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Abstract—This paper is concerned with the problem of TCP 

congestion control for the class of communication networks 
with random parameters. The linear dynamic model of TCP 
New Reno in congestion avoidance mode is considered which 
contains round trip delays in both state and input. The 
randomness of link capacity, round trip time delay and the 
number of TCP sessions is modeled with a continuous-time 
finite state Markov process. An Active Queue Management 
(AQM) technique is then used to adjust the queue level of the 
congested link to a predefined value. For this purpose, a 
dynamic output feedback controller with mode dependent 
parameters is synthesized to stochastically stabilize the 
TCP/AQM dynamics. The procedure of the control synthesis is 
implemented by solving a linear matrix inequality (LMI). The 
results are tested within a simulation example and the 
effectiveness of the proposed design method is verified. 

 
 

Index Terms—communication system traffic control, delay 
systems, linear matrix inequalities, Markov processes, random 
variables  

I. INTRODUCTION 

With the fast growth and the wide usage of 
communication networks in recent years, large attention has 
been paid to the congestion control problem and active 
queue management (AQM) routers. Some of the most 
famous algorithms for the AQM goal are RED [1], PI [2] 
and adaptive PI [3]. For more AQM algorithms see [4-8]. 
Based on the measured queue length, q, at a congested 
router, the AQM algorithm computes a marking probability, 
p. Then the senders will be able to set their sending rates in 
order to achieve a desired queue level in the congested 
router. In [9], a dynamic model of TCP behavior in 
congestion avoidance mode is developed using fluid-flow 
and stochastic differential equation analysis. It is proved that 
this model accurately represents the dynamics of TCP. In 
[2], a simplified version of the model in [9] is used which 
ignores the TCP timeout mechanism. 

The network conditions are mainly described by the 
parameters traffic load, round-trip time and link capacity. 
These three parameters could affect the traffic behavior. 
Increase or decrease in the traffic load (or number of active 
TCP sessions) could change the queue size in the bottleneck 
link. Round trip delay could also affect the stability and 
performance of the TCP/AQM dynamical model. The 
amount of link capacity limits the bandwidth of the total 
packet processing, so the variations of the link capacity can 
influence on the instantaneous queue length. The network 
conditions are usually varying in different daytimes, 
different applications and different services; therefore, 

tolerating different network conditions whereas preserving 
the desired performance is the key property of high quality 
AQM algorithms. See For example [3, 10, 11 and 12].  

In addition to gently parameter changes, abrupt random 
changes in communication networks are not unusual cases. 
Such abrupt changes could move the equilibrium point in 
the linearized model, so the AQM methods which make use 
of the linearized model would show weak performances. 
The main idea of this paper is to stabilize the TCP/AQM 
systems with random network parameters. The parameters 
are modeled by a continuous-time finite state Markov 
process. Therefore, the TCP/AQM system can be 
represented as a delayed Markovian Jump System (MJS). 

Markovian jump systems are some kinds of hybrid 
systems with their discrete state varying as a continuous-
time finite state Markov process. These systems have been 
widely studied in the past years and many results on 
estimation and control problems, related to such systems, 
have been reported in the relevant literature (see for example 
[13-15]). The problem of Markovian jump systems with 
time delays is also considered in many researches in recent 
years. (See [16-23]). 

   To the knowledge of authors, the problem of TCP/AQM 
structure with Markovian changes in network parameters 
(such as link capacity, TCP load and round trip time) is not 
addressed in the literature. In this paper, a dynamic output 
controller is used to stabilize the Markovian jump 
TCP/AQM dynamics. By employing a Lyapunov-Krasovski 
functional, sufficient stochastic stability conditions are 
obtained in terms of LMIs. The controller gains are then 
synthesized from the LMIs. To prove the effectiveness of 
the approach, real TCP network conditions are simulated in 
two examples. It is shown that our approach could fix the 
queue length at a predefined value. 

The rest of the paper is organized as follows: Section 2 
describes the system model and some preliminaries about 
the Markovian jump system. Section 3 presents the main 
results on stability and dynamic output stabilization of the 
system, based on a LMI approach. The simulation example 
is given in Section 4 and finally Section 5 concludes the 
paper.  

