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1Abstract— Clustering is one of the most important research 
topics which has many practical applications such as medical 
imaging and Non-Destructive Testing (NDT). Most clustering 
algorithms like K-means, fuzzy C-Means (FCM) and their 
derivatives require the number of clusters as one of the 
initializing parameters.

This paper proposes an algorithm for image clustering with 
no need to any initializing parameter. In this state-of-the-art, 
an image is sampled based on a rosette pattern and according 
to the pattern characteristics, the extracted samples are 
clustered and then the number of clusters is determined. The 
centroids of classes are computed by means of a method based 
on calculation of distribution function. Based on different data 
sets, the results show that the algorithm improves the 
capability of the clustering by a minimum of 62.26% and 
87.62% in comparison with FCM and K-means algorithms, 
respectively. Moreover, in dealing with high resolution data 
sets, the efficiency of the algorithm in clusters detection and 
run time improvement increases considerably.

Index Terms—Clustering, Fuzzy C-means (FCM), Pattern 
Recognition, Rosette Pattern, Validity Index.

I. INTRODUCTION

Clustering is an unsupervised pattern classification 
technique which groups a set of objects into clusters based 
on their similarity. There are two fundamental purposes in 
any clustering scenario: The clustering algorithms can be 
widely classified into hierarchical or partitional groups [1]. 
Hierarchical clustering algorithms recursively find clusters 
either in agglomerative mode or in divisive mode. The 
Single-link [2], average-link [2] and Complete-link [3] 
algorithms are the samples of Hierarchical clustering 
algorithms. In partitional clustering algorithms, clustering 
produces a single partition of the data set which aims to 
optimize a certain cluster criterion function. The K-means 
algorithm [4] and Gaussian mixture model (GMM) [5] are 
the most well known examples of partitional clustering. 

Based on this classification, different kinds of clustering 
algorithms have been reported in the literature each 
reflecting a different point of view. In these algorithms, it is 
usually assumed that the number of clusters c is known. For 
situations where no prior knowledge of c is available, 
determining the number of clusters automatically would be a 
difficult task in clustering algorithms. 

One of the most widely used clustering algorithms is K-
means and its derivatives. Since in these approaches, the 
clustering criterion is based on Euclidean distance between 
the samples and calculated centers of clusters, inappropriate 
value selection of the number of clusters or merging and 

splitting parameters may deteriorate the performance of the 
algorithms. Therefore, clustering results would not be 
satisfactory and they completely depend on parameters 
initialization. In the past few decades, the basic K-means 
Algorithm has been extended in many ways [6]-[13]. All 
these extensions introduce some additional algorithmic 
parameters that must be specified by the user [14].

One of the extensions of K-means algorithm is Fuzzy C-
Means (FCM) clustering. FCM is a data clustering technique 
wherein each data point belongs to a cluster to some degree 
that is specified by a membership grade [15]-[16]. Like K-
means algorithm, in FCM and its derivatives, it is assumed 
that the number of clusters is a user defined parameter and 
therefore they do not propose a mechanism for finding a 
correct number of clusters. This normally prepares by the 
use of validity functions.

 In advanced versions of FCM derivatives [17]-[22], the 
number of clusters (c) is considered between two predefined 
values (Cmin & Cmax) that represent, respectively, the 
minimal and maximal numbers of clusters. The best value of 
c is chosen based on the validity indices that have been 
proposed in the literature. Their major drawback is high 
computational cost [23]. In addition, most of the indices use 
the Euclidean distances in their computation. Therefore, 
they are able to characterize only compact clusters [24].

Spectral clustering [25]-[26] represents the data points as 
nodes in a weighted graph. The edges connecting the nodes 
are weighted by their pair-wise similarity. The fundamental 
idea is dividing the nodes into two subsets A and B such that 
the cut size is minimized [14]. Various versions of spectral 
clustering have been proposed in the literature [26]-[29]. 
Although spectral clustering has been widely used in several 
areas such as information retrieval and computer vision [26], 
when the number of data instances is large, the algorithm 
requires considerable time and memory to find and store the 
eigenvectors of a Laplacian matrix [29].

Gaussian mixture model-based (GMM) classifiers are 
commonly used in image clustering due to the analytical 
tractability and robustness of the Gaussian distribution [30]. 
When the underlying mixture component distributions are 
not necessarily Gaussian, however, there is no guarantee 
that the Gauss mixture model-based clustering algorithms 
will be able to capture the mixture components [31].

