
Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

STFTP: Secure TFTP Protocol for Embedded
Multi-Agent Systems Communication

Goran HORVAT, Drago ŽAGAR and Goran MARTINOVIĆ
Faculty of Electrical Engineering, J. J. Strossmayer University of Osijek, Croatia

goran.horvat@etfos.hr

1Abstract—Today’s embedded systems have evolved into
multipurpose devices moving towards an embedded multi-
agent system (MAS) infrastructure. With the involvement of
MAS in embedded systems, one remaining issues is establishing
communication between agents in low computational power
and low memory embedded systems without present
Embedded Operating System (EOS). One solution is the
extension of an outdated Trivial File Transfer Protocol (TFTP).
The main advantage of using TFTP in embedded systems is the
easy implementation. However, the problem at hand is the
overall lack of security mechanisms in TFTP. This paper
proposes an extension to the existing TFTP in a form of added
security mechanisms: STFTP. The authentication is proposed
using Digest Access Authentication process whereas the data
encryption can be performed by various cryptographic
algorithms. The proposal is experimentally tested using two
embedded systems based on micro-controller architecture.
Communication is analyzed for authentication, data rate and
transfer time versus various data encryption ciphers and files
sizes. STFTP results in an expected drop in performance,
which is in the range of similar encryption algorithms. The
system could be improved by using embedded systems of
higher computational power or by the use of hardware
encryption modules.

Index Terms—software agents, embedded system,
telecommunication, multiagent system, security, Secure TFTP,
TFTP

I. INTRODUCTION
With the overall rising trend in use and production of

embedded systems, the impact on establishing effective and
low cost communication over the existing infrastructure is
more and more emphasized. According to [1],
semiconductor and embedded industry is projected to bloom
from $3.25 billion in 2005 to $43.7 billion by 2015.
Consequently, the field of embedded systems now
influences many industrial sectors including automotive,
consumer electronics, communications, medical and other,
representing an interesting area for research. Due to the fact
that this growth is propelled by the penetration of stand-
alone low cost chips such as microprocessors and
microcontrollers [1], the question that arises is how to
establish effective and secure way of communication in
these configurations.

As the complexity of an embedded system rises the need
to replace human interaction in embedded systems becomes
increasingly important. The introduction of agent
technologies into embedded systems (bringing intelligence
and flexibility) presents a problem, as these devices are of

low computational power and low memory [2]. This
problem can be avoided by designing an eMAS (embedded
Multi-Agent System) within boundaries of an embedded
system. The question that remains is how to establish
effective communication between agents (embedded
systems) in MAS [3]? In certain applications mobile agents
can be located within Wireless Sensor Network (WNS)
nodes where the communication between WSN nodes is
separated from the “real world”; presenting no need for
additional communication protocols. In this scenario
communication is carried out through WSN protocol stack
[4]. On the other hand, large number of embedded systems
imposes a need for embedded agent integration, where the
communication component presents a setback for
implementation. The problem here lies in finding an
effective and secure communication protocol for agent
exchanging messages (agent interactions) and exchanging
data whilst stepping within computational memory
boundaries of an embedded system.

1This work was sponsored by the Ministry of Science, Education and

Sports of the Republic of Croatia under project 165-0362027-1479 and
165-0362980-2002.

Modern embedded systems are composed of embedded
hardware (microcontroller) and embedded software (often
an embedded agent) that incorporates a data storage device.
In order for agents to effectively transfer data files and
messages from and to the destination, the embedded system
must incorporate a file transfer protocol. Because the FTP
protocol induces fairly large overhead on the existing
software, a viable alternative to this problem is the use of
Trivial File Transfer Protocol (TFTP). Unlike FTP, the
TFTP protocol is based on UDP transport protocol and
effectively simplifies the implementation.

A major drawback of the TFTP is not providing any form
of security mechanism (primarily authentication and data
encryption). Therefore, this paper proposes an extension to
the existing protocol by adding security mechanisms in a
form of Digest Access Authentication accompanied by
Secure Hash Algorithm 1 (SHA-1) to establish a secure way
of agent authentication. To assure the data confidentiality,
two ciphers are proposed: Advanced Encryption Standard
(AES) and eXtended Tiny Encryption Algorithm (XTEA).

In order to verify the proposal, the test setup is
implemented on two different embedded systems based on
different architectures. Further on, the database is stored on
a micro Secure Digital data card (microSD) and an Ethernet
interface is used. The tested architectures differ in
microcontroller type, of which the former is an Atmel
XMEGA based microcontroller and the latter is Microchip
PIC32 based microcontroller. Both test setups consists of
Stand Alone Ethernet Controller ENC28J60 functioning as a
link to the Ethernet LAN, incorporating only Physical and
Medium Access Control layer. Higher layer support is added

 23
1582-7445 © 2013 AECE

Digital Object Identifier 10.4316/AECE.2013.02004

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

through embedded system’s firmware.
The testing of the proposed extension was carried out

using Network Protocol Analysis. The data were analysed
regarding data rate, transmission time and authorization
flow versus different data encryption ciphers. Data rate and
transfer time were analyzed versus different file sizes and
different data encryption ciphers.

In the following Section related work on TFTP and
security aspects in embedded systems use are described.
Section III describes the implementation of authentication
mechanism in TFTP. Section IV proposes the data
encryption accompanied by various ciphers. In Section V
experimental setup is described and measurement results are
analyzed, respectively. Section VI gives the conclusion with
added future work.

II. EMBEDDED MAS ARCHITECTURE
An agent is interactive software designed to avoid the

need for human interaction to a certain degree. By
definition, a software system of autonomy, social ability,
reactivity and pro-activeness can be called as agent [5]. The
agents that can be moved within a network are called mobile
agents and together they form a multi-agent system or MAS.
If examined from another point of a view, agent is a
programming thought rather than a particular technique. It
changes the notion of software and presents new ways to
bring more intelligence to the internet [6][12]. Example of
MAS is shown on Figure 1.

