies the number
of functional units (adders and multipliers) available for
executing the DFG nodes. A sample DFG, multi-
chromosome and schedule are shown respectively in Figure
1(a), Figure 1(b) and Figure 1(c). The nodes in the DFG are
taken up for scheduling in their order of appearance in the
chromosome. For example nodes b0, b1 and a2 are
scheduled in the first time step in the schedule in Figure 1(c)
since they are the first three nodes in the chromosome.

No more multiplications can be scheduled in this time
step since only three multipliers are allocated in the
allocation field (2 3). The addition c0 which appears next in
the chromosome can be scheduled only in the next time step
since its predecessors b0 and a2 are scheduled only in the
current step. The algorithm continues in this fashion until all
nodes have been scheduled.

B. Power metric

The likelihood of a schedule to yield low-power bindings
is determined using a cost function proposed in [1][2]. The
cost function is based on the number of edges and edge
weights of the compatibility graph [19] of a given schedule.
The nodes of the compatibility graph or CG are the nodes of
the DFG themselves. An edge is present between two
compatible nodes i.e. nodes of the same type that do not
execute in the same time step. The weight of the edge is the
switching activity when these two nodes execute in

 86

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

succession in the same FU. The compatibility graph for the
schedule in Figure 1(c) is shown in Figure 2

c2

c1

c0 b2

b1 b0 a2 a1 a0

 * * * * *

 + +

 +

 +

Figure 1(a). Unscheduled DFG

 b0 b1 a2 a1 c0 a0 b2 c1 c2 02 03

Figure 1(b). Multi-chromosome encoding [5]

 b0

c2

b2c1

c0 a0a1

b1a2b0

 * * *

 + * *

 + +

 +

1

2

3

4

Figure 1(c). Scheduled DFG

a1

w11

w10

c2b2c1

w9

w8w7

c0

w6

w5

w4w3

a2

w2
w1

a0

b0 *

 * *

 *

b1

 *

 +

 + + +

Figure 2. Compatibility graph

Consider the node a2. There is an edge from a2 to a0
since both are multiplication nodes and are scheduled in
different time steps. Thus it is possible to assign the same
FU for executing a0 and a2. The weight w5 indicates the

switching cost if a0 and a2 execute in succession in the
same FU. Note that there is no edge between a2 and b0 even
though both are multiplications since they are scheduled in
the same time step.

The power cost for evaluating a schedule is based on [20]
and [1-2]. In [20] the authors establish that schedules that
have lesser edge weights in their compatibility graphs are
more likely to yield low-power bindings. Also, schedules
with a large number of edges in the compatibility graph
have a large number of potential bindings possible, thereby
increasing the likelihood of bindings whose switching power
numbers are close to optimal. Based on these observations
in [20], a power metric is proposed in [1-2] which we have
adopted for our NSGA II engine and is represented by
equation 1

 32
1

mm
m

n
P  (1)

The term m1 represents the number of edges. Since it is in

the denominator, schedules with higher number of edges
(higher value for m1) are favoured. The multiplying factor n
is user defined. The term m2 represents the average edge
weight of k % of the edges where k is a tunable parameter
whereas m3 is the average of edge weights of all the edges
(i.e. k = 100 %). Thus it is seen that the cost function
favours schedules with higher number of edges in the CG.

IV. TWO PHASE BINDING METHODOLOGY

The proposed methodology uses a two-phase approach.
The DFG of the algorithm to be synthesized is input to an
NSGA II based scheduler [1-4],[21] in the schedule
selection phase. The schedules with potential to yield low-
power bindings are chosen for a subsequent constructive
binding step followed by a rebinding phase involving
register reallocation and MUX port reassignment. This is
inspired by the transformation operators described in
[12][22]. The overall flow is depicted in Figure 3.

