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1Abstract—This paper proposes a novel model of the two-

level scalar quantizer with extended Huffman coding. It is 
designed for the average bit rate to approach the source 
entropy as close as possible provided that the signal to 
quantization noise ratio (SQNR) value does not decrease more 
than 1 dB from the optimal SQNR value. Assuming the 
asymmetry of representation levels for the symmetric 
Laplacian probability density function, the unequal 
probabilities of representation levels are obtained, i.e. the 
proper basis for further implementation of lossless 
compression techniques is provided. In this paper, we are 
concerned with extended Huffman coding technique that 
provides the shortest length of codewords for blocks of two or 
more symbols. For the proposed quantizer with extended 
Huffman coding the convergence of the average bit rate to the 
source entropy is examined in the case of two to five symbol 
blocks. It is shown that the higher SQNR is achieved by the 
proposed asymmetrical quantizer with extended Huffman 
coding when compared with the symmetrical quantizers with 
extended Huffman coding having equal average bit rates. 
 

Index Terms— Distortion, Entropy coding, Huffman coding, 
Quantization, Signal to noise ratio. 

I. INTRODUCTION 
The need for efficient data representation, a common 

interest in many practical digital communication systems, 
manifests the importance of signal compression in modern 
communication environments. Signal compression is usually 
categorized into quantization, as a lossy compression 
technique, and its lossless counterpart called entropy coding 
[1]–[5]. Both compression techniques have found wide 
application in various data representation needs. Entropy 
coding compresses data without loss of information but, in 
many cases, its achievable compression, bounded by the 
entropy of the source data, is insufficient for the purpose of 
low rate coding. By contrast, quantization can provide 
flexible compression for a wide range of bit rates at the cost 
of accordingly introduced quantization error or information 
loss. Therefore, it is important to research suitable lossy 
compression technique that provides the desired level of 

signal quality for the given bit rate. Lossless compression 
allows decreasing of bit rate without losing information and 
can be achieved using an entropy coding procedure [1]–[5]. 
There are many different types of entropy codes, the 
examples of which are Huffman, Golomb-Rice and 
arithmetic code [3]–[7]. In many modern applications, the 
combination of a quantizer and a lossless coder is used. 
Most often, due to simplicity, the quantizer and lossless 
coder are designed separately [4]–[7]. The obtained 
performances are not optimal, though. However, the desired 
performances can be obtained only with a joined design of 
the quantizer and lossless coder, which is done in this paper. 
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In this paper we propose a novel model of scalar 
quantizer with extended Huffman coding with a goal for its 
average bit rate to approach the source entropy as close as 
possible. The only constraint in designing is that the value of 
SQNR decreases no more than 1 dB from the optimal SQNR 
Lloyd-Max's quantizer value. In fact, the two-level Lloyd-
Max's quantizer [1]–[3] with zero decision threshold is a 
special case of our quantizer. The novel two-level quantizer 
having non-negative variable decision threshold is designed 
depending on which SQNR has to be achieved. The basic 
idea described in this paper is that, unlike Lloyd-Max's 
quantizer, the asymmetry of representation levels is assumed 
to provide unequal probabilities of representation levels for 
the symmetric Laplacian probability density function (PDF). 
This in turn provides the proper basis for implementation of 
lossless compression techniques. Among many lossless 
compression techniques, the most suitable one for utilization 
is extended Huffman coding technique that achieves the 
shortest average length of code words [3]–[5], [8], [9]. The 
analysis of extended Huffman code efficiency is provided in 
[9]. Furthermore, the performance analysis of four types of 
quantizers with Huffman coding for small and moderate bit 
rate are given in [10]. In the same paper, it is shown that the 
best performance is achieved by the hybrid quantizer 
composed of the uniform quantizer and Lloyd-Max's 
quantizer. The initialization problem of Lloyd-Max's 
quantizer’s algorithm and the high design complexity of 
Lloyd-Max's quantizer with a large number of quantization 
levels are pointed out in [11]. The lack of an effective 
implementation of Huffman coding technique on quantizers 
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with a large number of quantization levels is shown in [5], 
[9], [10]. For that reason, we propose a quantizer that has 
only two representation levels and we apply extended 
Huffman coding on the output levels of this quantizer. As 
with Lloyd-Max's quantizer, these representation levels are 
determined from the centroid condition. The design 
procedure of the asymmetrical scalar quantizer having the 
representation levels also determined in accordance with the 
centroid condition for the Laplacian and Gaussian source is 
given in [12] along with the analysis of the entropy when the 
distortion tends to be one. 

