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1Abstract—This paper presents an iterative method for 

designing FIR filters that implement arbitrary magnitude 
characteristics, defined by the user through a set of frequency-
magnitude points (frequency samples). The proposed method is 
based on the non-uniform frequency sampling algorithm. For 
each iteration a new set of frequency samples is generated, by 
processing the set used in the previous run; this implies 
changing the samples location around the previous frequency 
values and adjusting their magnitude through interpolation. If 
necessary, additional samples can be introduced, as well. After 
each iteration the magnitude characteristic of the resulting 
filter is determined by using the non-uniform DFT and 
compared with the required one; if the errors are larger than 
the acceptable levels (set by the user) a new iteration is run; the 
length of the resulting filter and the values of its coefficients are 
also taken into consideration when deciding a re-run. 

To demonstrate the efficiency of the proposed method a tool 
for designing FIR filters that match human audiograms was 
implemented in LabVIEW. It was shown that the resulting 
filters have smaller coefficients than the standard one, and can 
also have lower order, while the errors remain relatively small. 
 

Index Terms—discrete Fourier transforms, error analysis, 
FIR filter, interpolation and non-uniform sampling. 

I. INTRODUCTION 

An important subclass of filter synthesis problems is the 
design of a filter that matches a set of magnitude response 
specification without phase consideration. Several solutions 
to this problem have been proposed for digital filters but 
most of them introduce additional constraints to simplify the 
design, thereby restricting their application [1]. 

FIR filters are particularly well suited for this application 
as they can be easily constrained to have linear phase. But 
one needs to monitor the length of the filter, for using a 
large number of taps leads not only to implementation 
problems but also introduces delays that are not acceptable 
for some applications, such as audio signal processing. 

This paper presents an iterative method for designing FIR 
filters that realize arbitrary magnitude characteristics, 
defined by the user through a set of magnitude-frequency 
points – usually referred to as frequency samples. The 
proposed method is based on the non-uniform frequency 
sampling algorithm [2], [3]. For each iteration a new set of 
frequency samples is created starting from the previous set, 
by changing the frequency position of the samples and 
adjusting their magnitude through interpolation; if necessary 

additional samples are introduced. After each run the 
magnitude characteristic of the resulting filter is compared 
against the target set by the user; if the errors are above the 
level set by the user a new design iteration starts. 
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The proposed method yields filters that are easier to 
implement than the standard designs: first, unpractical 
solutions, where filter parameters take unacceptable large 
values, are avoided by built-in checks; next, the filter order 
is decreased iteratively, until the optimum – defined by the 
user – trade-off between magnitude errors, the filter order 
and the maximum value of its coefficients is found. The 
method is based on FIR filters, which have an inherently 
linear phase characteristic and a symmetrical impulse 
response, so there is no need for group delay equalizers [4]. 

The theoretical background for the filter design and the 
analysis tools employed here is presented in Section II; the 
proposed method is described in Section III, including its 
implementation by using the LabVIEW environment. 
Section IV presents an important application of this method: 
the design of FIR filters able to match human audiograms as 
provided by audiologists [5], [6]. Such a filter provides an 
effective model of hearing impediments that can be used to 
develop tailored hearing aids [7], [8]. The difference 
between the target magnitude values and the ones 
corresponding to the same frequencies in the obtained 
magnitude response is computed, showing that the 
characteristics of the designed filter match well the 
audiogram. Section V presents the conclusions of the paper. 

II. FIR FILTER DESIGN – THEORETICAL BACKGROUND 

A. A frequency sampling method for designing FIR filters 

In order to approximate a continuous frequency response, 
one can sample uniformly or non-uniformly the frequency 
response at N points along the normalized frequency range 
(0, 2π), (measured in rad/sec); the approximate frequency 
response will then be obtained as an interpolation of the 
sampled frequency response [8], [9]. The approximation 
error would be exactly zero at the sampling frequencies and 
finite between them. The smoother the approximated 
frequency response is, the smaller the error of interpolation 
between the sample points. 

