
Advances in Electrical and Computer Engineering Volume 13, Number 1, 2013

Ant System-Corner Insertion Sequence: An
Efficient VLSI Hard Module Placer

Chyi-Shiang HOO, Kanesan JEEVAN, Velappa GANAPATHY, Harikrishnan RAMIAH
Department of Electrical, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603

Kuala Lumpur, Malaysia.
francioshoo@siswa.um.edu.my

Abstract—Placement is important in VLSI physical design as

it determines the time-to-market and chip’s reliability. In this
paper, a new floorplan representation which couples with Ant
System, namely Corner Insertion Sequence (CIS) is proposed.
Though CIS’s search complexity is smaller than the state-of-
the-art representation Corner Sequence (CS), CIS adopts a
preset boundary on the placement and hence, leading to search
bound similar to CS. This enables the previous unutilized
corner edges to become viable. Also, the redundancy of CS
representation is eliminated in CIS leads to a lower search
complexity of CIS. Experimental results on Microelectronics
Center of North Carolina (MCNC) hard block benchmark
circuits show that the proposed algorithm performs
comparably in terms of area yet at least two times faster than
CS.

Index Terms—Design, system, aided, floorplanning, VLSI,
representation, circuits, algorithm, scale, optimization.

I. INTRODUCTION
In the modern IC design flow, a placement of an IC is a

schematic representation of placement of its major
functional blocks. As the Very Large Scale Integration
(VLSI) chip keeps shrinking in size, many factors such as
the total area [1-2], wirelength [3-5], power consumption [6-
7] and congestion reduction [8-9] will affect the reliability
and efficiency of the chip. Hence, to cope up with these
issues, efficient placement plays a very crucial role as far as
the quality of the VLSI design is concerned.

The VLSI placement design problem is well-known as the
NP-hard problem and hence it is difficult to find exactly
optimal solution in practical applications [10-11]. In order to
solve this combinatorial optimization problem, placement
layout is tackled mathematically in order to be optimized
using the tools such as mathematical optimization or
artificial intelligence (AI) technique. Many approaches [1],
have been proposed in the literature with different modeling
representations [12-15] and optimization methods [2], [5],
[16-17] to enhance the quality of the placement design. To
facilitate a good placement, it is necessary to develop an
effective model for blocks placement to reduce the dead
space area as well as minimizing the placement runtime.

II. PROBLEM DESCRIPTION
Let a set of n rectangular modules B = {b1, b2, ... , bn} and

wm and hm are the width and height of the module
respectively of the module bm. with the constraints of 1 ≤ m
≤ n. In the VLSI placement problem, it is an assignment
where all the modules of bm are arranged to form a layout
without any overlap among the modules placed. Usually this
problem is to minimize the area and/or wirelength induced

by the assignment of bms’ locations, without extending the
runtime significantly. Area is calculated by the smallest
rectangle that can be formed to enclose all the modules
while the wirelength is the summation of all the modules
center-to-center interconnections. In this paper, area
optimization with reduced runtime is the main objective.

III. CORNER INSERTION SEQUENCE
Similar to Corner Sequence (CS) [1], Corner Insertion

Sequence (CIS) is a very effective nonslicing floorplan
implementation. CIS consists of two tuples that denote the
packing sequence of blocks and the corresponding corners
to which the blocks are placed. Inheriting the sequence
properties similar to CS, the complexity of CIS is proven to
be O(n!2n-1), comparatively lower than O((n!)2) of CS. With
the reduction in search complexity, CIS algorithm can
perform much faster than CS. Even though the search
complexity of CIS is reduced, the preset boundary imposed
to the placement enables CIS to search for more compacted
solutions by regaining the search bound similar to CS,
which will be explained in Section III (C). The higher
complexity of CS is due to the redundancy of the CS
representation. The redundancy of CS is now reduced by
using CIS method.