This paper is organized as follows. Section II recalls some 
basic theory of Lloyd-Max's quantizer. In addition, it 
describes the design of the proposed asymmetrical two-level 
scalar quantizer with variable decision threshold depending 
on SQNR. Section III gives a brief description to one of the 
most sophisticated and efficient lossless compression 
techniques, called extended Huffman coding technique. It 
also considers the application of extended Huffman coding 
on the output levels of the proposed asymmetrical two-level 
quantizer. The obtained numerical results are discussed in 
Section IV, and based on it, the conclusions about the 
possibilities of application of the proposed quantizer with 
extended Huffman coding are derived in Section V. 

II. DESIGN OF ASYMMETRICAL SCALAR QUANTIZER WITH 
VARIABLE DECISION THRESHOLD DEPENDING ON SQNR 
An N-level scalar quantizer Q is defined by mapping 

Q: R → Y [1], [3], where R is the set of real numbers, and:  
  (1) ( RyyyyY N ⊂≡ ,...,,, 321 )
is a set of representation levels that makes the code book of 
size │Y│ = N. Every N-level scalar quantizer partitions the 
set of real numbers into N cells Ri = (ti-1, ti], i = 1, …, N, 
where ti, i = 0, 1, …, N are decision thresholds and where it 
holds that Q(x) = yi, x∈Ri . The quantizer designed 
iteratively in accordance with the centroid condition and the 
condition of the nearest neighbor is the optimal Lloyd-Max's 
quantizer [1]–[3]. The quantizer we propose in this paper is 
defined by the variable decision threshold along with the 
two representation levels determined from the centroid 
condition. We determine this variable decision threshold 
depending on the quality, measured by SQNR that has to be 
achieved. In the special case, when the mentioned variable 
decision threshold has zero value, the proposed quantizer 
becomes optimal. For the assumed Laplacian PDF of the 
unit variance [1]–[3]: 
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the representation levels of the proposed quantizer are: 
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where the variable decision threshold is denoted by t1. From 
the last two equations, it is obvious that the representation 
levels of the proposed quantizer are not symmetrical. 

The performances of the quantizer are often determined 
by SQNR which is defined as follows [1]–[3]: 
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and expressed in dB where σ2 is the variance of the input 
signal x, while D is the distortion added with quantization. 
Assuming the unit variance for the given range of SQNR 
values, one can firstly determine the appropriate D values: 
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By further defining the distortion of the proposed quantizer: 
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and by combining with (3) and (4), we can derive a closed 
form expression for the distortion of the proposed quantizer 
as a function of the variable decision threshold t1: 
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Using this expression, one can find the corresponding 
threshold value for the given distortion value, hence, the 
design of the proposed quantizer is enabled. 

III. APPLICATION OF EXTENDED HUFFMAN CODING ON 
ASYMMETRICAL TWO-LEVEL SCALAR QUANTIZER 

Output levels of a quantizer can be considered as a 
discrete source of symbols and can be coded using fixed-
length codewords. However, a more effective manner of 
coding is by using an entropy code with variable-length 
codewords [1]–[5], [13], [14]. The bit rate of any lossless 
code is always higher than the entropy, where the aim is to 
approach the entropy as close as possible. To achieve this, 
symbols with large probabilities are coded with short 
codewords and less-probable symbols are coded with longer 
codewords. As aforementioned, there are many types of 
entropy codes. In this section we consider the application of 
extended Huffman coding on the asymmetrical two-level 
quantizer defined in the previous section. The procedure of 
Huffman coding includes determining the optimal length of 
code words for a given probability of symbols [3]–[5], [8]. It 
is sometimes beneficial to additionally reduce the bit rate by 
blocking more than one symbol together. In the mentioned 
cases, extended Huffman coding technique is used. 
Particularly, extended Huffman coding is the procedure of 
determining the optimal length of code words for blocks of 
two or more symbols [3], [4], [8], [9]. 