There are several methods for designing digital filters 
able to approximate a desired frequency response defined by 
a set of frequency samples. A standard design method for 
FIR filters is described below [2].  There are four types to 
consider, each with its own design equation: 
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where Ar(ωk) is the desired real-valued frequency response, 
h(n) represents the filter parameters and N is the total 
number of samples. Each of (1)-(4) represents a set of linear 
equations for determining the parameters of the FIR filter. In 
general the values of the frequencies ωk and A(jωk) can be 
chosen arbitrarily. An effective way of dealing with (1)-(4) 
is to use the matrix form of these equations: 
 

r V h A                                    (5) 

where V is the Vandermonde matrix computed as follows: 
Type I: 

i

ij

j

j =

N - 1 N -1
2cos ω - j ,

2
V =

N - 1
1     , 

2


   
      



2             (6) 

Type II: 

ij i
N - 1

V = 2cos ω - j
2

 
 

  


                      (7) 

Type III, IV: 

ij i
N -1

V = 2sin ω - j
2

 
 

  


                      (8) 

 

where i and j are the row and the column indexes defined as: 
 

Type II, IV

N - 1 N - 3
i = 0, ; j = 0, ; Type I 

2 2

N - 3
i = j = 0, ; Type III

2

N
i = j = 0, -1; 

2











               (9) 

Terms h and Ar in (5) are the impulse response (here giving 
the filter parameters/coefficients, as well) and the magnitude 
vectors, respectively, expressed as follows (N odd): 
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One can obtain the filter coefficients, h, by solving the 
linear matrix equation (5); this implies determining the 
inverse of the V matrix, for which the determinant of the 
Vandermonde matrix, det(V), is required. Several effective 
ways of calculating det(V) have been proposed [10], [11]. 

The frequency sampling design methods, based on 
uniform and non-uniform sampling, can be used for any 
given magnitude response; they are particularly useful for 
the design of non-prototype filters where the desired 
magnitude response can take an irregular shape, beyond the 
four types considered in (1)-(4). 

B. FIR filter analysis by using non-uniform DFT 

A key stage in filter design is the analysis of the 
synthesized filter and the evaluation/computation of the 
errors (differences with respect to the target characteristic). 
For generality, the case of non-equispaced arrangement of 
the magnitude samples is considered here and the non-
uniform DFT (NDFT) is used [12], [13]. This is a general 
form of DFT that can be employed to evaluate the frequency 
samples at N arbitrary but distinct points in the z-plane. If 
the samples can be taken at non-equispaced intervals both in 
time (tn) and frequency (fk), the NDFT is defined as follows: 
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For the case envisaged here the samples are taken non-
uniformly in the frequency domain but uniformly in the time 
domain. Considering tn defined only for discrete values nTs, 
where Ts is the sampling period, eq. (11) becomes: 
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Two differences between DFT and NDFT should be 
noted. First, the samples in normalized frequency are taken 
at intervals /2 T  in the non-uniform case instead of 

/2 N  in the uniform case, where T is the duration of the 

signal h(t),  ,t 0 T  and N is the number of samples. The 

second difference is the integer index n in the uniform case 
instead of tn in the non-uniform case. 

Once the magnitude response of the designed filter is 
obtained by using NDFT it is compared against the required 
characteristic; the main error metric used by the iterative 
optimization process proposed in the next Section is the 
sample-by-sample error (SSE): the difference between the 
desired magnitude values, Ar, and the ones corresponding to 
the same frequencies in the obtained magnitude response, A: 

  dB dB
r k kSSE( k ) A A                      (13) 

III. PROPOSED METHOD FOR DESIGNING FIR FILTERS WITH 

ARBITRARY MAGNITUDE CHARACTERISTIC 









        (10) 

A. Theoretical description of the proposed method 

A major drawback of the standard design method 
presented in Section II.A is that if the distance between 
samples varies over a large range the determinant det(V) 
required  to solve (5) will have a small value; therefore the 
coefficients of the resulting filter will take high values that 
are not practical to implement. To avoid this a minimum 
value for det(V) should be imposed during the design. 
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Figure 1. Block diagram of the proposed method for designing a FIR filter 
that matches the required magnitude characteristic Ak - fk. 

 
Figure 1 shows the block diagram of the proposed method 

for designing arbitrary magnitude response FIR filters. The 
first step is to collect the magnitude samples at given 
frequencies and normalize the frequency values; this way 
the reference set of samples is obtained. 

