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Abstract—The paper presents a synthesis of an extended
Gopinath observer (EGO) and analyzes the asymptotic
stability of a squirrel-cage induction motor vector control
system with an EGO in its loop. The considered control system
is based on the direct rotor flux orientation method (DFOC)
and the study of stability is based upon the linearization
theorem applied around the equilibrium points of the control
system, emphasizing the estimated variation domain of the
rotor resistance for which the control system remains
asymptotically stable.

Index Terms—extended Gopinath observer, induction
motor, vector control system, direct rotor flux orientation
method, asymptotic stability, sensorless.

I. INTRODUCTION

This paper proposes a new flux and rotor speed observer
called Extended Gopinath observer (EGO). The design of
the EGO observer was conceived based on an adaptive
mechanism using the notion of Popov hyperstability [1].

Thus, this type of observer is included in the estimation
methods based on an adaptation mechanism, along with the
Extended Luenberger [2] Observer (ELO) proposed by
Kubota [3] and the Model Adaptive System (MRAS)
observer proposed by Schauder [4].

In the second part of the paper a study about the
asymptotic stability of the whole speed control system
which contains in his loop an EGO observer has been
performed.

II. THE EXTENDED GOPINATH OBSERVER

The EGO observer in composed of a low order Gopinath
rotor flux observer [5],[6] and an adaptation mechanism
used for the rotor speed estimation. The equations that
define the rotor flux Gopinath observer are [7]:
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In the above relations we marked with “*” the identified
electrical sizes of the induction motor.
The block diagram of the EGO is presented in Figure 1.
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Figure 1. The Principle Schematic of the EGO Estimator

The essential element that determines the flux observer’s
stability, as well as its lack of sensibility to the motor
parameters variation, g is a matrix Gopinath, represented by
a complex number of the form: g =g, + j- 0y -

In order to design the estimator, its poles have to be
placed in the left complex plane. In this case, the stability
of the estimator is asured. The expresions ¢, and g, after

the pole positioning become [7]:

a; -a,
g =_k- 31 33
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In these conditions the Gopinath rotor flux observer is

15

1582-7445 © 2011 AECE



Advances in Electrical and Computer Engineering

completely determined. Next, in order to determine the
adaptation mechanism to estimate the rotoric speed, as
reference model the ,,statoric curents - rotoric fluxes” one of
the induction motor and as ajustable model, the model of the
Gopinath rotor flux observer have been considered.

The equations mentioned above, written under the input-
state-output canonic form become:

e Reference model:

ix:A-x+B~u
dt 3)
yzc-ix
dt
e Ajustable model:
i)”(z/K->?+A1 -x+B~u+(§~(y—§/)
dt )
j=c.- g
dt
where:
c=[1 o]

A=|:all a12:|;z\= a5 aiz (A = af 0
a21 a22 0 azz a21 0

ool vl feee [

In the above relations we marked with ,,~” the matrices
of the Gopinath estimator which are dependent upon the
rotoric speed, which in turn need to be estimated based on
the adaptation mechanism.

Next, in order to determine the expression that defines the
adaptation mechanism it has to be assumed that the
identified electric sizes are identical with the real electric
sizes of the induction motor. In other words:

a; =;;i,j =12 and b, =by, (5)

>

First, in order to build the adaptive mechanism, the
estimation error is evaluated, defined by the following
difference:

e, =Xx-X (6)

By deriving the relation (6) in relation with time and by
using the relations (3) and (4), the relation (6) becomes:

d d

—e, =(A-A)Xx-A-%-G-C-—e 7
5 & = (A=A) % O

If the determinant det(l )+ G- C);t 0 then exists a unique

inverse matrix M = (I2 +G ~C)_1and hence the expression
(7) could be written as follows:

%ex “M-(A-A)e, +M-(A-A A} & (8)

Equation (8) describes a linear system defined by the term
M-(A—A)-e, in inverse connection with a non linear

system defined by the term © (ey) that receives as input the

error e, =C-e, between the models and gives as output the

following term:
p=-M-(A-A - A) % )
The block diagram of the system that describes the

16

Volume 11, Number 2, 2011

dynamic evolution of the error between the state of the
reference model and the state of the adjustable model is
presented in Figure 2:
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Figure 2. Lur’e problem block diagram

As one may notice, this problem is frequently mentionad
by the non-linear systems literature, being exactly the
configuration of the Lur’e problem, and of one of the
problems treated by Popov [1].

