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Abstract—The paper presents a synthesis of an extended 

Gopinath observer (EGO) and analyzes the asymptotic 
stability of a squirrel-cage induction motor vector control 
system with an EGO in its loop. The considered control system 
is based on the direct rotor flux orientation method (DFOC) 
and the study of stability is based upon the linearization 
theorem applied around the equilibrium points of the control 
system, emphasizing the estimated variation domain of the 
rotor resistance for which the control system remains 
asymptotically stable. 
 

Index Terms—extended Gopinath observer, induction 
motor, vector control system, direct rotor flux orientation 
method, asymptotic stability, sensorless.   

I. INTRODUCTION 

This paper proposes a new flux and rotor speed observer 
called Extended Gopinath observer (EGO). The design of 
the EGO observer was conceived based on an adaptive 
mechanism using the notion of Popov hyperstability [1].  

Thus, this type of observer is included in the estimation 
methods based on an adaptation mechanism, along with the 
Extended Luenberger [2] Observer (ELO) proposed by 
Kubota [3] and the Model Adaptive System (MRAS) 
observer proposed by Schauder [4]. 

In the second part of the paper a study about the 
asymptotic stability of the whole speed control system 
which contains in his loop an EGO observer has been 
performed. 

II. THE EXTENDED GOPINATH OBSERVER 

The EGO observer in composed of a low order Gopinath 
rotor flux observer [5],[6] and an adaptation mechanism 
used for the rotor speed estimation. The equations that 
define the rotor flux Gopinath observer are [7]: 
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In the above relations we marked with “*” the identified 
electrical sizes of the induction motor.  

The block diagram of the EGO is presented in Figure 1. 
 

 
Figure 1.  The Principle Schematic of the EGO Estimator 

 
The essential element that determines the flux observer’s 

stability, as well as its lack of sensibility to the motor 
parameters variation, g is a matrix Gopinath, represented by 
a complex number of the form: a bg g j g   . 

In order to design the estimator, its poles have to be 
placed in the left complex plane.  In this case, the  stability 
of the estimator is asured. The expresions  ag  and bg  after 

the pole positioning become [7]: 
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In these conditions the Gopinath rotor flux observer is 
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completely determined. Next, in order to determine the 
adaptation mechanism to estimate the rotoric speed, as 
reference model the „statoric curents - rotoric fluxes” one of 
the induction motor and as ajustable model, the model of the 
Gopinath rotor flux observer have been considered.  

The equations mentioned above, written under the input-
state-output canonic form become: 

 Reference model: 
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 Ajustable model: 
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 In the above relations we marked with „~” the  matrices 
of the Gopinath estimator which are dependent upon the 
rotoric speed, which in turn need to be estimated based on 
the adaptation mechanism.  

Next, in order to determine the expression that defines the 
adaptation mechanism it has to be assumed that the 
identified electric sizes are identical with the real electric 
sizes of the induction motor. In other words: 

* ; , 1,2ij ija a i j   and                  (5) *
1111 bb 

First, in order to build the adaptive mechanism, the 
estimation error is evaluated, defined by the following 
difference: 

xxex ˆ                                    (6) 

By deriving the relation (6) in relation with time and by 
using the relations (3) and (4), the relation (6) becomes: 
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   xAAAMeAAMe
dt

d
xx ˆ

~
11  

x

       (8) 

Equation (8) describes a linear system defined by the term 
 in inverse connection with a non linear 

system defined by the term  that receives as input the 

error  between the models and gives as output the 

following term: 
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The block diagram of the system that describes the 

dynamic evolution of the error between the state of the 
reference model and the state of the adjustable model is 
presented in Figure 2: 

 

 
Figure 2. Lur’e problem block diagram  

 
As one may notice, this problem is frequently mentionad 

by the non-linear systems literature, being exactly the 
configuration of the Lur’e problem, and of one of the 
problems treated by Popov [1]. 