Figure 1. An example of MAS [7]

On the other hand, the difference between a standard
agent and an embedded agent is the point of the
implementation. According to [3] agents of eMAS have the
following constrains:

• Low memory resources (16K-32K)
• Low core frequency (1MHz-4MHz)
• Autonomous energy management

Consequently, upon eMAS implementation these
constraints must be taken into consideration. A major goal
of embedded software design is to construct the
environment where the agents can live. This requires the
existence of an EOS (Embedded Operating System) layer
that is often not present in low power configurations. The
basic link protocols, such as TCP/IP, and so far as web
service, are located in this layer, so the absence of EOS

layer results in the absence of higher layer communication
protocols. This presents a problem for embedded agents as
their behaviour requires social interaction with other agents
[6].

This problem can be solved throughout various hardware
dependant solutions. For instance, an embedded multi-agent
system implemented in Wireless Sensor Network (WSN)
experiences all the benefits that EOS provides in the area of
communication in the manner that every WSN node already
incorporated a communication stack (such as ZigBee,
IEEE802.15.4) [8]. With the included communication stack,
sending messages to other WSN nodes and embedded
agents is substantially simplified. The agents can easily
exchange messages and need not to worry about security or
protocol issues. However, even in these systems there is a
wide area for application layer protocol development.

On the other hand, establishing communication in
embedded system without an existing backbone network can
present a demanding task. For instance, a microcontroller
embedded system with an implemented agent has to have
the ability to contact other agents in vicinity, but it lacks the
memory for the implementation of a standard TCP/IP stack.
One of the existing solutions is presented in [9] where a
hardware module is used to establish communication with
an Ethernet network using an existing single chip solution.
The advantage here is the lower layer support implemented
within the communication chip (PHY and MAC layers),
discussed in detail in Section III. This simplifies the
implementation but still requires higher layer
communication protocol support. To avoid the additional
induced overhead that the higher layer protocol induces, this
paper proposes the use of a very simple yet outdated
communication protocol named Trivial File Transfer
Protocol (TFTP). The main advantage of TFTP is the low
induced overhead for implementation. However, the existing
problem with TFTP is the overall lack of security
mechanisms that renders the protocol useless for real
versatile Ethernet environments.

Throughout this paper a solution for communication
protocol between agents in eMAS is presented in a form of a
STFTP protocol that enables an efficient implementation
while retaining communication security. Also, the choice of
security is presented in a form of various encryption ciphers
that can vary depending on the application at hand.

III. TFTP AND SECURITY ASPECTS IN EMBEDDED SYSTEMS

A. TFTP and Embedded Systems
TFTP is a simple protocol designed for simple data file

transfer. It is built on top of the Internet User Datagram
Protocol (UDP) using port number 69. It is designed to be
easy implemented, representing an ideal candidate for use in
low cost embedded systems [10]. TFTP defines three modes
of transfer: netascii, octet, and mail. Octet mode allows the
transfer of arbitrary bytes, as opposed to the netascii (uses
only ASCII characters). Transfer mode named mail is used
to relay e-mail messages and can be effectively used to relay
messages between agents in eMAS, if agent names are
substituted for mail addresses [11].

 24

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

Figure 2. TFTP data flow

 As shown on Figure 2, file transfer begins with a request
to read or write a file, also serving as a request for
connection. If the server grants the request, the server
responds with Option Acknowledgement (OACK). The
connection is opened and the file is sent in fixed length
blocks (512 bytes or larger, depending on block size
(blksize) parameter) [11].

The TFTP protocol uses a lock-step algorithm. A data
packet of size less than blksize parameter indicates the
termination of a transfer. After sending a block of data,
sender should wait for an acknowledgement. If a packet is
lost in the network, the receiver will timeout and may
retransmit the last received packet, indicating the sender to
retransmit the last packet. The sender has to keep just one
packet for retransmission, since the lock step
acknowledgment guarantees that all previous packets have
been received. The transfer rate is therefore limited to the
round-trip time (RTT). If the round-trip time is e.g. 20 ms,
then the transmitter can send up to 50 blocks per second.
With a default block size of 512 bytes, the transfer rate is
bounded to 25 kB/s [1][10][11].

In order to incorporate the UDP communication in
embedded system, a Network Interface Controller (NIC)
must be present to establish the communication between the
micro controller (embedded system) and a Local Area
Network. Most of the existing microcontrollers are not
designed to incorporate the desired functionality in their
design, making the implementation more complex [1].

On the other hand, presently only a small number of
microcontrollers incorporate the necessary hardware and
software requirements to enable Ethernet communication
(e.g. Microchip PIC18F97J60)[13]. To overcome the lack of
functionality in the existing systems it is possible to use
existing Stand Alone Ethernet Controller that is interfaced
in familiar industry standard. One of the solutions is to use
Microchip’s Stand-Alone Ethernet Controller ENC28J60,
which uses SPI interface to relay data to and from embedded
system. ENC28J60 incorporates integrated 10BASE-T
MAC and PHY support, with the support for UDP
communication [13]. This choice presents a cost effective
and easy implementation solution for embedded systems
without integrated Ethernet interface.

The major problem of TFTP use in Ethernet Local Area
Network is the lack of authentication and data encryption
security mechanisms. This presents a serious problem in
versatile Ethernet environment, so an extension in a form of

additional TFTP security mechanisms should be
implemented.

B. Communication security in embedded systems
Related work on this subject is versatile and covers a

wide area. Primarily, the security issues in embedded
systems are largely discussed in [14], where the impacts of
current technologies are shown. Foremost, the use of
communication protocols and standards (such as SSL and
WEP) for secure communication presents a problem for
embedded system implementation. Many embedded systems
are constrained by the environments they operate in, and by
available resources [14]. The implementation of these
mechanisms presents a problem for the low cost, low power
embedded systems, as the size of the protocol stack is too
large. Another aspect of embedded system communication
is the overall data rate. According to [15], the
implementation of the protocols such as SSL diminishes the
communication performance in embedded environments.
The work on improving the efficiency of the SSL encryption
was presented by various researchers, not resulting in
significant improvement [15].

The emerging new technologies and next generation high
speed protocols are swiftly taking their place in the everyday
communication. The example is the UDT protocol that relies
on UDP socket presenting protocol applicable for embedded
systems [16]. On the other hand, the implementation of the
UDT in embedded systems presents a problem since UDT
requires the use of the UDT socket represented on a higher
protocol layer.