Considering, according to the Popov terminology, the
non-linear block described by, (D(ey) the integral input-

output index associated, is the following:
7(0,t,)= ReU: ey (t): p(t)dtj

The necessary hyper-stability condition for the above
mentioned block is given by:

7(0.4,)=-*(0) (11)
for any input-output combination and where ]/(O) is a

(10)

positive constant.
In the above relation we marked with e; the following

el = [Ey o} (12)

in order to keep the compatibility between the input and

expression:

output dimensions; €y represents the conjugate of the
complex variable e, .

Under these circumstances, using the relation (9),
expression (11) becomes:

—Re(J? el -M-(A-A —A) ﬁdt] >-y2(0)  (13)

Next we assume that the error M ~(A—Al—,&) is

determined only by the rotoric speed of the induction motor.
In this case one may write:
M '(A_AI_A):(wr_Cbr)'Aer (14)
where:
0 —Jay -z,
’%r = .
0 j-z, o(1+a14«g)
@, and @, is real and estimated mechanical angular speed.

For any positive derivable f function the following
inequality is true:

tl df Kl 2
KI-L [E' f]dt2—7~f (0) (15)
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Figure 3. The block diagram of the DFOC vectorial control system which contains an EGO loop

On the other hand, using the relation (14), the expression
(13) becomes:

—Re['[; ey Ay X0, - &, )dtj >—y2(0) (16)

By combining the relations (15) and (16) one may write
the following relations:
f=w, -0,
df (17)
T ~
—Re(ey A -x): K, o
Because K| is a constant and then, in case of a slower @,

parameter variation related to the adaptive law, we get:
t
& =k I Re(e§ A -i)dt (18)
0
After replacing the variables that define the above

expression (18) and taking into account the arbitrary nature
of the k; positive constant we get:

- 4 . .
op =Ki .J-O (eyd Vo —€yq "//dr}jt (19)
where: €4 =g —igs and €yq = lgs —iqs.

Sometimes, insted of the adaptation law (19) the
following form could be used:

R N N 4 N N
Wy = KR (eyd‘//qr _eyql//dr )+ Ki _[0 (eyd Yar _eyq'//dr }jt (20)
where: K; =Kz /Ty
From the above relation one can observe that a new
proportional component apears from the desire of having 2
coefficients that could control the speed estimation
dynamics. This fact isn’t always necesary because very good
results by using only expresion (19) could be obtained.

Thus, expresion (20) represents the general formula of the
adaptation mechanism where Kg represents the

proportionality constant and T represents the integration

time of the proportional-integral controller that defines the
adaptation mechanism.

III. THE MATHEMATICAL DESCRIPTION OF THE VECTOR
CONTROL SYSTEM

The block diagram of the direct rotor flux oriented control
system of the mechanical angular speed @, (DFOC) is

presented in Figure 3.

In Figure 3, B2 is the control block of the rotor flux
oriented speed control (DFOC) and with Bl the extended
Gopinath observer blocks (EGO).

In order to mathematically describe the DFOC control
system, the following hypotheses have been considered:

e The static frequency converter (CSF) is assumed to

contain a voltage inverter.

e The static frequency converter is considered ideal, so
that the vector of the command is considered to be the
input vector of the induction motor.

e The transducers are considered to be ideal.

e The mathematical model of the vectorial control
system is written in an orthogonal axis system
dA, —g4, bound to the rotor flux module.

Some of the equations that define the vector control
system are given by the elements which compose the field
orientation block and consist of:

e stator voltage decoupling block (C,Uj):

* 1 P
Ugs, :bl_*'|:bll “Visz, _h1:|
1
| 21
* * *
Ugsa, :_*'|:bll “Vosi, +h2:|
by,
where:
82
h * * Iqslr AR
1 =43 '|V/r|+a3l Tt L @O gy,
|
* N * ids}Lr 'iqsﬂpr N
h2 =84 -Zp -0 '|‘//r|+a3l 'W+Zp (O ~lgsy,
r
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e PI flux controller (PLy) defined by the K,
proportionality constant and the T, integration time:

dx *

d_t6 =Y - |‘//r |
(22)

Lk K *
ldsa, :T_W' Xe + Kl// '(wr _|l//r|)
74
e torque PI controller (PI_ M,.) defined by the Ky
proportionality constant and the Ty, integration time:
dx *
—L=M e ~Me
dt
(23)

. *

K
IqSl, :_M'X7 +KM (Me _Me)
Th
e mechanical angular speed PI controller (PI_W)
defined by the K, proportionality constant and the

T, integration time:

dxg £ A
F
K (24)
M., :_l_—"’-x8 +Kw-(a):—03r)