Considering, according to the Popov terminology, the 
non-linear block described by,  ye  the integral input- 

output index associated, is the following: 
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The necessary hyper-stability condition for the above 
mentioned block is given by: 
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for any input-output combination and where  0  is a 
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in order to keep the compatibility between the input and 

output dimensions; ye  represents the conjugate of the 

complex variable . ye

Under these circumstances, using the relation (9), 
expression (11) becomes: 

   0ˆ
~

Re 2

0
1

1







  

t
T
y dtxAAAMe         (13) 

Next we assume that the error  AAAM
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determined only by the rotoric speed of the induction motor. 
In this case one may write: 
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r  and r̂  is real and estimated mechanical angular speed. 

For any positive derivable f function the following 
inequality is true:  
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Figure 3. The block diagram of the DFOC vectorial control system which contains an EGO loop

 
 On the other hand, using the relation (14), the expression 

(13) becomes: 
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By combining the relations (15) and (16) one may write 
the following relations: 
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Because 1K  is a constant and then, in case of a slower r  

parameter variation related to the adaptive law, we get: 
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After replacing the variables that define the above 
expression (18) and taking into account the arbitrary nature 
of the  positive constant we get: ik
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Sometimes, insted of the adaptation law (19) the 
following form could be used: 
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From the above relation one can observe that a new 
proportional component apears from the desire of having 2 
coefficients that could control the speed estimation 
dynamics. This fact isn’t always necesary because very good 
results by using only expresion (19) could be obtained. 

Thus, expresion (20) represents the general formula of the 
adaptation mechanism where RK  represents the 

proportionality constant and  represents the integration 

time of the proportional-integral controller that defines the 
adaptation mechanism. 

RT

III. THE MATHEMATICAL DESCRIPTION OF THE VECTOR 

CONTROL SYSTEM 

The block diagram of the direct rotor flux oriented control 
system of the mechanical angular speed r  (DFOC) is 

presented in Figure 3.  
In Figure 3, B2 is the control block of the rotor flux 

oriented speed control (DFOC) and with B1 the extended 
Gopinath observer blocks (EGO).  

In order to mathematically describe the DFOC control 
system, the following hypotheses have been considered: 
 The static frequency converter (CSF) is assumed to 

contain a voltage inverter. 
 The static frequency converter is considered ideal, so 

that the vector of the command is considered to be the 
input vector of the induction motor. 

 The transducers are considered to be ideal.  
 The mathematical model of the vectorial control 

system is written in an orthogonal axis system 

rr qd    bound to the  rotor flux module. 

 Some of the equations that define the vector control 
system are given by the elements which compose the field 
orientation block and consist of: 
 stator voltage decoupling block (C1Us): 
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 PI flux controller (PI_ψ) defined by the K  

proportionality constant and the T  integration time: 
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 torque PI controller (PI_Me) defined by the MK  

proportionality constant and the MT  integration time: 
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 mechanical angular speed PI controller (PI_W)  
defined by the K  proportionality constant and the 

T  integration time: 
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 current PI controller (PI_I)  defined by the iK  

proportionality constant and the iT  integration time: 
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 Flux analyser (AF): 
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 The calculus of the torque block (C1Me): 
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The other equations that define the mathematical model 
of the speed vector control system are: 
 The induction motor: The equations that define the 

stator currents – rotor currents mathematical model of 
the induction motor, is [8]: 
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The motion equation of the induction motor proper to the 
stator currents – rotor fluxes model, is: 
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The equations that define the extended Gopinath observer 
defined by the 4 relations that can be written based on 
system (1) with the equation that defines the speed 
adaptation mechanism (20). Expression (20) can also be 
written as:  
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All these expressions form a 14 differential equations 
system with 14 unknown values. In order to offer a coherent 
presentation of this differential equations system, we have 
used the following notations: 
 The state vector of the control system will be: 
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system that define the mathematical model of the vector 
control system can be written as follows 
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2 12 1 11 2 14 5 3 13 4 11 2
a

pf x x z x x x     g              (36) 

3 31 1 32 5 2 33 3 34 4 31 1
a

pf x z x x x x               g  (37) 

4 32 5 1 31 2 34 3 33 4 31 2
a

pf z x x x x x g              

3m

(38) 

5 1 3 2 4 1 2 5 3( )m mf K x x x x K x K u                         (39) 

6 2 13f u x                                                                       (40) 