Other clustering methods are based on neural networks 
[32]-[33]. The neural networks have the capability of 
constructing an arbitrary nonlinear mapping from multiple 
input data to multiple output data through learning sample 
input versus output relations and estimating appropriate 
data. Although these networks are executed rapidly, their 
training is too long [34]. 
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First time, the rosette pattern was used in infrared seekers 
for tracking planes [35]. A rosette scan infrared seeker is a 
tracker that a single or double infrared detector scans the 
total field of view and detects the heat radiated from the 
target. Flares are false target that planes release them to keep 
themselves safe against thermal tracking missiles. In the 
processing unit of missiles, in order to distinguish real target 
from the false targets according to data collected by the 
rosette scan infrared seeker, several algorithms based on 
image processing such as k-means, ISODATA and ALCA 
have been proposed [36]-[38]. In addition to common 
problems in algorithms like k-means and ISODATA, since 
the number of clusters is not fixed, multiple clusters are 
recognized as a class. Furthermore, the algorithms require 
considerable processing time and necessitate parameters 
modification during the tracking procedure. 

Up to present time, as far as the authors are aware, there 
has been no report on application of rosette pattern in image 
clustering and determining the number of clusters 
automatically. The principle object of this paper is to 
sample, cluster and determine the number of clusters in 
images by the use of rosette pattern. In comparison with 
previous clustering methods, the proposed algorithm has 
some advantages: there is no need to any parameters 
initialization; by variation of the number of clusters, the 
performance of the algorithm will not deteriorate. In 
addition, the run time and clustering efficiency are 
enhanced. In the proposed method, a sample image is 
scanned by the rosette pattern. Based on the rosette pattern 
characteristics, scanned samples are mapped to a linear 
plane. The converted samples are clustered and the number 
of clusters is determined. Finally, the clustered samples are 
remapped to the main plane. To compute the accurate 
centroid of classes, a method based on calculation of weight 
function for each point on the rosette pattern is introduced.

In this paper, in order to evaluate the performance of the 
proposed algorithm, different data sets are considered as 
exemplary case studies and clustering results by the 
proposed algorithm are compared with K-means and FCM.
However, it will be understood by those skilled in the 
relevant arts that it is possible to use the proposed approach 
in the other data sets without departing from the scope of the 
concept.

II. THEORETICAL BACKGROUNDS

A rosette scan pattern is formed by having two optical 
elements rotate to the opposite direction according to certain 
rules with a constant rate [36]. The loci of the rosette pattern 
at an arbitrary time t can be expressed by (1) [38].
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where f1 and f2 are two rotational frequencies of prisms 
and the radius of the rosette pattern is determined by δ. For 
simplicity, δ is considered as 1. Based on (1), coordinates of 
a point in a two dimensional array can only be achieved by 
parameter t. The values of f1 and f2 determine the rosette 
pattern parameters such as scan speed, total number of 
petals and the petal width. If f1/f2 is a rational number, and f1

and f2 have the greatest common divisor f such that N1=f1/f
and N2=f2/f are both positive integers, the pattern is closed. 
Moreover, N1 and N2 are the smallest integers satisfying
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The rosette period, T, is 1/f=N1/f1= N2/f2. The number of 
petals in the rosette pattern is represented by

N=N1+N2 (3)

The parameter representing the width of the rosette 
pattern petals is

ΔN= N1–N2 (4)

The value of ΔN determines the overlapping rate of petals 
and the width of each petal increases by increasing ΔN. If 
ΔN is getting smaller, the width of leaves gets narrower and 
for ΔN=2, petals will not cross each other. Figure 1 
illustrates different rosette patterns with varying N1 and N2

parameters.
The rosette pattern is a function of f1, f2 and t. Since the 

values of f1 and f2 are fixed, the pattern position in each 
point is individually a function of t. Figure 2 shows the 
image scanning by the rosette pattern. If total number of 
samples of the rosette pattern is considered as NT, then NT is 
calculated by (5).

NT = 2.N.NP (5)

Figure 1. Rosette patterns with different N1 & N2
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where N is total number of petals and NP is number of 
samples in each half of the petal.