The problem of authentication and security in embedded
systems is specially addressed by stressing the low
computational power of embedded systems for effective
implementation of cryptographic algorithms [17]. Further
on, some solutions incorporate a very complicated
authentication system that uses a time synchronization
server in the process of authentication, acting as a trusted
third party [17]. This presents a problem for small networks,
since the presence of the time synchronization server is
required. Furthermore, the proposed solution does not
incorporate any form of data encryption thus not retaining
the confidentiality of the transmitted data [17]. In addition,
the cryptographic primitive MD5 (used in Digest Access
Authentication) is not secure from cryptographically aspect
as it can be easily broken in a few seconds [19]. Therefore,
an alternative authentication mechanism should be
proposed.

From the point of implementation in embedded systems,
TFTP presents an ideal candidate. On the other hand, the
extension of the TFTP protocol towards a secure
communication is not adequately researched and
documented. In order to improve the security of the TFTP
protocol, the authentication procedure is required for
controlled access to embedded system. By implementing
data encryption it is possible to ensure data confidentiality.

IV. AUTHENTICATION IMPLEMENTATION IN TFTP
The authentication procedure applied to low

computational embedded systems can be of various
complexity levels. Taken into consideration the overall
complexity of the authentication algorithm, the

 25

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

cryptographic authentication presented in [17] is fairly
complex as it requires the use of a time synchronization
server. To lower the complexity of the authentication as well
as to retain the level of security, this paper proposes a
modification of the existing Digest Access Authentication
(DAA) for use in embedded systems. The alternative to
using DAA is the Datagram Transport Layer Security
(DTLS), however the implementation of DTLS results in
higher system complexity and larger overhead.

Figure 3. HTTP Digest Access Authentication

Digest Access Authentication (also known as Digest -
MD5) was originally proposed to provide peer
authentication in HTTP protocols (Figure 3.) [18]. Most
prevalent browsers have substantially implemented the
specification of Digest-MD5, including Mozilla Firefox,
Netscape, Konqueror, Internet Explorer and Google Chrome
[19]. Digest-MD5, a typical hash-based challenge and
response protocol, intends to provide protection against
replay attacks, on-line dictionary attacks and choosing plain
text attacks, et al. Digest-MD5 is one of the most widely
used cryptographic hash functions, to hash some shared
secret information needed for authentication. The
authentication server first sends a random string (hashed
using client IP address, time stamp and private key) called a
nonce as a challenge to the peer, and the peer generates the
corresponding response.

However, according to [19], the overall security of MD5
based Digest Access Authentication is compromised, and all
applications based on that must be re-evaluated seriously.
According to [23], a 2009 attack by Tao Xie and Dengguo
Feng breaks MD5 collision resistance using just 220.96 time
complexities. This attack runs in a few seconds on a regular
computer. In order to preserve the implementation
simplicity of the Digest Access Authentication as well, to
improve the overall security of authentication, this paper
proposes the use of Secure Hash Algorithm 1 (SHA-1)
instead of MD5. Some preliminary results indicate that SHA
is 62% as fast as MD5 presenting a perspective alternative
in the processing aspect [20]. According to [21], a 2008
attack by Stéphane Manuel can break SHA-1 hash function
by producing hash collisions with complexity of 251
operations. This presents a significant improvement in
comparison to MD5 hash function as well as a generally
safer authentication process. To additionally secure
authentication process it is possible to use SHA-256 hash

function. However, this can additionally burden effective
embedded system implementation.

To enable any form of authentication, an important
segment is the generation of random nonce values used in
authentication procedure.

A. Generating nonce values in eMAS
In cryptography, nonce is an arbitrary number used only

once in a cryptographic communication. Most commonly it
is a random or pseudo-random number issued in an
authentication protocol to protect against replay attacks. For
instance, nonces are used in HTTP digest access
authentication to calculate an MD5 digest of the password.
Since nonce values are said to be random, an effective way
of generating these values must be proposed.

An interesting approach in generating random or pseudo-
random values is the use of a universally unique identified
or UUID and a hashing function. This claim is supported by
the claim that the hash function statistically eliminates the
possibility of generating two identical values from two
different inputs [21].

Further on, by the definition UUID is designed as a
number that is globally unique in space and time. Two calls
to UUID() function are expected to generate two different
values, even if these calls are performed on two separate
devices that are not connected to each other [22]. This
presents a basis for nonce generation, however some
drawbacks exist. For instance, to form UUID (Version 1.)
basic parameters are the MAC address and a date-time
(100ns based). These parameters do not impose a problem
on normal personal computers, but on embedded systems
due to the limited resources, these parameters could be
difficult to acquire. However, according to [22] there is a
solution for the generation of unique identifiers specifically
designed for MAS named GHUUID (Geo-Hash Universally
Unique Identifier). Geohash+UUID (GHUUID) mechanism
takes the location based data with UUID function. GHUUID
gives the agents spatio-temporal awareness and with its
uniqueness it guarantees the generation of fully random
nonce values.

Example of GHUUID:
(u2j70vx29gfu-2d004620-3fc7-11e1-b86c-0800200c9a66)

• First part: u2j70vx29gfu represent GeoHashed lat/lon
information that corresponds to the initial geo
coordinates of 45.557, 18.675.

• The second part: 2d004620-3fc7-11e1-b86c-
0800200c9a66 is generated UUID that contains a
timestamp taken at Sunday, January 15, 2012 10:20:48
PM GMT.

The main drawback of this hashing method is the need for
spatial coordinates and precise time stamp. However, this
data can be easily provided by the GPS (Global Positioning
System) implemented on an embedded system. The choice
for the use of GPS lies on the fact that one of the first MAS
applications was distributed vehicle monitoring (DVMT)
where a set of geographically distributed agents monitor
vehicles that pass through their respective areas, attempt to
come up with interpretations of what vehicles are passing

 26

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

through the global area, and track vehicle movements [22].
Due to the fact that these agents are mobile, their main
prerequisites for mobility is the knowledge of their spatial
position provided by the GPS system, thus providing the
hashing algorithm with all the data required to compose a
GHUUID.