Let us denote by p1 the probability that a sample of the 
input signal has a lower value than the value of decision 
threshold t1: 
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and by p2, the probability that a sample of the input signal 
has a greater value than the value of decision threshold t1: 
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These probabilities actually refer to the symbol 
probabilities, i.e. to the probabilities of the occurence of 
representation levels y1 and y2. Since we consider a two-
level quantizer, in fact, we observe a two symbol source. We 
can now define the probabilities of symbol blocks as: 
 . (11) 2,1,,2,1,2,1,,...,, ==== kjipppP kjikji ……
Note that in the case of blocking M symbols together the 
size of the extended symbol alphabet equals to 2M [4]. In this 
paper, we consider four cases, of two, three, four and five 
symbol blocks, so that the size of the extended alphabet is 4, 
8, 16 and 32, respectively. For the proposed quantizer with 
extended Huffman coding we examine the convergence of 
the average bit rate to the source entropy. The source 
entropy for symbol blocks is given by [4]: 
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The average bit rate of the observed quantizer can be 
determined as: 
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IV. NUMERICAL RESULTS AND DISCUSSION 
Numerical results presented in this section for the 

proposed quantizer with extended Huffman coding are 
obtained for the cases where the SQNR value does not 
decrease more than 1 dB from the optimal quantizer SQNR 
value. The optimal SQNR value of the Lloyd-Max's 
quantizer having two quantization levels is 3 dB. Therefore, 
the SQNR range in which we consider the performance of 
the proposed quantizer is from 2 dB to 3 dB. The calculated 
performance of the proposed quantizer with extended 
Huffman coding in the case of two, three, four and five 
symbol blocks are shown in Fig. 2 and Table I. From the 
shown numerical results one can notice that the average bit 
rate of the proposed quantizer with extended Huffman 
coding approaches the source entropy where this 
convergence is greater in the case of five symbol blocks 
than in the other observed cases. 

It is important to notice that by decreasing SQNR for 
1 dB (SQNR = 3 dB – 1 dB =2 dB), in the case of two 
symbol blocks and five symbol blocks, the average bit rate 
is decreased for 0.36 bit and for 0.54 bit, respectively. In the 
considered average bit rate range, for the entropy-
constrained symmetrical quantizers, the theoretically 
expected decrease is about 3.5 dB/bit [4]. This means that 
decrease of the average bit rate for 0.36 bit corresponds to 
the decrease of SQNR for 0.36 bit ×3.5 dB/bit = 1.26 dB, 
whereas the decrease of the average bit rate for 0.53 bit 
corresponds to the decrease of SQNR for 1.855 dB. By 
SQNR reduction for 0.5 dB (SQNR = 3 dB – 0.5dB 
 = 2.5 dB), the average bit rate reduction for 0.27 bit (for the 
case of two symbol blocks), and for 0.35 bit (for the case of 
five symbol blocks) are obtained. However, for the same 
amount of compression the theoretical expectations of the 
SQNR decrease for the entropy-constrained symmetrical 
quantizers are 0.945 dB and 1.225 dB [4]. Obviously, we 
have managed to achieve a smaller SQNR reduction, where 
this gain increases with the block size. However, by 
blocking more and more symbols together, extended 
Huffman coding technique becomes impractical since the 
complexity of extended Huffman coder increases as well 
[4], where the decrease of the average bit rate is not 
significant (see Table I). Considering that the values of the 
proposed scalar quantizer for three symbol blocks are very 
close to the average bit rate values of the proposed quantizer 
for five symbol blocks  (see Table I), and the  complexity  is 

where li,j,…,k, i = 1, 2, j = 1, 2, …, k = 1, 2, stand for the 
length of the code words. 

The procedure of determining the length of the code 
words using extended Huffman coding and the code book 
construction includes the following steps: 

Step 1. Determining the symbol block probabilities and 
sorting them in the descending order (see Fig. 1). Assigning 
appropriate probabilities to the initial nodes of the graph. 

Step 2. Application of an iterative process. In each 
iteration the two nodes with the smallest probabilities are 
connected and the sum of their probabilities is assigned to a 
new node. Processing further until the nodes’ sum of the 
probabilities joining in the last step equals one. 

Step 3. The construction of code words. The code word 
for each symbol is determined by beginning from the tree 
root (node with probability 1) and branches, to which the 
allocation of zero value (upper branch) and 1 (lower branch) 
is acquired. The assignment process continues to the left 
until all possible branches are covered. The code word is 
formed from zeros and ones that are on the path from the 
root to the node corresponding to that symbol. 
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Figure 1. Extended Huffman code construction 
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Figure 2. The dependency of the average bit rate and the source entropy on 
the distortion for the proposed quantizer with extended Huffman coding 
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TABLE I. PERFORMANCE OF THE PROPOSED QUANTIZER WITH EXTENDED HUFFMAN CODING IN THE CASE OF TWO, THREE, FOUR AND FIVE SYMBOL BLOCKS 
SQNR D t1 y1 y2 p1 p2 H R (M=2) R (M=3) R (M=4) R (M=5) 