Figure 2. Image scanning by the rosette pattern

To produce the rosette pattern with the specific total 
number of samples (NT), it is necessary to select the sample 
time (Δt) as follows:
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III. PROPOSED METHOD

Contrary to conventional clustering methods, in the 
proposed algorithm, there is no need to initialize any 
parameter. Therefore, in the case of unsuitable initialization, 
the efficiency of the algorithm will not deteriorate. 
Moreover, the clustering algorithm based on the rosette 
pattern is reliable, fast and capable to determine the accurate 
number of clusters truly.

This paper offers an algorithm based on rosette pattern 
leading to improve image sampling and clustering. Scanning 
the images by the rosette pattern causes the number of 
sampled pixels to reduce. Furthermore, the coordinates of 
each sample can be expressed by a single variable (t).

3.1 Clustering Algorithm Based on Rosette Pattern 
(CABRP)

The general strategy in the Clustering Algorithm Based 
on Rosette Pattern (CABRP) is mapping the samples into a 
two dimensional space and determining partial clusters. The 
algorithm consists of three parts. The first part is sampling 
the image pixels. In the second part, i.e. clustering, to 
decrease the nonlinear property of the rosette pattern, the 
samples are mapped to a linear space. The characteristics of 
the space are determined by the rosette pattern. In the linear 
plane, all adjacent samples are considered as a partial 
cluster. Two partial clusters are merged if they have 
adjacency to each other. Finally, the clustered samples are 
remapped to the main plane. The steps of the proposed 
algorithm are explained in the subsequent sections.

3.1.1 Image Scanning & Sampling

At first, the original image is sampled according to the 
rosette pattern equation. In the proposed algorithm, the 
rosette pattern is produced by a Matlab™ program. 
According to equation (1) and increasing t from zero to 
rosette period (T), the grayscale of each pixel of original 
image is sampled and coordinates are stored in a two 
dimensional array. In figure 3, sampling an image by the 
rosette pattern (N1=39 & N2=37) is illustrated.

In order to cover the area of the image precisely, the 
number of rosette petals (N) should be selected large 

enough. However, if the number of petals is chosen too 
large, the speed of the algorithm will reduced. Therefore, 
N=76 can be a suitable selection.

Figure 3. Sampling an image by the rosette pattern, a) original image b) the 
scanned image

Furthermore, the corner areas of the image are not 
covered by the rosette pattern. Hence, the image is 
embedded in the rosette pattern similar to figure 4.

Based on equation (1) and figure 1, the radius of the 
rosette pattern is limited to 1. For an image with the size of 
mn, factor δ in (1) is defined αm if m>n. Otherwise, αn. 
Here, α stands for a scale factor to place the original image 
in the center of the rosette pattern.
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Figure 4. Embedding the image in the rosette pattern

The grayscales of image pixels (I) are sampled by the 
rosette pattern based on (7):

I(t)=pixel(i,j), if i<m and j<n (7)

where t stands for time parameter.
Since the resolution of the rosette pattern in the center is 

more than the extremes of the pattern, the performance of 
images sampling will improve. Figure 5 illustrates the 
sampling an embedded image in the rosette pattern. The 
rosette pattern parameters, f1, f2 and Δt are 3900Hz, 3700Hz 
and 0.25µs respectively. Consequently, the values of N and 
ΔN are computed 76 and 2.
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Figure 5. Sampling an embedded image in the rosette pattern
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It is seen that all areas of an image are covered by the 
rosette pattern. Since the size of the image is 233×233, the 
size of the rosette pattern has been changed to 233×233. 
Here, the value of α is considered 3.

3.1.2 Clustering

The improved version of clustering algorithm proposed 
by Jahng et al. [40] is used for the clustering. Contrary to 
the algorithm proposed by Jahng et al., the used method has 
the applicability to grayscale images and covers all areas of 
images.

In order to decrease the nonlinear properties of the rosette 
pattern, the samples are mapped to a two dimensional linear
space. For this purpose, each rosette petal is divided into 
halves along the central line of each petal including the 
central point of the rosette pattern and the outer end point of 
the petal. The number of each half of the petal increases 
from i=1 to i=2N one by one counterclockwise. Rosette 
petals numbering is illustrated in figure 6.