A. NSGA-based Schedule Selection Phase

The NSGA II run yields a set of Rank I non dominated
solutions that exhibit different trade-offs in power, area and
delay. A population of power efficient schedules identified
from this set is used as the input to the constructive binding
phase

Area cost of the schedule is given by the gate count of the
number of FUs and registers determined by the left edge
algorithm [21], when synthesized to a generic library. The
number of time steps is taken as the delay cost. Power cost
of a given schedule is determined in terms of the likelihood
of a schedule to yield low-power bindings as described in
Section III. B. The weights of the edges represent the
switching cost of executing the pair of nodes on the same
FU. Schedules whose CGs have a large number of edges are
likely to yield low-power bindings because of the existence
of a number of possible bindings (a given binding maps to a
particular combination of paths in the CG). Also, schedules
with CGs whose average edge weights are lower, yield
bindings that are more power optimal.

Node priority field FU allocation field

 87

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 Read input DFG and obtain a power-
aware schedule from the Rank I

solutions of the NSGA II run

Allocate FUs based on the
results of the NSGA II runB

Register and MUX Binding
to minimize interconnect

cost using weighted bipartite
matching.

Increment
clock cycle

B

No

Yes Any more
nodes to be

bound?

Register rebinding step for
further power reduction

Stop

Figure 3. NSGA II based binding methodology

These measures are used to estimate the power cost of a

schedule during the NSGA run. The NSGA II scheduler
gives a set of Pareto optimal solutions that trade-off the
parameters of power, area and delay.

B. Constructive Binding and our modified approach

The solutions having CGs with the best power metrics are
selected and subjected to a modified version of the
constructive binding process [6] for register and
interconnect minimization. In this phase each node in the
DFG is taken up one at a time for FU allocation based on its
priority. The priority of a node is calculated based on its
mobility and number of successors. Nodes that have zero
mobility have the highest priority. The output of a node
execution needs to be stored in registers before it is
consumed by its successors. Hence nodes with higher
number of successors get higher priority since scheduling
these nodes earlier frees the output registers for sharing with
other nodes. During FU allocation, a node is allocated an
available FU based on the path overcost i.e., the increase in
cost of the MUXes and registers incurred due to the new
allocation using a approach based on weighted bipartite
graphs [7][23]. The allocation with the minimum path
overcost will be selected. In our approach the schedule as
well the numbers of FUs are already frozen from the NSGA
step. The binding phase is concerned only with the register
and interconnects (MUXes). The methodology is
summarized in Figure 3.

C. Rebinding for further power reduction

The RTL obtained after binding the power-aware
scheduled obtained from the NSGA II run to FUs and
registers is further subjected to a rebinding process for
further power reduction. It was observed that improvement
in dynamic power dissipation was achieved in the following
cases (i) Ungrouping of multiplication and addition nodes
bound to the same register and the resultant MUX

elimination (ii) Elimination of MUXes connecting to the
registers through register reassignment. The details of the
rebinding approaches are given below.

1) Ungrouping of addition and multiplication without
adding registers

Addition and multiplication nodes that are compatible
may share the same register in the post-binding RTL. The
binding is perturbed to ungroup heterogeneous nodes in the
same register. This process is further elucidated in Figure 4.
A scheduled DFG is depicted in the Figure 4(a) with the
node names labeled in bold lower case letters. The FU to
which each node is bound is indicated in upper case letters.
The registers to which each node is assigned are shown in
upper case italics. For instance node b0 which is a multiplier
node is assigned to be executed by the multiplier M1 and the
result of executing this node will be stored in the register
R2. The node a1 which shares M1 also is bound to register
R2. Moreover the addition node c1 executing in adder A2
also is assigned R2 for storage. Thus a two input MUX is
necessitated for routing the results from M1 and A2 to R2

The post binding RTL without application of rebinding is
shown in Figure 4(b). The FUs are not explicitly shown for
the sake of clarity. The MUX inputs are labeled with the
source FUs which drive them. For instance, in the three
input MUX in Figure 4(b), the first input is driven by the
multiplier M3. The nodes assigned to a particular register
are indicated beneath the register itself. For example R1 is
assigned to the nodes a0, a2, b2 and c2.