A. Matrix Representation
Different from CS, CIS involves only corner edges

associated with the most recently placed blocks, being
considered in the placement. This in turn will reduce search
complexity and result in faster optimization of placement. In
this representation, blocks are placed one at a time
according to a predefined sequence. After performing
numerous permutations of blocks placements, a CIS matrix
is formed. Let us consider a (n x 3) matrix CIS, shown in
Figure 1, where n is the number of blocks placed in the
layout. There are 3 configurations determining the
placement of a particular block. The first column is the
block number, which is block 1 to block n. The second
column is the left neighboring blocks, which are x1 to xn,
while the third column is the bottom neighboring blocks,
which are y1 to yn.

B. Matrix-layout Inter-transformation
Assume a CIS matrix as given in Figure 1. Initially, we have

only two dummy modules, by and bx as our corner modules (CM)
and {by, bx} as our corner edges. According to the sequence,
module b3 is placed onto the corner edge {by, bx}, creating two
extra contour edges {by, b3} and {b3, bx}. Now, we have by, b3 and
bx as our CMs. Next, module b2 is inserted onto the contour edge

 13

Digital Object Identifier 10.4316/AECE.2013.01002

1582-7445 © 2013 AECE

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:42:11 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 1, 2013

CIS

⎟
⎟

Figure 1: Transformation between matrix and layout (dotted line represents the boundary limit).

{b3, bx}, leading to four CMs, by, b3, b2 and bx. However, in CIS
representation, only selected CMs are used to derive corner edges.
The corner edges must be associated with the most recently placed
module; in this case, it is b2. Hence, the arising corner edges should
be {b3, b2} and {b2, bx}. In the third placement, module b1 is placed
onto the corner edge of {by, b3} as the placement at corner edge
{b2, bx} reaches the preset boundary of the placement. The CMs
now consist of only by, b1, b2 and bx. This process is continued until
all the modules are placed and the process is shown in Figure 1.

C. Corner Update and Overlap Avoidance
For every placement, the coordinates of the corners have

to be updated from time to time so that the algorithm can
evaluate the exact location of the placement. The corner
coordinates are so important since the algorithm will
recognize the coordinates before the blocks are pushed onto
its respective corners. If the coordinates were wrong, the
placement might not be aligned with the desired locations,
and hence causing overlapping and gaps between blocks.

Important advantage of corner coordinates updates is that
no overlapping conditions occur in floorplan placement.
Overlapping placement in a floorplan is defined as an
extension of blocks over other blocks in the placement. To
understand the significance of overlapping, the relationship
between two blocks is defined in [18].

In order to avoid a long flat floorplan layout generation, a
preset boundary is imposed. If the placement has reached
the preset boundary, a new placement will commence from
the most bottom-left corners available. This preset boundary
not only prevents the floorplan from generating a long flat
placement but also enable CIS to explore optimal solutions,
with less search complexity. For example, the corner edge
{by, b3} in Figure 1 which is abandoned after the placement
of module b2, has been reconsidered after the modules
placement meets the preset boundary. Consequently, the
corner edges adjacent to this bottom-left corner edges will
also be reconsidered. This indicates that even though CIS is
bounded by the search complexity, previously neglected
solutions are reconsidered and therefore, similar search
bound as CS is obtained. By referring to Figure 1, the
placement layout requires only one CIS matrix
representation whereas CS generates more than one
representation to model the same layout, as shown in Eq.
(1). This example indicates that there is a redundancy in CS
representation that leads to an increased search complexity.

CS (1)

Lemma 1: There is no overlapping issue occurring in CIS

representation.
Proof: By updating the corner coordinates after each

block is inserted into its placement position, the exact
locations of the corners are always accurate. When the
algorithm brings in a new block, it will be placed onto the
exact corner, and by disqualifying the overlap cases, the
overlap issue will never happen in the final floorplan. By
using CIS representation, there is no need of any extra
overlapping removal algorithm to cope up with this issue,
and hence leading to a very brief and efficient algorithm.

Lemma 2: The CIS solutions’ search complexity is
bounded by O(n!2n-1), where n is the number of blocks.

Proof: Since there are n blocks to be placed in a chip,
there are n! permutations in the placement sequence.
Initially, there is only one corner available, which is left
with a single choice of inserting the block. After the first
block is inserted, two corner edges arise, giving two choices
for the second block. After the second block is placed, the
previous corner edges will be ignored and two new corner
edges appear, leading to two choices for the third block. As
the blocks’ placements proceed, there are always two corner
edges and hence, two possible choices for the next block.
Therefore, the solution space searching complexity of the
CIS is bounded by:

 (2)

Lemma 3: The transformation between CIS matrix

representation into placement uses O(n) time, where n is the
number of blocks.