2]

e current PI controller (PI_I) defined by the K;
proportionality constant and the T, integration time:

dXg s s
dt =ldsz, —ldss,

| (25)
ds/, ——_"X«) +K; '(idslr _idsxlr)
I
(o PSP -
e A
" (26)
Visa, =T__I'X10 +K; '(iqsir _iqsi, )
|
e  Flux analyser (AF):
. v v
|!//r| :,h//gr +1//§r ;sin A, :i;cos/ir =29 27)
|V/r| |'/’r|
e  The calculus of the torque block (C;M.):
Me = Ky ] fasr 1Ko =302, L f2-Ls ) (29)

The other equations that define the mathematical model
of the speed vector control system are:
e The induction motor: The equations that define the
stator currents — rotor currents mathematical model of
the induction motor, is [8]:

a2l
dt !r a; Oy !r ﬂ31 -

Uy =01 =005 Oy =03~ |0y @]

(29)

where:
O =031 ] Q3 @, &g =033+ |03y 0

L —_— I -0 L
I =lgr +J-0grs0 = Ay =

L
m_ . — m . —
J0 = o
Lo L -T,-o

Qg =

1

Oy = =—
33

T, o o
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The motion equation of the induction motor proper to the
stator currents — rotor fluxes model, is:

d

Ewr =Ky '(idr 'iqs_iqr 'ids)_sz'a)r _KmS'Mr

where: Ky =3-2, L, /(2:3); Ky =F /3Ky =1/

The equations that define the extended Gopinath observer
defined by the 4 relations that can be written based on
system (1) with the equation that defines the speed
adaptation mechanism (20). Expression (20) can also be
written as:

d;(%: (ids _iAds )"/}qr _(iqs _iAqs )'l&dr

(30)

€2))

KR . fal A & A
Wy :T_' Xis +Kg - [(lds —lgs )"//qr _(lqs —lgs )"//dr ]
R
All these expressions form a 14 differential equations
system with 14 unknown values. In order to offer a coherent
presentation of this differential equations system, we have

used the following notations:
e The state vector of the control system will be:

X:[Xi]i:m

where: X, = lasz, 5 %2 =lgsa, 5 %3 =larg, > X4 =lgrg, 5 X5 =@ ;

(32)

X1 =lasy, 5 X12 =lgsz, > X13 =¥Warg,
e The input vector of the control system is:
T
u=[u u, us]

* *
where: Uy =@, ; Uy =y, ; U3 =M, .

(33)

Under these circumstances the 14 differential equations
system that define the mathematical model of the vector
control system can be written as follows

X= f(x,u)
foow =[ W]

_ a
fi=a X +an X ta; X +a, 2, Xs X + B+ 9, (35)

34

where:

_ a

fy=—op X +tag X~y 2, Xs X+ 03X+ -0, (36)
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a
fy=ay 2, XX a3 - X —ag, X3+ o33 X + B0, (38)

fs =K (XX = Xg %) =K - X5 = Kz - U (39

fo =U, — X3 (40)
KCU
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w
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fla ==X '(Xz _XIZ) (48)
where:
K: K.
Vds=T__I'X9+Ki'f9;vqs=T__I'X10+Ki'f10 (49)
I I
. . X
hl:a13'xl3+a31‘%+zp'g3')(12 (50)
13
* + X1 Xp
hy =8y, 2,055 +a5, - +Z,-03° X% (51)
13
by -Vas = by} - Vgs +
1= 5 » Yy = * (52)
by by,
kg
g3 :_kR'XIS'(XZ_X12)+T_'Xl4 (53)
R
a, -ay 8312503
O =k — gy =k (54)
(333) +(Zp'93) (333) +(Zp'93)
~ x X
@y =Zp'g3+a31'i (55)
13
afy =@p +0yy Ly Xs 305 =@y — Q34 L - Xs (56)

Under these circumstances the mathematical model of the
speed vector control system is fully determined as being
defined by the non-linear differential equations system given
by (34) whose initial condition is

x(0)=[p X3 0] (57)

where:
p=[0 0000000000 0];%;=10"

IV. THE ASYMPTOTIC STABILITY STUDY OF THE CONTROL
SYSTEM.

In order to perform the analysis of the asymptotic stability
of an induction motor based system, the following
parameters have been considered:

e  Electrical parameters: Py =4[KW]; Uy =400[V]
R =1.405[Q]; R, =1.395[Q]; Ly =0.178039[H ] ;
L, =0.178039[H]; L, =0.1722[H]; fy =50[Hz].

e  Mechanical parameters: Ny =1430[rot/min]; z,=2

3=0.0131[kg:m” |; F =0.002985[N-m-s/rad].

One of the main problems in the practical implementation
of a speed control system for an induction motor is the
controller tuning.