The second step is to design the matching FIR filter, with 
a magnitude response that fits the reference set, by using the 
non-uniform frequency sampling algorithm (5)-(10): the 
process starts with the generation of the matrix V defined by 
(6)-(9), followed by the computation of its determinant, then 
of the inverse of matrix V; this allows the solving of (5) for 
obtaining the filter parameters, h(n). 

The determinant of the V matrix is used as a first measure 
for assessing the suitability of the designed filter: if the 
value of det(V) is smaller than the threshold Vmin (set by the 
user) then the filter parameters will take unacceptably high 
values. In this case the filter has to be re-designed, starting 
from a new set of frequency samples; these samples – called 
hereafter the design set – are obtained by processing the 
reference frequency samples (or the design set of samples 
used in the previous iteration) by repositioning them and/or 
increasing their number. This step requires two operations: 
 changing the sample position on the frequency axis, 

so that the distance between samples is reduced for 
all or some frequency intervals. 

 computing the magnitude corresponding to the new 
frequency location of each sample in the design set, 
by using an interpolation method based on the 
reference set of samples. 

Sample repositioning aims at decreasing the unevenness 
of the frequency intervals between samples, which results in 
a higher value of det(V). If det(V) is still lower than Vmin the 
process is repeated for a new arrangement of samples, 
driven by the decision block, which can imply the 
introduction of additional frequency samples. Increasing the 
number of samples in the design set is a last-resort option, as 
it leads to filters with a larger number of taps. 

The new position on the frequency axis of the samples 
within the design set can be decided by using various 
algorithms; the simplest is the uniform placement given by: 

max minf f
f

M 1






                            (14) 

where f is the distance between the frequency samples, fmin 
and fmax are the frequency interval limits, and M is the 
number of samples in the (0, π) normalized frequency range, 
derived from the number of samples in the (0, 2π) range, N: 

N 1 N
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2 2


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Various strategies for non-uniform positioning of samples 
can be devised, from arbitrary insertion to optimization 
procedures based on adaptive and genetic algorithms. In this 
work the decision block inserts a few additional samples, 
targeting the frequency intervals where the SSE value or the 
distance between the reference samples is above the 
average. Numerous interpolation algorithms for deriving the 
magnitude of the samples in the design set are available; 
here the linear and the cosine interpolation methods were 
used, defined by the following expressions, respectively: 
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where Ak is the magnitude interpolated between the given 
values A1 and A2; m is defined as: 
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with the condition for the frequencies f1<fk<f2. The 
decision block determines which of the available algorithms 
is

uted and 
co

he 
in

of 
lter. 

B.

as an easy way to realize user-
fr

frequency – is 

 used. 
The third step of the proposed method involves the 

analysis of the designed filter with the aim of deriving the 
errors with respect to the reference set of samples. Its core is 
the error analysis block in Fig. 1, which takes in the current 
filter parameters, h(n), and the reference frequency samples, 
Ar(fk) and outputs the SSE. The magnitude response of the 
filter is obtained by using NDFT as shown in (12); then the 
difference between the reference frequency samples and the 
corresponding magnitude values from the obtained 
characteristic is computed, yielding the SSE values (13); 
finally, the peak value of the SSE is comp

mpared against a threshold set by the user, emax. 
If the SSE values are within the range set by the user the 

design process ends successfully and the current h(n) vector 
gives the final filter parameters; if this condition is not met 
then a new iteration is necessary. Based on the SSE values 
and considering the previous iterations the decision block 
generates a new set of design samples – by introducing 
additional samples and/or by using another interpolation 
algorithm – and/or it can adjust some of the design 
parameters, from Vmin to the width of the range around t

itial frequency each sample can be repositioned within. 
The process can be repeated after reducing the number 

frequency samples, in order to obtain a lower order fi

 LabVIEW implementation of the building blocks 

The LabVIEW implementation of the main sections of the 
proposed design method shown in Fig. 1 is described in the 
followings. LabVIEW was chosen because it provides some 
of the required blocks – such as the DFT, det(V), solve 
linear equations – as well 

iendly graphic interfaces. 
To generate the reference set of frequency samples one 

need to perform frequency normalization on the samples 
given by the user. The virtual instrument (vi) that performs 
this task is shown in Fig. 2; the reference frequency for 
normalization – called hereafter the sampling 
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computed by using the following expression: 