However, in applications with no GPS support the
generation of universally unique identifiers can be
performed using simple UUID (Version 1) that for input
takes a MAC address and a timestamp. Due to the fact that
the MAC address is a global identifier (organized usually
around the central issuing authorities who can guarantee
their uniqueness) the temporal uniqueness of the UUID is
guaranteed.

After the calculated GHUUID or UUID the embedded
system hashes the nonce in the following manner:

 (1-1))")(:_("1 GHiphostSHAnonce = UUID

where the host_ip represents the IP address of the host
device, (GH)UUID represents a Geo hashed Universally
Unique Identifier (GHUUID) or a Universally Unique
Identifier Version 1. (UUID). When nonce value is
generated and hashed using SHA-1 hash function, it is ready
for the use in the authentication procedure.

B. Digest Access Authentication procedure
The proposed Digest Access Authentication using SHA-1

follows the prescribed procedure: Host requests the nonce
value from embedded system. When nonce value is
generated and hashed using SHA-1 hash function, it is
transmitted to the host device. After the host receives the
nonce, it hashes two additional strings and joins them with
the nonce hash string:

)"::("11 passwordrealmusernameSHAHA =
(1-2)

)":("12 urimethodSHAHA =

where the username represents the standard username,
realm represents the realm received from embedded device
and password represents the password for the given
username. After the two hash strings are generated and
combined with nonce value, the response is sent to the
embedded system.

)"2::1("1 HAnonceHASHAresponse = (1-3)

Embedded system recalculates the response from
previously randomly generated nonce value and stored hash
strings HA1 and HA2 (stored in database on microSD data
card). If the generated response on the embedded system
matches the received hash string the communication is
signed and the host is authenticated. The embedded system
establishes a virtual channel to the host device using
specified IP address and port number. All requests received
from another IP addresses will be discarded. In order to
prevent access from IP address spoofing, the sent and
received requests as well as the data are encrypted.

The data encryption key is derived from nonce string and
stored HA1 hash string. The key can be represented as
follows:

)":1("13 nonceHASHAHA =
(1-4)

)12(3_ 128 −= ∩HAKEYENCRYPTION

The encryption key is represented by first 128 bits of the
160 bit hash string. Due to the fact that the hash string HA1
is secret and nonce string is dynamically generated, the
selected combination ensures a dynamic change of the
encryption key. This presents a novelty in key generation
and ensures that the encryption key changes for every
session. Another advantage of this method is eliminating the
need for a central authority for the distribution of keys that
would present a drawback in embedded system design.

The control flow of authentication and hand shaking of
the nonce and response strings are displayed on Figure 4.

Figure 4. Digest Access Authentication flow

After transfer session is completed, the host closes the
channel the data and terminates the session. In order to
terminate the session the host needs to send the end session
request alongside with the initially acquired response value.
The sent response value imposes a form of security
mechanism preventing direct DoS attacks by the malicious
hosts. However, the imposed mechanism is vulnerable to
replay attack, therefore additional security mechanisms
should be implemented in future work.

C. Authentication in the TFTP frame
In order to enable the TFTP support for the authentication,

message format and the frame of the TFTP must be adapted.
Specifically, the support for GET, AUTH and END
SESSION requests must be implemented in the existing
message format of the Trivial File Transfer Protocol. The
section that defines the type of the packet is named opcode,
and the original opcodes for TFTP are shown in Figure 4
[25]. The opcodes omitted from Figure 5 are defined by
authors in [11], as well as the optional fields added in read
and write requests.

Format of the TFTP frame is defined by [9] and
throughout sent and received requests the desired parameters
are being exchanged. By examining TFTP opcodes it was
concluded that opcodes with hexadecimal prefix 0x10 are
not used in the standard TFTP, so the STFTP uses
hexadecimal prefix 0x10 to define authentication headers.

 27

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

Figure 5. Format of the existing TFTP

This paper proposes the addition of five additional
opcodes to enable the process of authentication. The added
opcodes include GET_NONCE, RETURN <nonce>,
END_SESSION, AUTH <return> and AUTH_ACK. The
new proposed opcodes are shown in Figure 6.

Figure 6. Proposed authentication opcodes

By adding the new opcodes the implementation of the
authentication mechanism in TFTP is enabled.
Authentication process is a critical component in designing
secure communication. Another novelty is the support of
different data ciphers within the protocol (defined by
AUTH_ACK opcode). Accordingly, to ensure desired data
security level, confidentiality must be addresses as well.

V. ESTABLISHING CONFIDENTIALITY IN TFTP
Establishing confidentiality is the process in which the

body of the message is encrypted. Encrypting the entire
message body can be computationally expensive, depending
on the volume of data, the hardware limitation, and the
encryption algorithm, respectively. Therefore, careful
considerations should be made before implementing this
process indiscriminately [26]. The cipher algorithm is
executed upon reading and writing a data segment into/from
the DATA packet (Figure 4) were the encryption key is
derived from the equation (1-4).

The proper choice of data ciphers in the encryption
process is very demanding, especially for embedded system

engineer. Various software algorithms have been proposed
for use in embedded systems (i.e. microcontrollers). For
example, the implementation of the Blowfish algorithm in
microcontroller architecture is proposed in [27]. On the
other hand, some proposal uses a software implementation
of a cipher known for its simplicity of implementation,
resulting in only a few lines on code. This cipher in
eXtended Tiny Encryption Algorithm (XTEA) presenting a
suitable implementation for embedded systems [28].

Next on, various ciphers for embedded systems use (e.g.
AVR microcontrollers) are analyzed and documented
regarding different parameters in [29], [30] and [31]. These
algorithms include AES, Dragon, SOSEMANUK and many
others, which are analyzed regarding memory allocation and
throughput on an 8MHz CPU clock. By combining the
results from XTEA analysis [28], we can summarise and
compare the results for the different chosen algorithms,
shown in Table 1 [28][29].