Figure 6. Petals numbering in the rosette pattern
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The value of θ(t) is obtained as follows:
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Each row of half of the petal (j) is composed of Np 
samples (j=1, 2, ..., Np) that Np is obtained as (6). The 
values of i and j correspond to row number and column 
number of a two dimensional plane. If j begins with the 
sampling point at the center of a petal and ends at the outer 
end of the petal, the value of j is defined as

1).1(  jp NNDj (10)

If j begins with the sampling point at the outer end of a 
petal and ends at the center of the petal, the value of j is 
defined as follows:
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Following the aforementioned stage, the scanned pixels 
are converted into the two dimensional plane and the 

grayscale values of the pixels are transferred to the 
corresponding position on the two dimensional plane based 
on equations (8) to (12). Figure 7 shows the converted 
samples to the linear space corresponding to figure 5. In 
figure 7, based on the value of α and rosette pattern 
parameters, the values of N and NP are 76 and 88
respectively.
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Figure 7. Converted pixels from figure 5 to the linear space

In this step, the clustering method is applied to the 
samples in the two dimensional plane. At first, partial 
clusters are defined. For this purpose, all of the continuous 
data in a row with the same grayscale values are considered 
as a partial cluster. It is possible to find more than one 
partial cluster in a row. Details of defining partial clusters 
are shown in figure 8. The number of gray levels is 
considered as m.

By defining the partial clusters located in each two 
consecutive sequential row, their adjacency is checked pair 
wise. The process is applied to all of the partial clusters. If a 
partial cluster doesn’t have any adjacency to other partial 
clusters, it is considered as an independent class. At the end 
of this step, the number of classes is equaled to the number 
of partial clusters.

Figure 8. Determining partial clusters

It is remarkable that in the rosette pattern, the first row 
(i=1) and the last row (i=2N) are adjacent to each other even 
though in the two dimensional plane, they are located apart. 
Therefore, the adjacency between these two partial clusters 
is examined. 

3.1.3 Remapping the clustered samples

Based on the equations (8) to (12), the clustered samples 
are remapped to the corresponding position in the main 
plane. So, the purpose of the clustering is obtained. The 
clustering results of figure 7 are depicted in figure 9.
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Figure 9. Results of clustering by CABRP for the sample image

3.2 Calculation of the centroid

To calculate the center of each class in the rosette pattern, 
two methods are proposed based on an averaging method 
and distribution function [37], [39].

In the averaging method, the positions of all samples of 
each class are stored in the memory. The stored data is 
averaged and the result is set as the center of the class. 
Because of the nonlinearity of the rosette pattern, the 
number of scan lines passing over the classes is not uniform. 
There are more scan lines at the center than the extremes of 
the pattern. Consequently, the computed centroid leans to 
the center of the rosette pattern.

In the second method, i.e. weighting method, the 
distribution function is used to compensate the error. This 
function describes the line density in the rosette pattern. For 
each sample in the rosette pattern, weight function will be 
set using the line density. The Weight function value would 
be greater where the line density is less. The centroid of 
each cluster is obtained as 
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where wi and m are the value of ith element of weight 
matrix and length of weight matrix respectively. Because of 
the symmetry property of the rosette pattern, the distribution 
function is calculated only between two neighboring petals. 
The area between two neighboring petals is divided into L
angle directions and NP radius parts. Therefore, there are 
LNP points in the area for which a weight function is 
considered, where NP is the number of samples for each half 
of the rosette petal. When, the distance between two petals 
is divided into L slices, the equation of nth line would be:

x
L

n

N
yn .).

2
tan(


 (14)

Figure 9 shows the division of two adjacent petals in the 
rosette pattern (N1=13, N2=9) using equation (14). To 
calculate the distribution function, a class with the radius of 
0.1 (the radius of the rosette pattern is normalized to 1) is set 
to the center of the rosette pattern and moved along the 
mentioned lines in equation (14) with a defined step (here is 

1/NP) from r=0 to r=1, where 22 yxr  . When one scan 

frame of the rosette pattern is finished, the total number of 
pixels for the relevant class in each position is calculated. 
Then the weight function is defined as a reciprocal of the 
distribution function.

Figure 9. Dividing two neighboring petals

Figure 10 shows the distribution function of the total 
number of pixels of the corresponding class. The rosette 
pattern parameters are N1=39, N2=37.

Figure 10. Distribution of the total number of pixels of a class with radius 
of 0.1.