Now consider register R1 which is assigned to the nodes
b2 and c2 which are addition nodes as well as the
multiplications a2 and a0. The register R4 is assigned to
only a single addition node c0. Since b2 and c2 are executed
in the same adder A1 and their execution times do not
overlap with c0, they can be reassigned to register R4 from
R1 without incurring any additional interconnect overhead.
This step shall unclutter register R1 which will be now
bound only to the multiplication nodes a0 and a2. This
segregation of addition and multiplication nodes bound to
registers results in significant switching power reduction
since the number of MUX ports is reduced to 2 from 3. The
RTL after the rebinding step is shown in Figure 4(c)

It can be seen that the ungrouping has been accomplished
without addition of any MUXes that would tend to offset the
power reduction achieved. This is because the nodes b2 and
c2 that are reassigned to the register R4 from R1 execute in
the same adder A1 as the node c0 which was the only node
assigned to R1 initially. The reassignment process leads to a
reduction in the number of ports of the MUX connected to
register R4 from three to two since only the multipliers M3
and M2 drive the MUX. The reduction in the number of
ports contributes to the reduction in dynamic power
dissipation.
2) MUX elimination by register rebinding

In this rebinding step, nodes are reassigned to registers
with a view to eliminating a multiplexer driving the
registers. If a node is reassigned to a register which is
already bound to node(s) that share the same FU there is
scope for eliminating some of the MUXes. This is illustrated
in Figure 5(a) using the same schedule in Figure 4(a) but
with a different binding for the FUs.

 88

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

R1

R1 R2

R1 R2

R3

R4

R1 R2

A1 A2

M1A1

M3

b2 c1

a1

b0

 * * *

 + * *

 + +

 +

b0

 *

a2 b1

c0 a0

c2

M1 M2

M2

A1

Figure 4(a). A scheduled DFG for illustrating rebinding method 1

 A1 M3

Mux Mux

R1 R2 R3 R4
a0, a2,
b2, c2

a1, b0,
c1

b1 c0

M2 M1 A2 M2 A1

Figure 4(b). Post-binding RTL

Figure 4(c). RTL after ungrouping

The RTL obtained after binding the above schedule using

our modified approach is shown in Figure 5(b). The nodes
a0 and a2 which are assigned to the multiplier M2 share the
register R1 with the addition nodes b2 and c2. The nodes b2
and c2 can be reassigned to the register R4 without any
additional MUX overhead since they share the same adder
as c0 which is the only node currently assigned to A1. This
reassignment step also eliminates the MUX for the register
R1 since it is now bound only to the multiplication nodes a0
and a2 which are assigned to the same multiplier M2. Hence
the rebinding step results in the reduction of the number of
two input MUXes from two to one. The resultant RTL is

shown in Figure 3(c)
The advantages of MUX reduction are two-fold. First, the

elimination of MUXes leads to reduction in the switching
activity in the datapath thereby significantly reducing the
dynamic power dissipation. Also, there is significant
reduction in area since MUXes are not efficiently
implemented by FPGAs as mentioned earlier.

R1

R1 R2

R1R2

R3

R4

R1R2

A1 A2

M1 A1

M2

b2 c1

a1

b0

* * *

+ * *

+ +

+

b0

*

a2 b1

c0 a0

c2

M1 M3

M2

A1

Figure 5(a). Scheduled DFG for illustrating rebinding method 2

M3 A1

Mux Mux

R1 R2 R3 R4
a0, a2, b2, c2 a1, b0, c1 b1 c0

A1M2 A2 M1

Figure 5(b). Post binding RTL

 M2 M3 A1

Mux

R1 R2 R3 R4

a0, a2 a1, b0, c1 b1 c0, b2, c2

A2 M1

Figure 5(c). RTL after rebinding for MUX reduction

V. RESULTS AND ANALYSIS

The binding methodology was evaluated on standard
DFG benchmarks. The DFG is input to an NSGA II engine
coded in C. Power aware schedules are selected from the
Rank I solutions at the end of the NSGA II run. These
schedules are capable of yielding bindings with less

Mux Mux

R1 R2 R3 R4
a0, a2 a1, b0, c1 b1 c0, b2,

c2

M2 M3 A2 M1 M2 A1

 89

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 90

switching activity. Also the scheduler ensures that only
those schedules that can yield a large number of potential
RTL bindings are selected. This provides ample scope for
applying the rebinding steps mentioned in Section IV
leading to additional savings in switching power. The
NSGA II run had a population size of 100 and was run for
100 generations.