TABLE I
THROUGHPUT AND MEMORY USAGE FOR VARIOUS SOFTWARE CIPHERS

Cipher Block
[byte]

Flash size
[byte]

Encryption
[cycles]

Encryption
[cycles/by]

Throughpu
t [by/s]

AES 16 3 410 3 766 235,4 33 985
Dragon 128 57 434 24 227 189,27 42 267
SOSEMANUK 80 44 704 14 134 176,68 45 279
XTEA 8 224 6 347 793,38 10 083
HC-128 64 23 100 10 804 161,81 47 390
LEX 40 21 312 8 061 201,53 39 696
Salsa20 imp. 64 3 842 48 942 764,72 10 461
DES 8 4 314 8 633 1 079,9 7 408
PRESENT 8 936 10 723 1 340,7 6 067
IDEA 8 596 2 700 337,5 23 703

0 opcode
0x20

2 byte 1

nonce value opcode
0x23

2 byte N bytes

return value opcode
0x10

2 byte N bytes

0

0

1

1

opcode
0x14

2 byte

Cipher name

N bytes

opcode
0x11

2 byte

return value

N bytes

0

1

Get nonce value

Return nonce value

Authenticate using
return value

End session using
return value

TFTP Message

Auth. Acknowledge 0

1

Data shown on Table 1 can be easily presented in a bar
graph form where the most important parameters are shown.
These parameters are Flash size and Throughput. Ciphers
are shown on Figure 7.

Figure 7. Overview of the contemporary software ciphers

In order to effectively choose between an effective
implementation (low flash usage) and high data transfer rate
(high throughput) the ratio between the parameters is
proposed. The proposed ratio dictates the effectiveness of
the cipher and the larger the ratio gets the cipher is said to be
more effective. The ratios for the presented ciphers are
shown on Figure 8.

Figure 8. Throughput and Flash size ratio representing the effectiveness of
software ciphers

 28

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

As seen from Figure 8, the most effective cipher is the
XTEA and IDEA ciphers, as they generate least Flash
overhead and results in a moderate throughput. As shown in
Table 1, the lowest overhead is generated by the XTEA
algorithm, as it is the simplest algorithm for implementation
[28]. Also, the XTEA uses fewer cycles for encryption,
however due to the low block size, the overall throughput is
lower. This is a trade-off for high throughput (using
embedded systems of larger flash size) and low flash size
for microcontrollers (lower throughput).

The next most efficient cipher is the AES algorithm as it
generates high throughput and its implementation induces
moderate overhead. The main advantage of using AES
cipher is the high security that it offers. Also, AES is
widespread algorithm also implemented as an ASIC
solution, avoiding the need for software algorithms.

The algorithms such as Dragon, SOSEMANUK and others
generate high throughput, however the flash size restricts
them from being implemented in low memory embedded
systems, as they generate a large overhead and are least
effective (e.g. on a microcontroller of 128kB of memory the
Dragon cipher uses 43% of the overall flash [29]). Due to
the various used compilers, the induced overhead and the
encryption cycles varies, therefore this should be taken into
consideration [28][29][30].

By comparing results of available software ciphers for use
in embedded systems the choice is reduced to AES and
XTEA, presenting a compromise solution by overall
throughput. The reason for not choosing other algorithms
was the idea of demonstrating general implementation of a
cipher. The IDEA cipher presets a very similar cipher to
XTEA and TEA, but it incorporates more complex
arithmetic operations (such as modulo 232 multiplication) so
for the purpose of demonstration this cipher was omitted
from the implementation.

This paper proposes the use of both AES and XTEA
ciphers, presenting the strengths and drawbacks for each of
them. Alternately, the choice of ciphers could be left to the
embedded software agent giving the agent more freedom in
communication. The choice of ciphers is enabled from the
added authentication procedure and the AUTH_ACK frame,
within which it is possible to define what cipher is used in
the communication.

A. Hardware vs. Software ciphers
The proposed ciphers are software algorithms that need to

be implemented in the overall code. However, there are
alternatives for using software ciphers. By using designated
hardware modules integrated in certain integrated circuits,
the encryption can be achieved on a hardware level. These
hardware modules consist of logical gates in a standard-cell
ASIC implementation.

A practical use example is the Atmel’s XMEGA series
microcontroller. The XMEGA incorporates an integrated
AES and DES cipher module that uses 375 clock cycles
before the encrypted/decrypted cipher text/plaintext is
available for readout in the state memory [38]. This is a
major advantage over the existing software ciphers (the
difference is 34 times, Table 1).

The hardware implementation various cipher in embedded
systems currently presents the single alternative to the

highly overhead software based ciphers. According to [31]
there are numerous hardware ciphers that can be
implemented in ASIC solutions. These ciphers are shown on
Table 2.

TABLE II
THROUGHPUT AND MEMORY USAGE FOR VARIOUS HARDWARE CIPHERS

Cipher Block
[byte]

Number of
gates

Encryption
[cycles]

Encryption
[cycles/by]

Throughpu
t [kby/s]

mCRYPTON 8 2500 13 0,2 4 923
CLEFIA 16 4950 36 0,28 3 556
PRESENT 8 1000 32 0,5 2 000
HIGHT 8 3048 34 0,53 1 882
AES 16 3100 156 1,22 800
XTEA 8 3490 109 1,7 571
DESXL 8 2168 64 1 444
DES 8 2300 64 1 444

AES [38] 16 3400 375 2,93 333

Graphical representation of the ciphers alongside with the
number of gates and throughput is shown on Figure 9.

Figure 9. Overview of the contemporary hardware ciphers

As seen from Figure 9, the throughput of hardware based
ciphers in almost 1000 times higher than the throughput of
the software ciphers. The main reason for the vast difference
in throughput is the low number of cycles for encoding
resulted from parallel processing of the data. The efficiency
of the ciphers can be seen from the ratio of throughput and
number of gates. The results are shown on Figure 8.

Figure 10. Throughput and Flash size ratio representing the effectiveness of
hardware ciphers

Figure 10 shows that the most effective hardware ciphers
are mCRYPTON and PRESENT. However, not all ciphers
can be found in a hardware based solution provided by
various manufacturers. One of these widespread solutions is
the AES standard that can be found in various micro-
controllers as an additional crypto module, as stated before
[38], so it presents a logical solution for the use as a
cryptographic function in low computational power
embedded systems.