2 0.6309 1.1876 -0.1948 1.8947 0.9067 0.0932 0.4471 0.6353 0.5191 0.4749 0.4612 
2.1 0.6165 1.1096 -0.2111 1.8167 0.8958 0.1041 0.4819 0.6506 0.5406 0.5030 0.4918 
2.2 0.6025 1.0324 -0.2285 1.7395 0.8838 0.1161 0.5181 0.6673 0.5643 0.5343 0.5256 
2.3 0.5888 0.9546 -0.2475 1.6617 0.8703 0.1296 0.5564 0.6859 0.5909 0.5697 0.5616 
2.4 0.5754 0.8756 -0.2683 1.5827 0.8550 0.1449 0.5970 0.7067 0.6209 0.6073 0.6017 
2.5 0.5623 0.7943 -0.2915 1.5014 0.8373 0.1626 0.6405 0.7306 0.6555 0.6504 0.6475 
2.6 0.5495 0.7091 -0.3181 1.4162 0.8165 0.1834 0.6878 0.7582 0.6958 0.7008 0.7009 
2.7 0.5370 0.6176 -0.3495 1.3247 0.7912 0.2087 0.7390 0.7911 0.7445 0.7588 0.7542 
2.8 0.5248 0.5147 -0.3889 1.2218 0.7585 0.2414 0.7974 0.8328 0.8066 0.8056 0.8075 
2.9 0.5128 0.3866 -0.4455 1.0937 0.7105 0.2894 0.8680 0.8921 0.8958 0.8758 0.8796 
3 0.5 0 -0.7071 0.7071 0.5 0.5 1 1 1 1 1 

 
much smaller, in this paper our analysis is mainly 
constrained to the case of three symbol blocks. From the 
results given in Table I and Fig. 2 one can observe that when 
the SQNR value decreases up to 0.5 dB from the optimal 
SQNR value, there is a little deviation of the average bit rate 
from the source entropy in the case of three symbol blocks. 
However, when the deviation of SQNR is in the range of 
0.5 dB to 1 dB, a slightly larger deviation of the average bit 
rate from the source entropy can be perceived. Observe that 
in both ranges the average bit rate and the source entropy 
converge more closely in the case of three symbol blocks 
than in the case of two symbol blocks. It is important to 
notice that for the proposed quantizer with extended 
Huffman coding in the case of three symbol blocks with an 
average bit rate reduction of 0.35 bit, the reduction in SQNR 
of 0.5 dB is achieved. This is 0.35 bit×3.5 dB/bit- 0.5 dB = 
0.725 dB smaller SQNR reduction for the same amount of 
compression than the one ascertained in the considered 
range of the average bit rate for the entropy-constrained 
symmetrical quantizers [4]. 

Finally, from the last row in Table I one can notice that 
optimal Lloyd-Max's quantizer is actually the special case of 
the proposed quantizer. Particularly, when the decision 
threshold t1 of the proposed quantizer is settled to zero, the 
proposed quantizer is Lloyd-Max's quantizer that has the 
symmetrical representational levels, i.e. equal probabilities 
p1 and p2. For such values of probabilities, the values of the 
entropy and the average bit rate of the proposed quantizer 
are equal and amount to one. In this case, our asymmetrical 
quantzier becomes a symmetrical one. Note that 
symmetrical quantizers outperform the asymmetrical ones in 
the case of Huffman coding [1], [4]. The opposite 
conclusion can be derived in this paper for the proposed 
asymmetrical quantizer with extended Huffman coding 
because it outperforms the symmetrical one with extended 
Huffman coding. Accordingly, it is obvious that the 
proposed asymmetrical quantizer with extended Huffman 
coding stands for a very efficient coding solution. 

V. CONCLUSION 
In this paper we have presented a novel class of 

asymmetrical quantizers with extended Huffman coding that 
are designed to provide the required quality of the quantized 
signal, measured by SQNR, and for the average bit rate to 
approach the source entropy as close as possible. Based on 
the performance analysis of the proposed quantizer with 
extended Huffman coding, one can conclude that the 
average bit rate and the source entropy converge more 
closely by blocking more symbols together. However, since  

 
the complexity of extended Huffman coder increases as 
well, the analysis presented in this paper is constrained to 
the case of three symbol blocks. Since it has been 
demonstrated that the proposed asymmetrical quantizer with 
extended Huffman coding stands for a very simple and 
efficient coding solution, better than the one based on 
symmetrical quantizer with extended Huffman coding, one 
can believe that it will find its way toward the practical 
implementation in signal compression. For example, the 
proposed quantizer can be applied to speech signal 
compression [15], [16], which will be the topic of our 
further research. 
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