Power-aware schedules generated by the NSGA II engine
are subjected to our improved binding and rebinding
approaches mentioned in Section IV adapted from [6] which
seeks to reduce interconnect cost. The binding methodology
is implemented in C. The binding tool computes the data
widths required for each node in the DFG and allocates the
registers and MUXes using the weighted bipartite approach.
The area of the MUXes is estimated using the curve-fitted

model extracted from Matlab. The final RTL netlist is
available as a linked list. The RTL in the form of the linked
list is converted into a synthesizable Verilog structural
model by a C program.

The structural model of the RTL obtained after the
binding and rebinding phases is input to the Xilinx ISE tool
and synthesized to a target FPGA library. The dynamic
power of the bindings was estimated using the Xilinx
Xpower tool. The methodology was evaluated on schedules
with different number of time steps. The entire methodology
was implemented on a CPU with a i5-2400 Duo processor
with 4 GB RAM running at 3.10 GHz. The results are
tabulated separately for the FIR, DWT, MPEG and IIR
benchmarks from the Mediabench suite [24] in Tables I-IV.

TABLE I. RESULTS FOR THE FIR BENCHMARK

Constructive

approach
NSGA II based approach Post-rebinding

Time
steps

Area
slices

Power
(mW)

Area
(slices)

Power
(mW)

% power
reduction

Area
(slices)

Power
(mW)

% power
reduction

Rebinding techniques employed

9 121 163 127 155 5.25% 130 115 29.4% Method 1 and 2

10 85 150 105 157 Nil 109 92 40.50% Method 1

15 85 150 62 134 10.60% 74 116 28% Method 1

TABLE II. RESULTS FOR THE MPEG BENCHMARK

Constructive

approach
NSGA II based approach Post-rebinding

Tim
e

steps

Area
slices

Power
(mW)

Area (slices)
Power
(mW)

%
power

reductio
n

Area
(slices)

Power
(mW)

% power
reduction

Rebinding techniques
employed

17 214 530 159 567 Nil 159 469 11.38%
Method 2. No solution with

multiplier and adder
 driving inputs of MUXes

18 214 532 160 584 Nil 166 470 11.58% - Do -

TABLE III. RESULTS FOR THE DWT BENCHMARK

 Constructive approach NSGA II based approach Post-rebinding
Time
steps

Area
slices

Power (mW)
Power
(mW)

% power
reduction

% power
reduction

Area
(slices)

Power
(mW)

% power
reduction

Rebinding techniques
employed

10 303 183 295 169 7.65% 291 139 24.5%
Method 2. No MUX with

adder and multiplier input for
applying method 1

11 303 183 259 142 22% Nil

No MUX associated with
registers for applying method
1. No solutions suitable for

applying method 2

12 303 182 239 170 6.60% Nil
No MUX associated with

register

TABLE IV. RESULTS FOR THE IIR BENCHMARK

Constructive
approach

NSGA II based approach Post-rebinding

Number
of time
steps

Area
Power
(mW)

Area
(slices)

Power
(mW)

%
Reduction
in power

Area
(slices)

Power
(mW)

% Reduction
in power

Rebinding techniques
employed

4 123 147 127 145 0.93% 117 128 13.11% Methods 1 and 2

6 92 76 98 71 6.49%
No suitable solutions found for applying

rebinding

7 71 74 73 123 Nil 69 72 3.61% Methods 1 and 2

8 71 74 75 71 5.14% No feasible solutions found

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Three different sets of results are presented for each
benchmark. The average area and power numbers of the
different post-binding RTL solutions computed with Xilinx
ISE and Xpower tools [25] are tabulated for schedules with
different number of execution steps to exploit the speed-area
trade-offs. The first set pertains to the constructive
scheduling approach presented in [6]. The second set of
results is obtained by applying our binding methodology to
power-aware schedules extracted from the Rank I solutions
of an NSGA II run. The RTL is further subjected to
rebinding using method 1 (ungrouping of multiplication and
addition nodes) and method 2 (register rebinding for MUX
elimination) described in Section IV. The results of the
rebinding processes are shown in the third set of results in
each table.