B. XTEA and AES – Proposed TFTP cipher algorithms
The block cipher TEA (Tiny Encryption Algorithm) was

designed by Wheeler and Needham in 1994 as a short C
language program that would run safely on most machines.
It achieves high performance by performing all its

 29

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

operations on 32bit words, using only exclusive-or, addition
modulo 232, multiplication modulo 232 and shift operators.
TEA has a simple Feistel structure, but uses a large number
(i.e. 64) of rounds to achieve the desired level of security
[24]. However, taking advantage of its simple key schedule,
in 1997 Kelsey, Schneier and Wagner described a related-
key attack. To secure TEA against related-key attacks,
Needham and Wheeler presented an extended version of
TEA in 1997, known as XTEA, which retains the original
objectives of simplicity and efficiency [28][34].

Advanced Encryption Standard (AES) is a specification
for encryption of electronic data. It has been adopted by the
U.S. government and now is used worldwide. The algorithm
described by AES is a symmetric-key algorithm. The AES
encryption algorithm has five main operations:
AddRoundKey, SubBytes, ShiftRows, MixColumns, and
KeyExpansion. The decryption operations are basically the
inversed encryption operations. Besides, the number of
rounds of the looping is set to Nr-1 in which Nr is specified
according to the AES specification [35].

According to [32], the best cryptanalysis for XTEA is a
related-key differential attack. This attack can break 32 out
of 64 rounds of XTEA, requiring 220.5 chosen plaintexts and
a time complexity of 2115.15, which demonstrates the strength
of the mathematical algorithm. All known attacks against
AES are computationally infeasible. Related-key attacks can
break AES-192 and AES-256 with complexities 2176 and
299.5, respectively [33]. However, some attack techniques
target the physical implementation rather than the algorithm
itself. When sampled at high rates and examined in more
detail, power waveforms can reveal the key bits [36]. The
impact of these attacks is emphasized by the fact that the
attacker is in possession of the device. This problem can be
overcome by several methods. One method is based on
using specifically designed and secures integrated circuits
(micro-controllers). The problem using this method is
inability to implement the encryption in the existing
embedded systems. This can be avoided by using a smart
random code injection to mask power analysis based side
channel attacks [37].

VI. IMPLEMENTATION AND TESTING OF SECURE TFTP
As discussed in Section III, the proposed secure version

of TFTP uses a modification of Digest Access
Authentication to authenticate the incoming requests. In
order to implement the authentication in TFTP an
experimental TFTP server is required. In order to design an
experimental TFTP server, the hardware and software
components were chosen accordingly. The measurements
were conducted using two platforms: AVR XMEGA
(running at 57MHz) and PIC32 (running at 80MHz),
respectively [39]. In order to enable the proper functionality
in both platforms, the used programming language is ANSI
C compiler MikroC [39]. The advantage of using MikroC is
the ability to use the identical C code in both architectures,
thus simplifying the implementation of the TFTP. In
addition to the used development boards, the Ethernet
controller was used to establish the connection to the LAN
as well as a microSD data card for data storage. To establish
the baseline UDP communication required by the TFTP, the

existing precompiled libraries within the MikroC compiler
were used accordingly.

After establishing basic TFTP communication, the
security component was implemented as well. In order to
examine the complexity of the added security component
the additional overhead is calculated as well and the results
are shown.

Figure 11 shows the added overhead compared to basic
TFTP protocol. The induced ROM memory (FLASH
memory) overhead is 12%, whereas the induced overhead in
the RAM section is negligible (1.7%).

Figure 11. Additional overhead for the TFTP security component

Upon analysis of the authentication mechanism, it was
inconvenient to display these data (raw data format).
However, from the conducted measurement it can be
concluded that the implemented protocol provides the
required functionality defined in Section III and on Figure 4.

A. Secure TFTP functionality testing
To test the data encryptions proposed in Section IV the

implementation of the XTEA and AES algorithms was
necessary in both hardware platforms: XMEGA and PIC32.
Due to the fact that XMEGA incorporates hardware AES
module the software algorithms for this encryption was not
developed. XTEA and AES software algorithm were
developed in ANSI C and implemented in hardware
platforms.

The measurements were conducted using WireShark
network analyser [43]. Various file sizes were transferred
using STFTP protocol by different encryption scenarios:
unencrypted scenario, XTEA encryption and AES
encryption. The request used to transfer data is a Read
request, initiated from the host computer. The measurement
results (displayed on Figure 13) show the throughput and
transfer time, versus transferred file sizes whereas Figure 12
shows the summary of the data rates against different
ciphers and architectures.

Figure 12. Data rate in comparison for proposed ciphers against
unencrypted communication

 30

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

By implementing secure TFTP in PIC32 while using
software encryption algorithms the drop in throughput for
different encryptions is evident (Figure 12). For simple
algorithms (XTEA) the overall drop in performance is
36.5% while more complex algorithms such as AES delivers
a drop in performance by 86.5%. The main reason for this
amount of drop in performance is the use of non optimised
algorithms for the used architecture. By optimising the
algorithm, the difference in number of clock cycles for
encryption can vary significantly (33 times, maximum
throughput 310kB/s!)[40]. This had a profound effect on the
overall throughput while being dependant on the chosen
architecture. The difference is also visible by comparing two
tested architectures and graphing throughput versus file
sizes (Figure 13a and 13b, respectively). The unencrypted
throughput of these microcontrollers varies primarily due to
the different architecture and different clock rates. The
saturation of the data rate occurs when the file size is much
larger from the overhead of the TFTP packets, making the
overhead negligible. For lower file sizes the TFTP overhead
results in a drop of data rate due to the small difference
between whole packet and the data within.

a) Microchip PIC32 b) Atmel AVR XMEGA

Figure 13. Measured throughput of the Secure TFTP for various cipher

By analysing the results of the added encryption using the
XMEGA hardware platform, it is visible that the drop in
performance is not as pronounced. The main reason behind
this is the use of hardware based AES module that
encrypts/decrypts the data in only 375 cycles [38]. The drop
in performance in the case of using a hardware based AES is
26.5%. These results could be compared to the results
achieved by the use of WPA2-AES encryption mode. The
claim behind this comparison is that the WPA2-AES
encryption mode uses AES cipher to establish data
confidentiality and it is often implemented in low
computational power embedded systems, such as wireless
access points. Comparison is seen on Figure 14.