 
Figure 2. The frequency axis normalization (N even). 
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determined such that s maxf 2 f  . One need to differentiate 

between the N odd/even cases in order to avoid 
superposition, hence the two branches in (19); f is the 
minimum quantity necessary for this; its value was 
determined first experimentally, and then formalized in (14). 
La

r) 
by

V) is 
ob

d (c) 
de

 
unchanged and will be reused in the next iteration by a shift 

 

rger f results in higher values for the filter parameters. 
The reference set of frequency samples, in rad/s units, is 

obtained by dividing the initial samples (defined by the use
 the sampling frequency (19) then multiply them by 2π. 
The vi used to generate the Vandermonde matrix (6)-(9) is 

presented in Fig. 3. It takes in the normalized frequency 
samples, the reference set for the first iteration, and then the 
design set. The vi consists of two for loops, four case 
structure and the associated control logic. The internal for 
loop computes iteratively the elements for a given row while 
the row number is indexed by the external for loop; the case 
structures are controlled according to the number of samples 
and the desired type of FIR filter (9). The value of det(

tained by using the LabVIEW determinant function. 
Figure 4 shows the vi that finalizes the generation of the 

design set of frequency samples, after the samples used in 
the previous iteration have been repositioned in frequency 
and/or new frequency positions have been allocated for 
additional samples. In every iteration of the while loop, three 
checks are performed: (a) the comparison of the current 
frequency fk_re from the repositioned vector with the next 
value fk+1 from the original vector; (b) the search (Search 
1D Array) of fk_re in the original frequency vector; an

termination of the reset condition for the while loop. 
In check (a) if fk_re<fk+1, than the case with interpolation 

is selected and the interpolated magnitude value will be 
inserted at the same index k_re as of the frequency being 
tested fk_re. When fk_re>fk+1, the magnitude vector remains

 

 
Figure 4. The fk_re<fk+1  case of the vi that calculates the magnitudes of the 
frequency samples in the design set. 

 
register created on the for loop. If fk_re=fk+1 (check (b)) then 
the corresponding magnitude value at index k+1 is copied 
from the original magnitude vector in the interpolated one at 
the same index as fk_re. In check (c) the while loop will be 
reset whenever one of the following conditions becomes 
true: fk_re<fk+1, fk_re=fk+1 and fk_re=fmax, where fmax has the 
same significance as in (14). 

The filter parameters are obtained by using the LabVIEW 
function solve linear equations after substituting in (5) the V 
matrix created in Fig. 3 in the design set obtained in Fig. 4. 

The core of the error analysis section is the vi that 
calculates the NDFT, presented in Fig. 5. It is a fairly 
straightforward implementation of (12) by using two for 
loops and their associated logic. Despite it being a general-
purpose block, with numerous applications, the NDFT is not 
available as a ready-to-use function in LabVIEW, nor in 
other popular languages such as Matlab and Mathematica. 

In order to reduce the computational requirements all the 
iterative operations described in Fig. 1 are performed 
considering only the (0, π) normalized frequency range. 
After the final iteration, the obtained set of filter parameters 
is extended to the full (0, 2π) range, by taking advantage of 
the FIR filter symmetry. First, the frequency positions for 
the (π, 2π) range are introduced in the frequency vector by 
using the vi presented in Fig. 6: it computes the new 
frequency positions based on the known ones, 
corresponding to the (0, π) interval, by using the fact that the 
intervals between samples when moving from 0 to π 
counterclockwise on the unit circle in the z-plane are equal 
with the differences between samples when moving 
clockwise from 0 to π. 

 

 
Figure 5. The vi that performs NDFT according to (12). 

 

 
Figure 3. The vi that generates the V matrix, according to (6)-(9). Figure 6. The full band frequency vector generation (N even). 
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To extend the magnitude vector accordingly one can 
simply concatenate the existing vector (corresponding to the 
0π positions in the frequency vector) with a reversed 
version of itself; this way, the last position in the extended 
magnitude vector holds the same value as the first, the last-
but-one position will hold the same value as the second, etc. 