Proof: The algorithm takes a constant time to insert a
block into the designated corner. If there are n blocks, the
time complexity to insert the blocks is O(n). Therefore, the
time complexity of the CIS is O(n), which is linear.

⎟
⎟

⎜
⎜= 3

Layout-to-representation Representation-to-layout

by

bx

b3 b2

b1
by

bx

b3

bx

by

b3 b2

by

bx

b3 b2

b1 b4

by

bx

b3 b2

b1 b4 b5

⎟
⎟

⎠

⎞

⎜
⎜

⎜
⎜

⎝

⎛

245

214

1

32

3

bbb
bbb
bbb
bbb
bbb

y

x

xy

)!(21)!(×××× nnn

⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜

⎜
⎜

⎝

⎛

245

214

31

3

245

214

1

32

3

bbb
bbb
bbb
bbb
bbb

bbb
bbb
bb
bbb
bbb

y

xy

x

xy

⎟
⎟

.22 1−=
n

⎟
⎟

⎜
⎜= 323b xy

 14

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:42:11 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 1, 2013

IV. ANT SYSTEM- CORNER INSERTION SEQUENCE
Ant-based meta-heuristics approach is a powerful

searching method, inspired by the foraging behavior of ant
colony [19-20]. In general, the ant-based meta-heuristics
algorithm consists of three parts, which are initialization,
construction, and feedback [21]. After initializing the
parameters in the AS algorithm, the ant k will construct the
tour from city-i to city-j thoroughly based on the Roulette-
wheel based probability Pij

k, which is defined as:

 (3)

where τij is the pheromone intensity of the trail and Nk is the
set of unvisited cities. If the distance between the cities i and
j is denoted by dij, then ηij is defined as:

(4)

The parameters α and β are used to control the
impingement of the pheromone τij (global information) and
ηij (local information). After constructing the complete path,
the ant k will update the pheromone based on formula given
below:

(5)

where
p = evaporation constant, 0 < p < 1,
Ck = length of the tour Tk, and

(6)

The original Ant System was proposed [19] to handle the

TSP problem which is one dimensional problem. However,
VLSI placement is a two-dimensional problem and hence, in
this work, some modifications are carried out. The variable
dij in Eq. (4) is replaced with the instant whitespace created
after placing a block and the Ck mentioned in Eq. (6) is
referring to the final deadspace at the final floorplan.

V. EXPERIMENTAL RESULTS
The proposed algorithm is implemented in C++ on Athlon

750, 750-MHz workstation with 512MB memory and tested
under the commonly used MCNC benchmark circuits [22].
The comparisons are made on the following floorplanning
algorithms: O-Tree [12], B*-tree [13], enhanced O-tree [23],
CBL [14], TCG [15], CS [1], DPSO [24] and ESA [25]. The
MCNC benchmarks are used as the standard. The area of a
chip is defined as smallest rectangle that encloses all the
modules while relative whitespace is ratio of the unutilized
area to the total area of the chip. As can be seen from Table
I, the results of AS-CIS are comparable with all the other
representations in terms of area utilization. By referring the
cases sampled from Table I, it is seen that AS-CIS shows
improved results in terms of areas in 30 out of 38 cases
(79%) as compared to other algorithms. By referring to
Table I, the runtime for AS-CIS is much shorter compared
to other representations. The runtime comparisons are
illustrated in Figure 2. Based on the trendlines, the runtimes
of all the floorplanning algorithms are becoming longer than
AS-CIS when the size of the benchmark problems is
increasing, except CBL. It is to be noted that CBL has

performed poorly in terms of area, ranging from 0.82 to 1.89
times more than relative whitespace, which is evident from
Table I.