According to [42], in certain applications the drop in
performance when using WPA2-AES encryption compared
to unencrypted network can be 33.2%. When comparing this
to the induced drop in performance for secure TFTP using
hardware AES and XMEGA hardware platform, the
reduction in throughput of the proposed STFTP is less than
the induced drop measured for WPA2-AES [42]. As the
maximum throughput of the hardware AES module is
calculated to be 2.3 MB/s, the optimization exists [38].

Finally, the functionality of software based XTEA is
measured on a lower computational power XMEGA
hardware platform, operating at a clock of 57MHz.

Figure 14. Reduction in data rate for the AES cipher in testbed compared to
the Wi-Fi Access Point

The throughput of the software based XTEA encryption is
reduced by 87.5% (Figure 13 b). The main reason behind
this is the use of optimized software algorithm limited by
low computational power of a microcontroller.

The conducted set of measurement demonstrates the
functionality of the proposed STFTP protocol, while the
actual performance depends on the hardware architecture
and processing capabilities. From the measurements it is
obvious that the STFTP can easily be implemented even to
performance constrained hardware architectures (such as
low computational power micro controllers). This claim is
supported by the measurements conducted on the low power
XMEGA microcontroller. Also, the minimum hardware
requirements for the implementation of STFTP are solely
related to the application of the STFTP, as certain eMAS
require real time support and the transfer of large quantities
of data while others are oriented towards passing messages
small in size and not constrained by real time requirements.

VII. CONCLUSION AND FUTURE WORK
The main advantage of using TFTP in the embedded

multi-agent systems (eMAS) is the simplicity of
implementation. At the same time, the main disadvantage of
the TFTP is the lack of the security. Therefore, this paper
proposes an extension to the existing TFTP in a form of
added authentication and established confidentiality for use
in embedded systems of low computational power – STFTP.

The authentication process proposed in STFTP is a
method derived from Digest Access Authentication
accompanied by SHA-1 hash function, as opposed to the
original MD5 algorithm that was proven cryptographically
unsecure. By implementing SHA-1 the credibility of this
authentication scheme was enhanced. To establish data
confidentiality this paper proposes two data ciphers, XTEA
and AES; secure for all known attacks. By deriving the
encryption key from the authentication process the shuffling
of the encryption key is ensured. Another advantage of the

 31

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 2, 2013

AES cipher is the hardware module availability that
simplifies the software implementation.

The experimental results of the implemented STFTP
show that by adding data encryption, the overall throughput
is reduced. According to measurements done in similar
environments (WPA2-AES), the reduction in throughput of
the proposed STFTP is less than the induced drop measured
for WPA2-AES in certain scenarios.

By implementing secure mechanisms within the original
protocol this outdated protocol can be reused in modern
embedded systems of multi-agent architecture. The
advantage of using this protocol in eMAS is the ability for
the software agents to exchange messages using mail
transfer mode, where the e-mail address is substituted for
the agent identification (a unique agent’s name). Also,
because the STFTP implements the ability to use various
data ciphers the choice of data ciphers is left to the software
agent by means of choosing most appropriate protocol for
the situation at hand. This presents flexibility for the eMAS
in form of effectively managing the security and the data
rate of the communication. By allowing embedded agents to
perform the authentication procedure the need for human
intervention is eliminated and the system has the ability of
being fully autonomous.

REFERENCES
[1] J. Parab, S.A. Shinde, V.G. Shelake, R.K. Kamat, G.M. Naik,

“Practical Aspects of Embedded System Design using
Microcontrollers”, Springer 2008, XXII, 150 p.

[2] J.P. Jamont, M. Occello. “Design of embedded multiagent systems:
discussion about some specificities”, Proc.of VII Agent-Oriented
Software Engineering Technical Forum, Paris, France, 15. Dec. 2010.

[3] J.P. Jamont, M. Occello “Presentation on Design of embedded
multiagent systems”, VII Agent-Oriented Software Engineering
Technical Forum, Paris, France, 15. Dec. 2010

[4] N. Tziritas, T. Loukopoulos, S. Lalis, P. Lampsas, "Agent placement
in wireless embedded systems: Memory space and energy
optimizations," Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on , vol.,
no., pp.1-7, 19-23 April 2010

[5] L. Yun, W. Xun, F. Yulian, „Intelligence technology and information
processing“, Science Press, Beijing,2003.

[6] M. Xinglu, Q. Yingjie, "Research on Embedded Agent System
Architecture," International Conference on Embedded Software and
Systems Symposia, 2008. ICESS Symposia '08., pp.142-145, 29-31
July 2008

[7] Planning apart together – multi-agent system, [Online]. Available:
http://www.planningaparttogether.nl/?page_id=150, July 2012.

[8] R. Tynan, G.M.P. O'Hare, M.J. O'Grady, C. Muldoon, "Virtual Sensor
Networks: An Embedded Agent Approach," Parallel and Distributed
Processing with Applications, 2008. ISPA '08. International
Symposium on, pp.926-932, 10-12 Dec. 2008

[9] K. Sollins, "The TFTP Protocol (Revision 2)", RFC 1350, July 1992.
[10] G. Horvat, D. Šoštarić, Z. Balkić “Cost-effective Ethernet

Communication for Low Cost Microcontroller Architecture”,
International Journal of Electrical and Computer Engineering
Systems, Vol 3. No 1, pp.1-8, 2012.