In present, the controllers tuning of the induction motors
speed control systems is made only through experimental
methods, and the time allocated for this type of tests is a
really long one.

In order to design the automated controllers within the
control system first we shall assume that the Extended
Gopinath Observer is very well designed so that the
estimated values are assumed to be equal to the real values
of the motor.

Therefore, for the controllers composing block B2 of the
speed control system the following analytical adjustment
formulas are used [9], [10]:
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e  Current controller:
1 1

T :__*; K =% * (58)
I ay by Ty
e  Flux controller:
. T,
T, =T 5K, =——="— (59)
2'Lm'le
e Torque controller:
. Ty
Tu =Ta: Ky = d*l ; (60)
Ka W 'Td2
e  Speed controller:
T,-(1+p° T, -(1+p°
_ 4( ) —4. ‘“( ) (61)

T2 Ty, (1+p)

where: p=Ty,/T,; K, =1/F and T, =J/F .

The proportion and integration coefficients of the PI
controller of the adapting mechanism of the Extended
Gopinath Observer are determined using the linear equation
of the estimation error [7].

e  Adaptation mechanism:

1 T,

. . J— *
kg = i Tr=—3 Ky =2y, -2,
Ku'le

o2
Ayl k=02

(62)

In the above mentioned formulas, T, and Ty, are two

time constancies imposed considering they need to respect
the following conditions:
Tg1 <Ty3Tqr <T4 and Ty, > Tg; (63)
The tuning relations used are the ones presented in this
paper and the constants that occur in the automated
controllers tuning coefficients’ calculus, are:
Tg, =0.1[ms] ; Ty, = 0.75[ms] (64)
As the analysed control system, is non-linear, we can not
speak of the system stability only about the eqghilibrium
point’s stability [11], [12], [13], [14], [15]. For this reason
after solving the non-linear equation system:
f.(x,u)=0;i=1,14 (65)
obtained from the vectorial functions that define the
system (34), we obtain the equilibrium point of the non-
linear system. In order to solve the non-linear equation
system (65) we shall apply Newton’s method, and the
equilibrium point obtained for an imposed input vector is
noted like this:

bma :|:bmai ]T:m (66)
Sequently we shall note by b, the eghilibrium points’
throng obtained for an input vector like:
Una =[Un Uy Usy | (67)
The rotor angular speed within the input vector (67) is
imposed based on the following mathematical relation:

Uy = a):m =Ny l{@} SNy = m|:r_0t:| ;m=-ny,Ny (68)
60 s min
and the rotor flux modulus is given by the expression (69)
« Tg-L U
Uy =y =—=—" = [Wb]  (69)
Lo 141222 0

The load torque within the input vector (67) is imposed
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based on the following mathematical relation:
U, =aza=—[ My [,[My |
where LM N J is the whole part of the expression (71).
My =Py /@y [N-m];@n =2-7-n,/60[rad /s]  (71)

Sequently for the analysis of the stability we shall
linearise the non-linear system (34), around the eghilibrium
point (66). The linearized model is given by the expression
(72):

(70)

A ;<(t): AL -AX(t)+ By -Au(t)

where A , B, matrices are

of; " of, ¥
AL = |:§I (bmaa uma):l BL = |:a_| (bma’ Urna ):|
j i=1,14;j=1,14 Uk i=1,14k=1.3

(72)

]

Next, in order to study the asymptotic stability of the

equilibrium points b, , the eigenvalues of the A matrix

will be analyzed, so that if they have a strictly negative real
part the by, equilibrium point is asymptotically stable for
the linerized system (72). Under these circumstances
according to the linearization theorem in a vicinity of the
equilibrium point b, the non-linear system (34) is
asymptotically stable. As the eigenvalues of the A matrix
are presented within Figure 4, it results that the equilibrium
points b, of the linerized system (72) are asymptotically
stable and according to the linearization theorem the
equilibrium points b, are asymptotically stable in certain
vicinity for the non-linear system (34).
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a1 ) S B T [
: : : : : 5 .
(] 0 === ] B e S S I by
' V V V V ! +
2000 |- -mm e dee : b
{01 008 -0.06 . o}
T N R S
5000 L i i i
-12000  -10000 8000 -6000 -2000 o
1000 _ _ :
: _ L
H : : - : H
SDD ......... ., ......... ......... \ ......... ....... -
Qb ERUOU U e __%
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-/00  -BO0 -500 -400  -300 -200 0 -100 u]

Figure 4. The eigenvalues of the matrix AL

In order to determin the variation field of the identified
rotor resistance for which the eghilibrium points b=0,,

remain asymptotic stable, we shall modify the identified
rotor resistance of the motor based on the following

mathematical relation:
* k
Rr :(RI’ +WRrJ[Q], k€Z+ (73)

where R, is the resistence of the induction motor.