IV. DESIGN EXAMPLE: FIR FILTER THAT MATCHES A 

GIVEN HUMAN AUDIOGRAM 

This section describes the design of several FIR filters 
that match a given (arbitrary) human audiogram, using both 
the standard and the proposed methods. These filters model 
the frequency response of the human hearing defined by the 
audiogram and allow the design of hearing aids [8]. 

There are eleven standard frequency values where 
audiologists test the hearing of the patients: 125, 250, 500, 
750, 1k, 1.5k, 2k, 3k, 4k, 6k and 8k Hz [7], [14]. Note that 
these values are non-uniformly spaced, being an octave 
apart. The second column of Table I gives the corresponding 
magnitudes from a real-life audiogram; with respect to the 
design method described by Fig. 1, the first two columns of 
Table I give the magnitude-frequency points set by the user. 

Let us first use the standard method described in Section 
II.A to design the matching FIR filter. The first row of Table 
II gives the det(V) values for the four filter types (1)-(4) 
obtained with this method. The continuous-line plot in Fig. 7 
shows the magnitude response of the type-I filter; as 
expected, the SSE values are practically nil for all the 11 
frequency points of the audiogram. The impulse response of 
this filter is given by the continuous line plot in Fig. 8. As 
expected due to the low value of det(V),  the spread of filter 
coefficients values is very large: seven order of magnitude. 
Their extreme values are detailed in the 2nd row of Table II. 

Next, the method described in Section III was used to 
design a FIR filter based on the same number of samples, 
11; the design parameters were set as follows: Vmin=1E+3, 
emax = 0.5dB. A higher precision is not usually required, as 
the audiogram comes from subjective measurements, with a 
resolution of 1-2dB. The samples were first placed at equal 
intervals (14) then repositioned iteratively by the decision 
block. The 3rd column of Table I presents the SSE values of 
the obtained type-I filter; the values of det(V) are given by 
the 3rd row of Table II, while the magnitude and impulse 
responses are depicted by the dotted-line plots in Fig. 7 and 
Fig. 8, respectively. Clearly, this filter provides a better 
trade-off between precision (SSEmax = 0.5dB) and the range 
of the filter coefficients (|h|max /|h|min=7.46) than the filter 
obtained by using the standard method (|h|max 
/|h

 

t

MA TER

og
esig rop

  

|min=1E+7). 
To simplify the implementation even further the design 

procedure was repeated targeting filters with lower orders. 
The number of frequency samples was reduced gradually 
while the design parameters Vmin and emax were relaxed 
accordingly. The 4th and 5th columns of Table I give the SSE 
values obtained for filters obtained by using 8 and 6 
samples, respectively. The values of det(V) and the extreme 
values of the filter coefficients for these cases are detailed in 
the 7th to 9th and10th to 12th rows of Table II. The magnitude 
and impulse responses of the FIR filter obtained for the 8-
samples case are depicted by the continuous-line plots in 
Fig. 9 and Fig. 10, respectively. The corresponding plots for

he filter based on 6 samples are depicted with dotted lines. 
TABLE I. THE TARGET AUDIOGRAM AND THE SSE OF THE 

TCHING FIL S DESIGNED WITH THE PROPOSED METHOD 
d with the p

Audi ram 
FIR filters d ne

SSE [dB]
osed method 

f A [dB] 11 s les 8 sa les 6 sa les  [Hz] amp mp mp
125 20 0 0 0 
250 30 0 1.5 6 
500 32 -0.33 -0.31 0 
750 35 0.34 0.34 1.67 
1k 37 0 0 2.34 

1.5k 38 -  -  0.67 0.5 0.5
2k 40 0 0 0 
3k 36 -0.44 -1 -1 
4k 34 0.02 0 0 
6k 25 0.37 0 0 
8k 12 0 0 0 

 

 
igure 7. The magnitude responses of the 11-samples FIR filters desF

w
igned 

ith the standard (solid line) and the proposed (dotted line) methods. 
 