[11] G. Malkin, A. Harkin, "TFTP Option Extension", May 1998.
[12] Shamshirband, S. S., Shirgahi, H., Setayeshi, S., "Designing of

Rescue Multi Agent System Based on Soft Computing Techniques,"
Advances in Electrical and Computer Engineering, vol. 10, no. 1, pp.
79-83, 2010, doi:10.4316/AECE.2010.01014

[13] Microchip Technology Inc., [Online]. Available: www.microchip.com
[14] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi,, "Security

as a new dimension in embedded system design," Proc. of. 41st
Design Automation Conference, pp.753-760, 7-11 July 2004

[15] Z, Hengwei; W, Wei; G, Qiang; , "Research and Design of Secure
Transmission Protocol Applied to Embedded System," Proc. of
(ICICTA), 2012, pp.276-279, 12-14 Jan. 2012

[16] D.V. Bernardo, D. Hoang, "Protecting Next Generation High Speed
Network Protocol - UDT through Generic Security Service
Application Program Interface - GSS-API," Emerging Security

Information Systems and Technologies (SECURWARE), 2010 Fourth
International Conference on , vol., no., pp.266-272, 18-25 July 2010

[17] B. Groza, P.-S. Murvay, I. Silea, T. Ionica,"Cryptographic
Authentication on the Communication from an 8051 Based
Development Board over UDP," Internet Monitoring and Protection,
2008. ICIMP '08. The Third International Conference on, pp.92-97,
June 29 2008-July 5 2008

[18] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A. and L. Stewart, "HTTP Authentication: Basic and
Digest Access Authentication", RFC 2617, June 1999.

[19] Fanbao Liu; , "On the Security of Digest Access Authentication,"
Proc. of CSE 2011, pp.427-434, 24-26 Aug. 2011

[20] Metzger, P.; Simpson, W., “IP Authentication using Keyed SHA",”
RFC 1852, October 1995

[21] S. Manuel, "Classification and generation of disturbance vectors for
collision attacks against SHA-1", In Proc. of Des. Codes
Cryptography, 2011, pp.247-263.

[22] Z. Balkic; D. Sostaric and G. Horvat, “GeoHash and UUID Identifier
for Multi-Agent Systems”, Agent and Multi-Agent Systems.
Technologies and Applications, Lecture Notes in Computer Science, ,
Volume 7327/2012, pp.290-298. Springer, June 2012.

[23] Xie, T., Feng, D. “How to find weak input differences for MD5
collision attacks”, IACR Cryptology ePrint Archive, Report 2009

[24] David J. Wheeler, Roger M. Needham, “TEA, a Tiny Encryption
Algorithm” The Computer Laboratory, Cambridge University, 1994

[25] “Trivial File Transfer Protocol”, http://www.pcvr.nl/tcpip/tftp_tri.htm
[26] C. M. Chu-Jenq, "Implementing a Secure Communication Protocol

for Embedded Systems", www.embeddedonline.com
[27] Ali E. Taki El_Deen, Noha A. Hikal, "Microcontroller Application in

Cryptography Techniques", Canadian Journal on Electrical and
Electronics Engineering Vol. 1, No. 4, June 2010

[28] M. Pavlin, "Encription using low cost microcontrollers", Proc. of
MIDEM - Society for Microelectronics, Electronic Components and
Materials, cop. 2006, pp. 189-194

[29] G. Meiser, T. Eisenbarth, K. Lemke-Rust and C. Paar, “Software
implementation of eSTREAM profile I ciphers on embedded 8-bit
AVR microcontrollers”, Workshop Record State of the Art of Stream
Ciphers (SASC 07), 2007.

[30] S. Rinne, T. Eisenbarth, C. Paar, "Performance Analysis of
Contemporary Light-Weight Block Ciphers on 8-bit
Microcontrollers", Horst Gortz Institute for IT Security Ruhr
University Bochum Germany, 2007.

[31] Eisenbarth, T.; Kumar, S.; , "A Survey of Lightweight-Cryptography
Implementations," Design & Test of Computers, IEEE , vol.24, no.6,
pp.522-533, Nov.-Dec. 2007

[32] Lu Jiqiang, "Related-key rectangle attack on 36 rounds of the XTEA
block cipher", International Journal of Information Security, Vol: 8
(1): pp. 1–11, 2009

[33] A. Bogdanov, D. Khovratovich, C. Rechberger, ”Biclique
Cryptanalysis of the Full AES”. IACR Cryptology ePrint Archive
2011: 449 (2011)

[34] Jiqiang Lu, „Cryptanalysis of Block Ciphers“; Technical Report
RHUL–MA–2008–19, Department of Mathematics Royal Holloway,
University of London, 2008

[35] C. C Lu; S. Y. Tseng;, "Integrated design of AES (Advanced
Encryption Standard) encrypter and decrypter," Application-Specific
Systems, Architectures and Processors, 2002. Proceedings. The IEEE
International Conference on, pp. 277- 285, 2002

[36] Knežević M., Rožić V., Verbauwhede I. , “Design Methods for
Embedded Security”, TELFOR Journal, Vol.1, No. 2, 2009,

[37] Ambrose, J.A.; Ragel, R.G.; Parameswaran, S.; , "A smart random
code injection to mask power analysis based side channel attacks"
Proc. of International Conference on Hardware/Software Codesign
and System Synthesis 2007 5th, pp.51-56

[38] Atmel AVR XMEGA A Manual, [Online]: www.atmel.com
[39] El. Equipment Manufacturer: MikroElektronika, www.mikroe.com
[40] Schramm, K.; Paar, C.; , "IT security project: implementation of the

Advanced Encryption Standard (AES) on a smart card," Proceedings
International Conference on Information Technology: Coding and
Computing, 2004., vol.1, pp. 176- 180 Vol.1, 5-7 April 2004

[41] Narayan, S.; Kolahi, S.S.; Sunarto, Y.; Nguyen, D.D.T.; Mani, P.; ,
"The Influence of Wireless 802.11g LAN Encryption Methods on
Throughput and Round Trip Time for Various Windows Operating
Systems," Proc. of CNSR 2008. 6th Annual, pp.171-175, 5-8 May
2008

[42] A. Murabito, “A comparison of efficiency, throughput, and energy
requirements of wireless access points”, University of New
Hampshire, InterOperability Laboratory, March 2009.

[43] WireShark - Network Protocol Analyzer: [Online]. Available:
www.wireshark.com

 32

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:30:23 (UTC) by 34.229.151.93. Redistribution subject to AECE license or copyright.]