The tuning paramters of the automated controllers, within
block B2, will be the same for all the testing period of the
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structural stability, being determined based on the relations
shown in this paper for a rotor resistance equal to the R,

resistance value of the induction motor. From those
mentioned above we observe that for a specific input vector

U We sall have k eghilibrium points. For this reason the
eqhilibrium points will be noted: by, . On the other hand in

order to determin the parametric stability field, for each
eqhilibrium point by, we shall evaluate the eigenvalues of

the matrix A , so that the field of these eigenvalues will be

noted A" % The values of the coefficient k within the
expression (73) for which the real part of the eigenvalues,
that make up the A™¥ field, becomes strictly positive,

define the frontier of the parametric stability field of the
identified rotor resistence of the induction motor.

THE FRONTIER OF THE
STABILITY DOMAIN
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Figure 5. The stability parametric domain — continual case
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The study of the stability control system for discrete case,
supose the discretization of the nonlinear system (34).
After the discretization, we get:

x(k+1)= f, (x(k),u(k))
where: x(k) =[x (k)] s u(k)=[u, (k) uy(k) us(K)]

The equations defining the induction motor and equations
defining the extended Gopinath observer will be
discretization using the Euler method. The automatic
controllers of the composition of the control system and the
adaptation mechanism will be discretization using the Euler
method. Thus we get:

fai O U) = % (K)+Tg - i (x(k).u(k)) ;i =114

where: T, is sampling time.

(74

T

(75)

As the analysed control system, is non-linear, we can not
speak of the system stability only about the eghilibrium
point’s stability. For this reason after solving the non-linear
equation system:

fi(U)=X3i=114 = fi(x,u)=0;i=1,14 (76)
obtained from the vectorial functions that define the system

(74), we obtain the equilibrium point of the non-linear
system. Sequently for the analysis of the stability we shall
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linearise the non-linear system (74), around the eqhilibrium
point (66). The linearized model is given by the expression
(77):

Ax(k+1)=Fp - Ax(k)+Hp - Au(k) (77)
where:
of * of *
I:D = gal(bma»uma) HD =|:a_w(bmaaurm):|
j i=1,14; j=1,14 U i=1,14;k=13

Proceeding in a similar manner the eigenvalues of the F_
matrix in case the entry vector is defined by (67) and the F_
matrix is obtained by using simplified digitization using a
T, =100 [usec] sampling time are graphically presented in
Figure 6.1

08

06

_ - . 2 e NERERAMN L
10_994 1 0%3 0%4 08 058 057 05 0899 1

Figure 6. The eigenvalues of the matrix FL

In order to determine the variation field of the identified
rotor resistance for which the equilibrium points remain
asymptotic stable, we shall modify the identified rotor
resistance of the motor based on the relation mathematical
(73). Preceding in a similar the parametric stability domain
is:

43
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Figure 7. The stability parametric domain — discret case
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The results presented above have been partially proved by
experiment, due to the limitations introduced by the inverter.

Next, the performances of the extended Gopinath
estimator are presented in a variety of functional conditions.

Thus the image below will present the graphics for the
real and estimated rotors fluxes and also the graphics for the
imposed speed, real speed and the estimated speed for small,
and medium imposed speeds.
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Figure 11. Real speed compared to the estimated speed and reference
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On the other hand in the following image the effect of the
rotors resistance will be presented, emphasizing the dynamic
performances [16] of the EGO estimator. Thus the graphic
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between the real and estimated rotor fluxes are shown as
well as the graphic between the imposed speed, real speed

and estimated speed for low and medium imposed speeds.
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Figure 12. Real flux compared to the estimated flux: w: =5.7/30 [rad/s]
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V. CONCLUSION

This paper presents a new flux and rotor speed observer
called an Extended Gopinath Observer (EGO). The design
of the EGO observer is done based on an adaptive
mechanism using the notion of Popov hyperstability.
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The EGO observer, whose gate matrix is calculated with
the relations (2), ensures the adjustment system very good
dynamic performance that gives us the possibility to assert,
that such an estimator could be successfully used in
industrial applications.

The paper shows an analytic method of automated system
controllers’ tuning within an automated speed control
system, for an induction motor.

The use of the controllers’tunning formula shown in tis
paper, has the advantage of ruling out the experimenthal
methods used so far in the controllers’tunning within the
speed vector control systems of an induction motor.

The controllers’ designing, using the method presented in
this paper, ensures the control system with a very good
dynamics and robustness. These net advantages, recomend
the succesful use of this method in practice.
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