In order to show the priority of weighting method to 
averaging method, the centroid of a widespread class is 
calculated by two methods. Results are demonstrated in 
figure 11. The centroid computed by weighting method is 
much closer to original centroid in comparison to centroid 
computed by averaging method. Since all pixels of the class 
are not scanned by the rosette pattern, the original centroid 
and the computed centroid by the weighting method will not 
be exactly the same.
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Figure 11. Comparison of calculated centroid by averaging and 
weighting methods

IV. SIMULATION RESULTS

In this section, the performance of CABRP is presented 
and compared with FCM and K-means algorithms. The 
simulation results are reported for eight data sets. Results 
are concluded based on the following assumption: in the 
FCM algorithm, no theoretically rule for choosing m exists. 
Usually m=2 is chosen [40]. The test for the convergence is
performed using ε = 0.001 and distance function ||.|| is
defined as Euclidean distance. Moreover, the number of 

y4
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clusters is initially set. For determination of the optimal 
number of clusters, the validity indices VPC, VPE, VXie and 
VFS are compared with CABRP. For CABRP, in order to 
achieve the proper resolution and speed, the values of f1, f2

and Δt are set to 3900Hz, 3700Hz and 0.25µs. 
Consequently, using equations (2) to (6), total number of 
petals (N), overlapping rate (ΔN) and total number of 
samples (NT) are computed as 76, 2 and 40,000 respectively. 
The Rosette pattern parameters are considered fixed for 
different data sets. In K-means algorithm, only the number 
of clusters should be initialized. 

4.1 Data Sets

The results are released based on eight data sets; the data
sets are two dimensional generated arrays and their 
characteristics are given in table I. The number of clusters 
varies from three to seven. Data set 1 and data set 7 have 
the minimum and maximum number of samples 
respectively. Figure 12 depicts the data sets.

TABLE I. NUMBER OF SAMPLES FOR EACH DATABASE

C1 C2 C3 C4 C5 C6 C7 Total
DS1 5102 1088 1086 - - - - 7276
DS2 11100 3407 1110 - - - - 15617
DS3 7773 1455 802 801 - - - 10831
DS4 2307 6496 2311 2203 730 - - 14047
DS5 2001 3780 3341 3594 1329 2847 - 16892
DS6 1790 2073 2985 1896 5320 754 - 14818
DS7 6503 481 10539 112 113 112 - 17860
DS8 1800 1650 4911 522 517 1533 1550 12483

4.2 Validation of the algorithm

In order to evaluate the performance of the algorithms 
four criteria are used: error between cluster prototype and 
component mean, accuracy of the optimal number of 
clusters, time cost and stability across different runs. Since 
in K-means algorithm, seed points are selected randomly 
and output varies significantly across different runs, the 
calculated results are average of 20 times runs.

4.2.1. Error between cluster prototype and component mean

Considering the fact that the component means are known 

for the data sets, the error between cluster prototype and 
component mean is used to evaluate the performance of the 
algorithms. The error is defined as equation (15). In the 
following equation, vi (i=1,…,NC ) are the cluster centers, NC

is the number of clusters determined by the algorithm, mj

(j=1,…,C) are the component means and C is the true 
number of component.
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Table II lists the results for CABRP, FCM and K-means 
algorithms. For k-means and FCM, the number of clusters is 
initially set for each data set separately. The use of the 
weight function improves CABRP clusters detection rate by 
a minimum of 62.26% and 87.62% in comparison with FCM 
and K-means algorithms respectively.

TABLE II. ERROR BETWEEN CLUSTER PROTOTYPE AND COMPONENT MEAN 

FOR THE EIGHT DATA SETS

CABRP
With the 
Weight 

Function

CABRP
Without the 

Weight 
Function

FCM K-means

DS1 1.586 8.876 100.3 100.3

DS2 1.255 2.135 155.0 155.1

DS3 0.501 3.990 144.4 135.9

DS4 2.329 19.85 57.41 58.66

DS5 7.560 28.75 20.03 61.09

DS6 11.23 39.98 133.1 134.0

DS7 3.522 10.31 188.7 186.3

DS8 3.880 3.79 168.2 159.8

According to table II, it is concluded that FCM and k-
means are not able to cluster the data sets truly, while by the 
use of CABRP, all the clusters are detected accurately.
However, the calculated errors for CABRP with weight 
function are not zero.  The reason is that all clusters pixels 
are not covered by the rosette pattern. 

In figure 13, the clustering results for data set 8 by 
CABRP, FCM and K-means algorithms are demonstrated. 