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

In order to design controllers for the network congestion 
problem, TCP networks are simplified to a dumbbell 
topology shown in Figure 1. The network consists of N 
senders, a bottleneck router and a receiver. In this paper, like 
in [2], a simplified version of that model is used which 
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neglects the TCP timeout mechanism. This model relates the 
average value of network variables and is described by the 
following coupled nonlinear differential equations: 
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The linearized version of the TCP new Reno model is 

described by the following coupled delay differential 
equations with Markovian jump parameters:  
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in which W represents average TCP window size. q stands 
for the average queue length, R is round-trip time, C is the 
available capacity of congested link, N represents the load 
factor (number of TCP sessions) and p is the probability of 
packet marking. Also we have , 

 and  where 
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is the propagation delay. Note that we ignore the 

dependence of the time-delay argument on queue-length. It 
is mostly because the time for a packet to pass a bottleneck 
is negligible when compared with the propagation delay of 
the whole path of the packet. In other words, we take  

  0 tR r  p tT r .  

In (2), (3) ,  tr  is a continuous-time homogenous 
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Figure 1: Network Topology 

 
 
For the simplicity in notation, when necessary, we refer to 

the Markov process  by .  tr i

The round trip delay values  1,..., NR R are considered to 

be limited in the interval ,R R   .  

System (2) describes a linear model of a congested link 
under TCP Reno source side algorithm, in which, the 
equilibrium is considered to be a stochastic point. However 
the nonlinear model of (1) itself is obtained using fluid-flow 
and stochastic differential equation analysis [9]. In fact, (2) 
represent the behavior of the TCP/AQM system when 
additional statistic data as the Markov probability rates are 
provided. These rates can be calculated experimentally in 
the communication networks. 

System (2) could be represented as follows: 
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(6)

System (5) is a Markovian jump delay system with mode 
dependent state and input delays. Also the input is restricted 
to be between zero and one since it is a probability function 
for marking/dropping of the packets. 

N with transition probability 

matrix 
ij     given by: 

We take    y t q t as the output of the system. In 

AQM, the probability of packet marking is calculated based 
on this queue length. 

 

 68 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:30:38 (UTC) by 100.26.1.130. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 2, 2011 

Definition 1: The Markovian jump system 
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is stochastically stable for any initial state in a 
neighborhood of origin, if the following holds for any initial 
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III. MAIN RESULTS 

In this section, a delay-dependent stochastic stability 
condition for the closed loop system will be developed and 
the controller gains will be obtained. First we introduce the 
AQM dynamic output feedback controller which should 
stabilize the TCP/AQM structure. We assume the controller 
to be: 
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For the simplicity in solving LMIs we choose CiK to be 

known constant matrix. The matrices AiK and BiK will be 

computed from the LMI conditions. 
Assuming the above dynamic output controller and some 

basic calculations, the closed loop system can be obtained as 
follows: 
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The following lemma represents a stochastic stability 
criterion for the Markovian jump systems with mode-
dependent delays.  It is a generalized version of lemma 3 in 
[24] for the delay Markovian jump systems with mode 
dependent delays. 

 
Lemma 1: System (10)  is stochastically stable if there 
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Proof: Take the stochastic Lyapunov functional 
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then we have 
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which yields    0,V t i 
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The rest of the proof is straightforward using Dynkin’s 
formula and the stochastic stability theory. (See [24]).  

 
 
 
Now we are in the position to solve the stabilization 

problem of the TCP/AQM system with Markovian jump 
parameters. Based on Lemma 1, we can obtain a dynamic 
output feedback controller in the form of (9), However, (13) 
is not linear in terms of variables. Some techniques should 
be applied to (13) to convert it to LMI conditions.  The 
following theorem gives the results on the controller 
synthesis. 

 
Theorem1: Consider the TCP/AQM dynamics as a 

Markovian jump system in (10). The closed loop is 
stochastically stable if there exist symmetric and positive 
definite matrices and the matrices , , ,i iP Z Q Z 1iH  and 2iH  

( i ) such that S

0

0

ij j

j S

T T

i i i i i

i i

T

i i

Z Z

W Y Y R X

X Y

Y Z






     

 
 

 



 

(24)

where 

1

1

1 1

*

* *

   
     
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T T

i i i di i i
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i i di di di i

T

i i

G G G G G T

W W G G G T

T T

T

  

11

1
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0
i

i

i

T
T

T

 
  
 

  

and 

11 1

2

11

11

,
0

0

0

T T

i i i

i

i

T

di i

di T T

Ci i i

A T C H
G

H

A T
G

K B T

 
  
 
 

  
 

  

Also the controller gains that stabilize system (10)  in the 
stochastic sense are given by 

1

2 12

1 12

,T

Ai i i

T T

Bi i i

K H T

K H T




 (25)

Note that, as we said later, the matrix  is assumed to 

be a known constant matrix. 
CiK

Proof: The term T

i i i

TT A A T i  in (13) can be written as 

follows: 

1 1 1 2 3

2 2 3

3 3

*

* *

 

1

2

   
 
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    

    
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T

i i
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T T
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T

3i

 (26)

We take 1 2i iT T T  . The terms and 

 become: 

1

T

i iG A T  i

1

T

di di iG A T 

11 12

1

12

11

1

11

,
0

0

0

T T T

i i Bi iT

i i T

Ai i

T

di iT

di i T T

Ci i i

A T C K T
A T

K T

A T
A T

K B T

 
  
 
 

  
 




 (27)

and the proof is complete. 
 