TABLE I. MCNC HARD MODULE BENCHMARK COMPARISONS.
MCNC circuits apte xerox hp ami33 ami49

O-tree 47.1 20.1 9.21 1.25 37.6
B*-tree 46.92 19.83 8.947 1.27 36.80
Enhanced O-tree 46.92 20.21 9.16 1.24 37.73
CBL - 20.96 - 1.20 38.58
TCG 46.92 19.83 8.947 1.20 36.77
DPSO 47.31 20.2 9.50 1.28 38.8
ESA 47.37 19.83 8.94 1.24 36.50
CS 48.5 20.4 9.6 1.25 38.2

Area (mm2)

AS-CIS 46.92 19.83 9.03 1.21 37.58
O-tree 38 118 57 1430 7428
B*-tree 7 25 55 3417 4752
Enhanced O-tree 11 38 19 118 406
CBL - 30 - 36 65
TCG 1 18 20 306 434
DPSO - - - - -
ESA 1 3 7 24 53
CS 29 40 27 476 2103

Runtime
(sec.)

AS-CIS 1 5 5 24 75

∑
=

Δ+−=

VI. CONCLUSION
In this paper, Ant System based Corner Insertion

Sequence placer (AS-CIS) has been proposed which is
capable of generating compact placements in a chip layout
within a short period of time. A fast and comparable result is
obtained using CIS because of the search and time
complexities are limited to O(n!2n-1) and O(n) respectively.
Though CIS’s search complexity is reduced as compared to
CS, CIS has the similar search bound by introducing preset
boundary which enables the previous unutilized corner
edges to become viable. Hence, a much less placement
search complexity contributes to reduction in runtime as
compared to other floorplan models, while maintaining the
possible optimal solution search. The experimental results
show that the overall runtime of the program is reduced
considerably due to the simplicity of the algorithm
proposed. On the other hand, the resulting placement of
proposed AS-CIS is quite promising and is found to be

n

k

k
ijijij

1
)1(ττρτ

ij
ij d

1
=η

∑
=

Δ+−=
n

k

k
ijijij

1
)1(ττρτ

⎪⎩

⎪
⎨
⎧

=Δ
otherwise

Ttobelongsjipathif
C
Q k

kk
ij

;0

),(;τ

Figure 2: Runtime (in log. Scale) comparisons.

 15

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:42:11 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 1, 2013

better than most of the existing floorplan models as
discussed in Section V.

REFERENCES
[1] J. M. Lin, Y. W. Chang, and S. P. Lin, “Corner sequence–A p-

admissible floorplan representation with a worst case linear-time
packing scheme,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 4, pp. 8-12, 2003. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2003.816137.

[2] J. Liu, W. C. Zhong, L. C. Jiao, and X. Li, “Moving block sequence
and organizational evolutionary algorithm for general floorplanning
with arbitrarily shaped rectilinear blocks,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 5, pp. 630-646, 2008.
[Online]. Available: http://dx.doi.org/10.1109/TEVC.2008.920679.

[3] S. N. Adya, and I. L. Markov, “Fixed-outline floorplanning: enabling
hierarchical design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 6, pp. 1120-1135, 2003.
[Online]. Available: http://dx.doi.org/ 10.1109/TVLSI.2003.817546.

[4] J. Cong, M. Romesis, and J. R. Shinnerl, “Fast floorplanning by look-
ahead enabled recursive bipartitioning,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 9, pp. 1719-1732, 2006. [Online]. Available: http://dx.doi.org/
10.1109/TCAD.2005.859519.

[5] J. M. Lin, and Z. X. Hung, “UFO: Unified convex optimization
algorithm for fixed-outline floorplanning considering pre-placed
modules,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 7, pp. 1034-1044, 2011.
[Online]. Available: http://dx.doi.org/ 10.1109/TCAD.2011.2114531.

[6] Q. Ma, Z. Qian, E. F. Y. Young, and H. Zhou, “MSV-driven
floorplanning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 8, pp. 1152-1162, 2011.
[Online]. Available: http://dx.doi.org/ 10.1109/TCAD.2011.2131890.

[7] Y. C. Chen, and Y. Li, “Temperature-aware floorplanning via
geometric programming,” Mathematical and Computer Modelling,
vol. 51, no. 7-8, pp. 927-934, 2010. [Online]. Available:
http://dx.doi.org/ 10.1016/j.mcm.2009.08.026.