Figure 12. Eight data sets used in the simulation

(a) (b) (c) (d)

(f) (g) (h)(e)
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Contrary to CABRP, FCM and K-means algorithms cannot 
distinct even a cluster truly.

4.2.2 Accuracy of the optimal number of clusters

The major goal of each clustering algorithm is to find the 
true number of clusters. For FCM, the optimal number of 
clusters is determined by variation of NC between NCmin=2 to 

NCmax= n  based on Bezdek’s suggestion [41] and 
calculation of the validity indices. Here, the existing well-
known validity indices VPC, VPE, VXie and VFS are used. 
However, in CABRP, results of clustering lead to determine 
the optimal number of clusters.

The optimal number of clusters determined by the 
algorithms (NCopt) is presented in table III. CABRP shows 
the best identification ability for the data bases, reaching a 
100% accuracy rate. Unlike CABRP, none of the validity 
indices are able to determine the correct number of clusters
even for a data set. 

TABLE III. THE OPTIMAL NUMBER OF CLUSTERS BY CABRP AND FCM

FCMNumber of 
Component 

(C)
CABRP

VPC VPE VXie VFS

DS1 3 3 2 2 9 12
DS2 3 3 2 2 7 12

DS3 4 4 2 2 11 13

DS4 5 5 2 2 4 9

DS5 6 6 2 2 4 8
DS6 6 6 2 2 11 11
DS7 6 6 2 2 7 13
DS8 7 7 2 2 4 12

Accuracy rate 8/8 0/8 0/8 0/8 0/8

4.2.3 Time cost

In this part, the proposed algorithm is evaluated by the 
required convergence run time. All the algorithms are 
executed on a VIAO FZ244 2.00 GHz PC with 2 GB 
memory running Windows VistaTM Home Premium. 

The run time’s comparison of CABRP and four validity 
indices for eight data sets is shown in table IV. CABRP has 
the best performance among the other methods particularly 
when the number of samples increases. On the other hand, 
in dealing with clusters with large number of data vectors, 
CABRP has much better performance in comparison with 
FCM algorithm. The run times of validity indices rarely 
come less than 50 second while for CABRP, its run time do 
not exceed 0.029 second. On average, in determining the 
optimal number of clusters, CABRP is 99.97% faster than 

FCM.

TABLE IV. THE RUN TIMES (SEC.) COMPARISON OF CABRP AND FCM FOR 

THE DATA SETS

FCM
CABRP

VPC VPE VXie VFS

DS1 0.016 69.74 69.71 73.86 75.71
DS2 0.029 49.76 60.41 47.56 47.45
DS3 0.015 114.9 117.7 100.2 122.2

DS4 0.014 50.23 47.02 45.03 57.43

DS5 0.020 41.79 45.10 42.37 44.56
DS6 0.023 46.17 49.61 47.98 45.23
DS7 0.025 132.5 130.6 136.5 135.8
DS8 0.016 36.97 36.80 38.84 37.33

4.2.4 Stability across different runs

Since in algorithms like K-means and its derivatives, the 
cluster centers are selected randomly, the outputs vary 
significantly across different runs. In CABRP, the clustering 
criterion is based on the neighborhood properties and no 
parameters related to clusters are initialized. Therefore, the 
clustering results are just dependent on samples position and 
the algorithm is completely stable in different runs.

V. CONCLUSIONS

This paper investigates an algorithm for image clustering 
and determining the number of clusters. The proposed 
method for clustering is based on image scanning using the 
rosette pattern and clustering the sampled pixels according 
to the rosette pattern characteristics. Appropriate method for 
better image scanning is presented and a clustering 
algorithm which is able to apply to grayscale images is used. 
Contrary to the most clustering algorithms requiring 
parameters initialization, the CABRP results merely depend 
on samples’ position giving complete stability in different 
runs. 

Experiments on eight data sets with different number of 
clusters and size prove that CABRP improves clusters 
detection rate by at least 62.26% and 87.62% compared with 
FCM and K-means algorithms. Furthermore, the proposed 
approach has proved to be very efficient in terms of run time 
improvement by 99.97% compared with FCM algorithm. 
However, this algorithm may be more efficient in dealing 
with high resolution data sets. Also, experiments on data
sets show that CABRP is able to yield the accurate number 
of clusters and performs much better than all other tested 
methods.
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Figure 13. Clustering results for dataset3 (a) by CABRP (b) K-means and (c) FCM
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