 

Remark: The term 11

T T

Ci i iK B T  causes problem in computing 

the gain CiK from LMIs, since the variables and 11iT CiK are 

multiplied. In order to obtain a LMI condition, one can use 

an equality constraint like . Then, the multiple 

term 

11B T 11
ˆT

i i i iT B T

11
ˆT

Ci iK T

iB

 can be computed from the LMIs. In TCP 

dynamics, because of a zero element in , the equality does 

not have any solution. Although, a suitable transformation 
can be found to transform the system into a system with 
complete . Here, for the simplicity, we choose 

iB

CiK to be a 

known constant matrix. The matrices AiK and BiK will be 

computed from the LMI conditions. 

IV. SIMULATION RESULTS 

In this section, we evaluate the performance of the 
proposed hybrid dynamic output feedback algorithm 
(HDOF) by a number of simulations performed using 
MATLAB. The performance of HDOF is compared with PI 
[2] which is a well known AQM algorithm. A single 

 70 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:30:38 (UTC) by 100.26.1.130. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 2, 2011 

         71

bottlenecked router is considered running our AQM method. 
We choose the number of TCP sessions to 
be , also we select the other 

network parameters as follows: 
1 2 350, 70, 90  N N N

1 2 3

1 2 3

3500, 3700, 3900 s

100 , 200 , 300

  
  p p p

C C C packet

T ms T ms T ms  
(28)

First, the transition rates of the Markov process is chosen 
such that it reflects the slow network variations: 

6 6

6 6

6 6

3 10 2 10 10

2 10 4 10 2 10

6 10 4 10 10
slow

  
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   
       
   

6

6

5







5

5

5



 (29)

The desired queue length is selected to be 200 packets. By 
solving the LMIs in (24) the following controller gains is 
obtained:  

 
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





 
(30)

 
The TCP dynamics are assumed to be in the mode 1 at the 

beginning. The gains for PI controller are chosen to be  

 for the network 

parameters defined in mode 1. Figure 2 shows the mode 
variations and the queue length when using both AQM 
methods HDOF and PI. It is observed that the AQM method 
can effectively regulate the queue length in the desired 
value.  

51.822 10 , 1.816 10   p iK K

The performance of our approach in networks with 
average and fast jumps is shown in figures 3, 4. The chosen 
transition rates are as follows: 

5 5 5

5 5

6 6

4 5 5

4 4 4

5 5 4

2 10 10 10

3 10 7 10 4 10 ,

7 10 3 10 10

10 5 10 5 10

10 3 10 2 10 .
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  

  

  

  

  
       
    

   
      
    

 (31) 

Note that all of three assumed conditions could be 
realistic depending on the daytimes, the behavior of the 
network users and the current capacity and delay of the 
network. 

As seen in figures 3, 4, the dynamic output feedback 
controller, as an AQM method, could almost overcome the 

average and even hard network conditions; however, the 
queue adjustment is not very precise. It is mostly because 
the settling time is more than one mode duration time. In 
both methods, the queue stabilizes rapidly, but as we 
expected, the PI controller cannot overcome the abrupt 
changes in network parameters.  The performance of PI is 
even worse when the changes are more rapidly. Totally, it 
can be seen from Figure 2-4 that the queue is better adjusted 
using HDOF method.  

V. CONCLUSION 

In this paper, we have investigated the problem of 
designing a hybrid output feedback controller for a TCP 
congestion control problem modeled by a delay Markovian 
jump system. Based on Lyaponuv-Krasovski functionals, 
LMI-based sufficient conditions for the stochastic stability 
of the TCP/AQM were derived. A desired controller then 
was constructed by solving these LMIs. We simulated the 
networks dynamics using our AQM method and the well 
known PI method in different parameter change conditions. 
It was shown that different network conditions, the hybrid 
output feedback controller can effectively stabilize the 
queue length. Future work will consider the extension of the 
proposed approach from the model of a single bottleneck 
link to the case of multiple bottleneck links. 
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Figure 2: Mode variations and queue length for networks with infrequent 
parameter jumps 
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Figure 3: Mode variations and queue length for networks with average 
parameter jumps 
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Figure 4: Mode variations and queue length for networks with heavy 
parameter jumps 