 7 8 1 3 13 12a
K

f x K u g K x x
T





                              (41) 

8 1 3f u g                                                                        (42) 

 9 6 2 13

K
11f x K u x x

T





                                         (43) 

10 7 7 12
M

M
M

K
f x K f x

T
                                                  (44) 

1
*
1113

*
131

*
1211

*
11 ˆ gbxaxaxxaf bra          (45) 

2
*
11133

*
142

*
12

*
1112 ˆ gbxgzaxaxaxf pbar       (46) 

   
   122111

12211113
*
331

*
3113

ˆˆ xxgxxg

ffgffgxaxaf

rarb

ba





 
  (47) 
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14 13 2 12 f x x x                                                           (48) 

where:  

9 9
i

ds i
i

K
v x K f

T
    ; 10 10

i
qs i

i

K
v x K

T
    f                   (49) 

2
* * 12

1 13 13 31 3 1
13

p
x

h a x a z g x
x

       2                                  (50) 

* * 11 12
2 14 3 13 31 3 1

13
p

x x
h a z g x a z g x

x


         1p                    (51) 

11 1
1 *

11

dsb v h
g

b

  
 ;

11 2
2 *

11

qsb v h
g

b

  
                                 (52) 

 3 13 2 12
R

R
R

k
14g k x x x x

T
                                          (53) 

   
* *
31 33

2 2*
33 3

a

p

a a
g k

a z g


 

 
;

   

*
31 3

2 2*
33 3

p
b

p

a z g
g k

a z g

 


 
  (54) 

13

12*
313ˆ

x

x
agz pr                                                    (55) 

51212 ˆ xz pr
a    ;           (56) 53434 ˆ xz pr

a   

Under these circumstances the mathematical model of the 
speed vector control system is fully determined as being 
defined by the non-linear differential equations system given 
by (34) whose initial condition is 

  1 1300x p x 0                         (57) 

where: 

 1 0 0 0 0 0 0 0 0 0 0 0 0p  ; 9
130 10x   

IV. THE ASYMPTOTIC STABILITY STUDY OF THE CONTROL 

SYSTEM. 

In order to perform the analysis of the asymptotic stability 
of an induction motor based system, the following 
parameters have been considered: 
 Electrical parameters:  4 ; NP KW  400   NU V

 1.405sR   ;  1.395rR   ;  0.178039sL  H ;

 0.178039rL H ;  0.1722m L H ;  50Nf Hz . 

 Mechanical parameters:  1430 rot/minNn  ; 2pz   

20.0131 kg mJ     ;  0.002985 N m s/radF    . 

One of the main problems in the practical implementation 
of a speed control system for an induction motor is the 
controller tuning.  

In present, the controllers tuning of the induction motors 
speed control systems is made only through experimental 
methods, and the time allocated for this type of tests is a 
really long one. 

 In order to design the automated controllers within the 
control system first we shall assume that the Extended 
Gopinath Observer is very well designed so that the 
estimated values are assumed to be equal to the real values 
of the motor.  

Therefore, for the controllers composing block B2 of the 
speed control system the following analytical adjustment 
formulas are used [9], [10]: 

 

 Current controller: 

* *
11 11 1

1
;i i

d

T K
a b

  
 *

1

T
                    (58) 

 Flux controller: 
*

*
* *

1

;
2

r
r

m d

T
T T K

L T
  

 
                   (59) 

 Torque controller: 
*

* 1
1 * *

2

; d
M d M

a r d

T T
T

K
K T


 

                  (60) 

 Speed controller: 

   
 

2 *
4 2

* 3
4 2

1 1
; 4

2 1

d

d

T T
K T

K T
 

2 



   
  

  
        (61) 

where: ;*
2 4/dT T  4 1/K F  and . 4 /T J F

The proportion and integration coefficients of the PI 
controller of the adapting mechanism of the Extended 
Gopinath Observer are determined using the linear equation 
of the estimation error [7]. 
 Adaptation mechanism: 

*
1

1
R

u d

k
K T




;
2
r

R
T

T  ;
2*

14u p r 0.2K a z    k;       (62) 

In the above mentioned formulas, and  are two 

time constancies imposed considering they need to respect 
the following conditions: 