[8] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, 1999, pp. 358-
262.

[9] A. Jahanian, and M. S. Zamani, “Metro-on-chip: an efficient physical
design technique for congestion reduction,” IEICE Electronics
Express, vol. 4, no. 16, pp. 510-516, 2007. [Online]. Available:
http://dx.doi.org/ 10.1587/elex.4.510.

[10] M. R. Garey, and D. S. Johnson, “Computers and intractability: A
guide to the theory of NP-completeness”, W. H. Freeman: San
Francisco, 1979.

[11] S. Sahni, and T. Gonzalez, “P-complete approximation problems,”
Journal of the ACM, vol. 23, no. 3, pp. 555-565, 1976.

[12] P. N. Guo, T. Takahashi, C. K. Cheng, and T. Yoshimura,
“Floorplanning using a tree representation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,

no. 2, pp. 281-289, 2001. [Online]. Available: http://dx.doi.org/
10.1109/43.908471.

[13] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-trees: A
new representation for nonslicing floorplans,” in Proceedings of
Design Automation Conference, 2000, pp.458-463.

[14] X. Hong, G. Huang, Y. Cai, S. Dong, C. K. Cheng, and J. Gu,
“Corner block list representation and its application to floorplan
optimization,” IEEE Transactions on Circuits and Systems-II: Express
Briefs, vol. 51, no. 5, pp. 228-233, 2004. [Online]. Available:
http://dx.doi.org/10.1109/TCSII.2004.824047.

[15] J. M. Lin, and Y. W. Chang, “TCG: A transitive closure graph-based
representation for nonslicing floorplans,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 13, no. 2, pp. 288-292,
2005. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2003.816137.

[16] J. G. Kim, and Y. D. Kim, “A linear programming-based algorithm
for floorplanning in VLSI design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 22, no. 5, pp.
584-592, 2003. [Online]. Available: http://dx.doi.org/
10.1109/TCAD.2003.810748.

[17] C. Luo, M. F. Anjos, and A. Vannelli, “Large-scale fixed-outline
floorplanning design using convex optimization techniques,” in
Proceedings of Asia and South Pacific Design Automation
Conference, 2008, pp. 198-203.

[18] S. Alupoaei, and S. Katoori, “Ant Colony System application to
macrocell overlap removal,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 10, pp. 1118-1123, 2004.
[Online]. Available: http://dx.doi.org/ 10.1109/TVLSI.2004.832926.

[19] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization
by ant colonies,” in European Conference on Artificial Intelligence,
1991, pp. 134-142.

[20] C.-S. Hoo, H.-C. Yeo, K. Jeevan, V. Ganapathy, H. Ramiah, I.A.
Badruddin, “Hierarchical Congregated Ant System for Bottom-up
VLSI Placements,” Engineering Applications of Artificial
Intelligence, vol. 26, no. 1, pp. 584-602, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.engappai.2012.04.007.

[21] C. W. Chiang, Y. Q. Huang, and W. Y. Wang, “Ant colony
optimization with parameter adaption for multi-mode resource-
constrained project scheduling”, Journal of Intelligent and Fuzzy
Systems, vol. 19, no. 4,5, pp. 345-358, 2008.

[22] J. Rabaey, Gigabyte systems research center 2005.
[23] Y. Pang, C. K. Cheng, and T. Yoshimura, “An enhanced perturbing

algorithm for floorplan design using the O-tree representation,” in
Proceedings of International Symposium on Physical Design, 2000,
pp.168-173.

[24] G. L. Chen, W. Z. Guo, and Y. Z. Chen, “A PSO-based intelligent
decision algorithm for VLSI floorplanning,” Soft Computing-A
Fusion of Foundations, Methodologies and Applications, vol. 14, no.
12, pp. 1329-1337, 2009. [Online]. Available: http://dx.doi.org/
10.1007/s00500-009-0501-6.

[25] J. Chen, and J. Chen, “A hybrid evolution algorithm for VLSI
floorplanning,” International Conference on Computational
Intelligence and Software Engineering, 2000, pp. 1-4.

 16

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:42:11 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