 
Figure 8. The impulse responses of the 11-samples FIR filters designed 

ith the standard (solid line) and the proposed (dotted line) methods. 
 
w

 
Figure 9. The magnitude responses of the filters designed with the proposed 

ethod, based on 8 samples (solid line) and 6 samples (dotted line). 
 
m

 
igure 10. The impulse responses of the filters designed with the proF

m
posed 

ethod, based on 8 samples (solid line) and 6 samples (dotted line). 
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TABL TED 

METERS F  THE DE NED FI S  
y

E II. THE VALUES OF IMPLEMENTATION-RELA
PARA OR SIG LTER

FIR T pe I II III IV 
det(V) 1.58E-7 5.33E-7 1.1 3 E-1 7.3E-12 
|h|min 8.3E+0 7.1E+5 0 1.5E+0 

Standard 
method 

|h|max 8.5E+7 5.8E+7 8.5E+9 6.1E+1 
det(V) 1.45E+6 9.75E+5 6.2 3 3E+ 6.1E+4 
|h|min 7.9E+0 1.1E-1 0 5.2E+0 

Proposed  
11 

samples |h|max 5.9E+1 4.7E+1 2.9E+2 5.2E+1 
det(V) 2.37E+2 1  3  .86E+2 .14E-1 2.74E0 
|h|min 4.6E+0 1E+2 1E+2 9.5E+2 

Proposed  
8 samples 

|h|max 5.5E+2 3.9E+2 3.9E+2 4.7E+3 
det(V) 5.15E+1 4.91E+1 6.8 -2 3E 6.09E-1 
|h|min 7.9E+0 8.2E+0 0 2.2E+2 

Proposed  
6 samples 

|h|max 1.4E+2 9.5E+1 2.7E+3 1.4E+3 

 

 
Figure 11. The SSE values with respect to the target audiogram for the 
filters designed with the proposed method, based on 11 samples (solid line),
8 samples (dotted line) and 6 samples (interrupted line). 

 
sp

he 
errors remain relatively small, less than 1dB above 1kHz. 

ational Instruments Romania 
for their generous support. 

 

ica Napocensis, 
Electronics and Telecommunications, pp. 5-8, 2009. 

 

 [1]

 
Figure 11 presents the SSE corresponding to the 11 points 

of the audiogram for the three FIR filters designed by using 
the proposed method, based on 11 samples (solid line), 8 
(dotted line) and 6 samples (interrupted line). The SSE 
values peak at 250Hz, a point deemed of less importance, 
while for the key 1.5kHz-6kHz range all three magnitude 
responses stay within 1dB of the target audiogram. 

Once the FIR filter that matches the given audiogram was 
obtained one can derive the appropriate equalizer for the 
hearing aid tailored for that patient; an effective way for this 
is to use LabVIEW FPGA as shown in [8], [15]. 

V. CONCLUSIONS 

This paper presents an iterative method for designing FIR 
digital filters that realize arbitrary magnitude characteristics, 
defined by the user through a set of frequency-magnitude 
points. The proposed method is based on the non-uniform 
frequency sampling algorithm, that is applied here within an 
optimization-like design loop: the main idea is to generate a 
new set of frequency samples for each design iteration by 
manipulating the samples used in the previous run; this 
implies changing the frequency position of the samples and 
adjusting their magnitude through interpolation; if necessary 
additional frequency samples are introduced. After each 
iteration the magnitude characteristic of the resulting filter is 
determined by using the non-uniform DFT and the 
difference between the target magnitude values and the ones 
corresponding to the same frequencies in the obtained 
magnitude response is computed. If the errors are larger than 
the acceptable levels set by the user a new iteration is run. 
Other triggers for re-runs are the spread of filter coefficient 
values and the length of the resulting filter. 

The proposed method yields filters that are easier to 
implement than the standard designs: first, unpractical 
solutions – for which the values of the filter coefficients are 

too widely spread – are avoided by built-in checks; next, the 
filter order is decreased iteratively, until the optimum – as 
defined by the user – trade-off between magnitude errors, 
the filter order and the maximum value of its coefficients is 
found. It is also possible to increase the number of samples, 
in order to decrease both the magnitude errors and the

read of filter coefficients, but this has less practical value. 
A tool for designing FIR filters based on this method was 

implemented in LabVIEW. It was demonstrated on an 
important real-life application: the synthesis of filters that 
match a given (arbitrary) human audiogram. Three filters 
have been designed, with lengths equal or smaller than the 
filter obtained by using a standard method; for all of them 
the coefficients vary within a far narrower range than the 
standard filter – from seven decades to one – while t
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