*
1dT *

2dT

4
*
2

**
1 ; TTTT drd   and              (63) *

1
*
2 dd TT 

The tuning relations used are the ones presented in this 
paper and the constants that occur in the automated 
controllers tuning coefficients’ calculus, are: 

 *
1 0.1 msdT  ;  *

2 0.75 msdT                 (64) 

As the analysed control system, is non-linear, we can not 
speak of the system stability only about the eqhilibrium 
point’s stability [11], [12], [13], [14], [15]. For this reason 
after solving the non-linear equation system:  

  0, uxf i ; 14,1i                        (65) 

obtained from the vectorial functions that define the 
system (34), we obtain the equilibrium point of the non-
linear system. In order to solve the non-linear equation 
system (65) we shall apply Newton’s method, and the 
equilibrium point obtained for an imposed input vector is 
noted like this: 

1,14

T
ma mai i

b b


                                  (66) 

Sequently we shall note by  the eqhilibrium points’ 

throng obtained for an input vector like: 
mab

*
1 2 3

T
ma m au u u u                        (67) 

The rotor angular speed within the input vector (67) is 
imposed based on the following mathematical relation: 

*
1 60m rm m

rad
u n

s

      
;

minm
rot

n m
    

; ,N Nm n n  (68) 

and the rotor flux modulus is given by the expression (69)  

*
2

2 2 21

s m N
r

s r p rN

T L U
u W

L T z





  

  
b         (69) 

The load torque within the input vector (67) is imposed 
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based on the following mathematical relation: 

3au a ; ,N Na M M                         (70) 

where  is the whole part of the expression (71). NM 

 /N N rNM P N m ; 2 / 60 /rN mn rad    s       (71) 

Sequently for the analysis of the stability we shall 
linearise the non-linear system (34), around the eqhilibrium 
point (66). The linearized model is given by the expression 
(72): 

     tuBtxAtx LL 


                (72) 

where  matrices are  LL BA ,

*

1,14; 1,14

( , )i
L ma ma

j i j

f
A b u

x
 

 
  

  

*

1,14; 1,3

( , )i
L ma ma

k i k

f
B b u

u
 

 
   

 

Next, in order to study the asymptotic stability of the 
equilibrium points  , the eigenvalues of the Amab

mab

L matrix 

will be analyzed, so that if they have a strictly negative real 
part the  equilibrium point is asymptotically stable for 

the linerized system (72). Under these circumstances 
according to the linearization theorem in a vicinity of the 
equilibrium point  the non-linear system (34) is 

asymptotically stable. As the eigenvalues of the 

mab

LA  matrix 

are presented within Figure 4, it results that the equilibrium 
points  of the linerized system (72) are asymptotically 

stable and according to the linearization theorem the 
equilibrium points  are asymptotically stable in certain 

vicinity for the non-linear system (34).  

mab

mab

 
Figure 4.  The  eigenvalues of the matrix LA  

 
In order to determin the variation field of the identified 

rotor resistance for which the eqhilibrium points mab b  

remain asymptotic stable, we shall modify the identified 
rotor resistance of the motor based on the following 
mathematical relation: 

 *

100r r r
k

R R R
     
 

;            (73) k 

where  is the resistence of the induction motor. rR

The tuning paramters of the automated controllers, within 
block B2, will be the same for all the testing period of the 

structural stability, being determined based on the relations 
shown in this paper for a rotor resistance equal to the  

resistance value of the induction motor. From those 
mentioned above we observe that for a specific input vector 

 we sall have k eqhilibrium points. For this reason the 

eqhilibrium points will be noted: . On the other hand in 

order to determin the parametric stability field, for each 
eqhilibrium point  we shall evaluate the eigenvalues of 

the matrix 

rR

*
mau

makb

makb

LA , so that the  field of these eigenvalues will be 

noted . The values of the coefficient k within the 

expression (73) for which the real part of the eigenvalues, 

that make up the  field, becomes strictly positive, 

define the frontier of the parametric stability field of the 
identified rotor resistence of the induction motor.  