A. Binding of NSGA II schedules

The power cost metric guiding the NSGA II run favours
schedules (i) that are likely to produce bindings with low
dynamic power and (ii) that have the potential to yield a
large number of possible binding solutions thereby
increasing chances of RTL datapaths that are near optimal in
terms of switching power. There is appreciable power
reduction in the case of the DWT, FIR and IIR benchmarks
for the bindings of schedules chosen on the basis of the
power metric from the NSGA II pool. No reduction in
switching power is observed for MPEG. This is due to the
algorithm favouring schedules with greater flexibility in
binding over switching cost since improvement in the power
numbers is observed post-rebinding as explained in Section
V. B

B. Rebinding

In the second phase of the binding process, the RTL
obtained from the binding of the NSGA II schedules is
subjected to a further rebinding step. The rebinding is
carried out using the two methods described in Section IV.
For the FIR benchmark, appreciable improvement in
switching power is noticed for bindings from schedules with
different schedule lengths. The last column in the results
indicates the techniques that could be employed in the
bindings obtained. It can be seen that in some cases
solutions suitable for applications of rebinding were not
available in the pool of RTL bindings. The bindings for the
MPEG benchmark exhibited consistent improvement in
dynamic power post-rebinding for all schedule lengths. In
the DWT benchmark rebinding was possible only for
bindings of schedule length 10 where power reduction was
observed. However for this benchmark dynamic power
reduction was observed even before rebinding. For the IIR
benchmark rebinding was possible only for two schedule
lengths wherein marginal power reduction was achieved.
This is due to the small number of nodes (9) in the IIR DFG
with little flexibility in scheduling and binding and hence
less scope for rebinding.

VI. CONCLUSION AND FUTURE WORK

A methodology for power-aware binding of datapath
schedules from Data Flow Graphs to FPGA targets with the
primary objective of reducing switching power has been
presented. The technique involves selection of power aware

schedules from an NSGA II scheduler which is guided by a
power metric that favours schedules with a higher likelihood
of yielding low-power bindings and a large number of
potential binding solutions. The binding process seeks to
minimize interconnect usage during assignment of
functional units and registers to various DFG nodes. Results
on standard benchmarks indicate appreciable reduction in
dynamic power over a constructive approach which
schedules and binds one node at a time. The methodology
can serve as an efficient rapid design space exploration tool
during FPGA synthesis of datapath intensive DFGs where
reduction in switching power is an important design
objective. Since actual power numbers are not computed
during the binding process, computationally expensive low-
level characterizations and simulations are avoided. Further
work would involve evaluating the technique on additional
benchmarks and efforts to further improve the quality of
solutions.

REFERENCES
[1] D. S. H. Ram, M. C. Bhuvaneswari, S. M. Logesh, ”A novel

evolutionary technique for multi-objective power, area and delay
optimization in high level synthesis of datapaths,” IEEE Computer
Society Annual Symposium on VLSI, ISVLSI, pp.290-295, 2011

[2] D. S. Harish Ram, M. C. Bhuvaneswari, Shanthi S. Prabhu, “A novel
framework for applying multiobjective GA and PSO based
approaches for simultaneous area, delay, and power optimization in
high level synthesis of datapaths, VLSI Design journal, vol 2012,
doi:10.1155/2012/273276. [Online] Available:
http://www.hindawi.com/journals/vlsi/2012/273276/

[3] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol.6, no.2, pp.182-197, 2002

[4] K. Deb, “Multi-objective optimization using evolutionary
algorithms,” John Wiley and Sons, 2003

[5] V. Krishnan, S. Katkoori, A genetic algorithm for the design space
exploration of datapaths during high-level Synthesis,” IEEE
Transactions on Evolutionary Computation, vol.10, no.3, pp. 213- 229
2006

[6] E. Casseau, B. Le Gal, “High-level synthesis for the design of FPGA-
based signal processing systems,” International Symposium on
Systems, Architectures, Modeling and Simulation, SAMOS’09,
pp.25-32, 2009

[7] C. Y. Huang, Y. S. Chen, Y. L. Lin, Y. C. Hsu, “Data path allocation
based on bipartite weighted matching,” Proceedings of the 27th
ACM/IEEE Design Automation Conference, DAC ’90, pp 499-504,
1990