mak
LA

mak
LA

 
Figure 5. The stability parametric domain – continual case 

 
The study of the stability control system for discrete case, 

supose the discretization of the nonlinear system (34). 
After the discretization, we get: 

    1 ,a x k f x k u k                       (74) 

where:     T
ix k x k    ; .        1 2 3

T
u k u k u k u k   

The equations defining the induction motor and equations 
defining the extended Gopinath observer will be 
discretization using the Euler method. The automatic 
controllers  of the composition of the control system and the 
adaptation mechanism will be discretization using the Euler 
method. Thus we get: 

   ( , ) ,ai i s i  f x u x k T f x k u k   ; 1,14i       (75) 

where: sT  is sampling time. 

As the analysed control system, is non-linear, we can not 
speak of the system stability only about the eqhilibrium 
point’s stability. For this reason after solving the non-linear 
equation system:  

( , )ai if x u x ; 1,14i  ( , ) 0if x u  ; 1,14i      (76) 

obtained from the vectorial functions that define the system 
(74), we obtain the equilibrium point of the non-linear 
system. Sequently for the analysis of the stability we shall 
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linearise the non-linear system (74), around the eqhilibrium 
point (66). The linearized model is given by the expression 
(77):  

   1 D D  x k F x k H u      k            (77) 

where:  

*

1,14; 1,14

( , )ai
D ma ma

j i j

f
F b u

x
 

 
  

  

*

1,14; 1,3

( , )ai
D ma ma

k i k

f
H b u

u
 

 
   

 

Proceeding in a similar manner the eigenvalues of the LF  

matrix in case the entry vector is defined by (67) and the LF  

matrix is obtained by using simplified digitization using a 

 100 μsecsT   sampling time are graphically presented in 

Figure 6. 

 
Figure 6. The eigenvalues of the matrix LF  

 
In order to determine the variation field of the identified 

rotor resistance for which the equilibrium points remain 
asymptotic stable, we shall modify the identified rotor 
resistance of the motor based on the relation mathematical 
(73). Preceding in a similar the parametric stability domain 
is: 

 
Figure 7. The stability parametric domain – discret case 

The results presented above have been partially proved by 
experiment, due to the limitations introduced by the inverter. 

Next, the performances of the extended Gopinath 
estimator are presented in a variety of functional conditions. 

Thus the image below will present the graphics for the 
real and estimated rotors fluxes and also the graphics for the 
imposed speed, real speed and the estimated speed for small, 
and medium imposed speeds. 

 
Figure 8. Real flux compared to the estimated flux  * 5 / 30 rad/sr    

 
Figure 9. Real speed compared to the estimated speed and reference speed: 

 * 5 / 30 rad/sr    

 
Figure 10.  Real flux compared to the estimated flux: 

 * 1430 / 30 rad/sr    

 
Figure 11. Real speed compared to the estimated speed and reference 

speed:  * 1430 / 30 rad/sr    

On the other hand in the following image the effect of the 
rotors resistance will be presented, emphasizing the dynamic 
performances [16] of the EGO estimator. Thus the graphic 
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The EGO observer, whose gate matrix is calculated with 
the relations (2), ensures the adjustment system very good 
dynamic performance that gives us the possibility to assert, 
that such an estimator could be successfully used in 
industrial applications.  

between the real and estimated rotor fluxes are shown as 
well as the graphic between the imposed speed, real speed 
and estimated speed for low and medium imposed speeds. 

 

The paper shows an analytic method of automated system 
controllers’ tuning within an automated speed control 
system, for an induction motor.  

The use of the controllers’tunning formula shown in tis 
paper, has the advantage of ruling out the experimenthal 
methods used so far in the controllers’tunning within the 
speed vector control systems of an induction motor.  Figure 12.  Real flux compared to the estimated flux:  * 5 / 30 rad/sr    

The controllers’ designing, using the method presented in 
this paper, ensures the control system with a very good 
dynamics and  robustness. These net advantages, recomend 
the succesful use of this method in practice. 
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V.  CONCLUSION 

This paper presents a new flux and rotor speed observer 
called an Extended Gopinath Observer (EGO). The design 
of the EGO observer is done based on an adaptive 
mechanism using the notion of Popov hyperstability. 
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