[8] Chittaranjan A. Mandal, P. P. Chakrabarti, Sujoy Ghose, “GABIND:
A GA approach to allocation and binding for the high-level synthesis
of data paths,” Very Large Scale Integration (VLSI) Systems, vol 8
no. 6, pp 747-750, 2000

[9] X. Tang, T. Jiang, A. Jones, and P. Banerjee, “Behavioral synthesis of
data-dominated circuits for minimal energy implementation,”
Proceedings of the International Conference on VLSI Design, pp 267-
273, 2005.

[10] N. Chabini, W. Wolf, “Unification of scheduling, binding and
retiming to reduce power consumption under timings and resources
constraints,” Very Large Scale Integration (VLSI) Systems, vol.13,
no. 10, pp. 1113–1126, 2005.

[11] A. K. Murugavel, N. Ranganathan, “A game theoretic approach for
power optimization during behavioral synthesis,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp.
1031–1043, 2003.

[12] D. Chen, J. Cong, Y. Fan, L. Wan, “LOPASS: A Low-power
architectural synthesis system for FPGAs with interconnect estimation
and optimization,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol.18, no.4, pp.564-577, 2010

[13] A. A. Del Barrio, S. O. Memik, M. C. Molina, J. M. Mendias, R.
Hermida, ”A fragmentation aware high-level synthesis flow for low
power heterogeneous datapaths,” Integration, the VLSI journal, doi:
10.1016/j.vlsi.2012.02.005, 2005

[14] D. Bekiaris, E. S. Xanthopoulos, G. Economakos, D. Soudris,
“Systematic design and evaluation of a scalable reconfigurable

 91

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 92

multiplier scheme for HLS environments,” International workshop on
communication centric system on chip ReCoSoC, pp 1-8, 2012

[15] D. Bekiaris, G. Economakos, E.S. Xanthopoulos, D. Soudris, “Low-
power reconfigurable component utilization in a high-level synthesis
flow,” International Conference on Reconfigurable computing and
FPGAs, pp 428-433, 2011

[16] C. Wolinski, K. Kuchcinski, E. Raffin, F. Charot, “Architecture-
driven synthesis of reconfigurable cells,” Euromicro conference on
digital system design/architecture, methods and tools, pp 531-538,
2009

[17] R. Tessier, “Power-efficient RAM mapping algorithms for FPGA
embedded memory blocks,” IEEE Transactions on CAD of Integrated
Circuits and Systems, vol 26, no.2, 2007

[18] F. Ferrandi, P. L. Lanzi, G. Palermo, C. Pilato, D. Sciuto, A. Tumeo,
“An evolutionary approach to area-time optimization of FPGA
designs,” International Conference on Embedded Systems:
Architectures, Modeling and Simulation, IC-SAMOS, pp 145-152, ,
2007

[19] J. M. Chang, M. Pedram, “Register allocation and binding for low
power,” Proceedings of ACM/IEEE Design Automation Conference,
DAC ’95, pp 29-35, 1995

[20] E. Kursun, R. Mukherjee, S. O. Memik,” Early quality assessment for
low power behavioral synthesis. Journal of Low Power Electronics,
vol 1, no.3, pp 1-13, 2005

[21] S. H. Gerez, “Algorithms for VLSI design automation, John Wiley
and Sons, 2000

[22] D. Chen, J. Cong, “Register binding and port assignment for
multiplexer optimization. In: ASP-DAC '04 Proceedings of the 2004
Asia and South Pacific Design Automation Conference, pp. 68-73,
2004

[23] R. K. Ahuja, T. L. Magnanti, J.B. Orlin, “Network Flows: Theory,
Algorithms, and Applications,” Prentice-Hall, Englewood Cliffs, NJ,
1993.

[24] Mediabench benchmark suite Available [Online]
express.ece.ucsb.edu/benchmark

[25] Xpower estimator user guide [Online] Available
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_
2/ug440.pdf

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 07:25:06 (UTC) by 3.239.206.191. Redistribution subject to AECE license or copyright.]