REFERENCES 
[1] S. Floyd and V. Jocobson, “Random Early Detection gateways for 

congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 
1, no. 4, pp. 397-412, August 1993. doi:10.1109/90.251892 

[2] C. V. Hollot, V. Misra, D. Towsley and W. Gong, “Analysis and 
design of controllers for AQM routers supporting TCP flows,” IEEE 
Transactions on Automatic Control, vol. 47, no. 6, pp. 945-960, June 
2002. doi:10.1109/TAC.2002.1008360 

[3] H. Zhang, D. Towsley, C. V. Hollot and V. Misra, “A self-tuning 
structure for adaptation in TCP/AQM networks,” Performance 
Evaluation Review, vol. 32, pp. 302-307, 2003. 
doi:10.1145/885651.781068 

[4] S. Liu, T. Basar and R. Srikant, “Exponential-RED: A stabilizing 
AQM scheme for low- and high-speed TCP protocols,” IEEE/ACM 
Transactions on Networking, vol. 13, no. 5, pp. 1068-1082, Oct. 2005. 
doi:10.1109/TNET.2005.857110 

[5]  Y. Ariba, F. Gouaisbaut, and Y. Labit, “Feedback Control for Router 
Management and TCP/IP Network Stability,” IEEE Transactions on 
Network and Service Management, vol. 6, no. 4, pp. 255-267, Dec 
2009. doi:10.1109/TNSM.2009.04.090405 

[6] S. Athuraliya, S.Low and V. Li, Q. Yin, “REM: active queue 
management,” IEEE Network Mag., vol. 15, pp. 48–53, 2001. 
doi:10.1109/65.923940 

[7] F. Zheng and J. Nelson, “An H∞ approach to the controller design of 
AQM routers supporting TCP flows,” Automatica, vol. 45, pp. 757-
763, 2009. doi:10.1016/j.automatica.2008.10.014 

[8] S. M. Alavi and H. J. Hayes, “Robust active queue management 
design: A loop-shaping approach,” Computer Communications, vol. 
32, pp. 324-331, 2009. doi:10.1016/j.comcom.2008.11.004 

[9] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis of a 
network of AQM routers supporting TCP flows                
with an application to RED,” in Proc. ACM/SIGCOMM, 2000. 
doi:10.1016/j.comcom.2009.05.008 

              

[24] L. S. Hu, P. Shi and Y. Cao, “Delay-dependent filtering design for 
time-delay systems with Markovian jumping parameters,” Int. J. 
Adapt. Control Signal Process, vol. 21, pp. 434-448, 2007.  
doi:10.1002/acs.938 

[10] W. Chen and S. Yang, “The mechanism of adapting RED parameters 
to TCP traffic,” Computer Communications, vol. 32, pp. 1525-1530, 
2009. doi:10.1016/j.comcom.2009.05.008 

[11] Q. Chen and O. W. Yang, “Robust controller design for AQM router,” 
IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 938-945, 
May 2007. doi:10.1109/TAC.2007.895873 

[12] N. Xiong, Y. Pan, X. Jia, J. H. Park and Y. Li, “Design                    
and analysis of a self-tuning feedback controller for the Internet,” 
Computer Networks, vol. 53, pp. 1784-1797, 2009. 
doi:10.1016/j.comnet.2009.02.005 

[13] M. D. S. Aliyu, E. K. Boukas, “Robust H∞ control for Markovian 
jump nonlinear systems,” IMA Journal of Mathematical Control and 
Information, vol. 17, pp. 295–308, 2000. 
doi:10.1093/imamci/17.3.295 

[14] K. Benjelloun, E. K. Boukas and O. L. V. Costa, “H∞-control for 
linear time-delay systems with Markovian jumping parameters,” 
Journal of Optimization Theory and Applications, vol. 105, no. 1, pp. 
73–95. doi:10.1023/A:1004661928043 

[15] E. K. Boukas, “Stabilization of stochastic nonlinear hybrid systems,” 
International Journal of Innovative Computing, Information and 
Control, vol. 1, pp. 131-141, 2005. 

[16] P. Shi, E. K. Boukas, R. K. Agarwal, “Control of Markovian jump 
discrete-time systems with norm bounded uncertainty and unknown 
delays,” IEEE Trans. Automatic Control, vol. 44, no. 11, pp. 2139-
2144,1999. doi:10.1109/9.802932 

[17] Z. K. Liu, “Robust H∞ filtering for polytopic uncertain time-delay 
systems with Markov jumps,” Computers and Electronic 
Engineering, vol. 28, pp. 171-193, 2002. doi:10.1016/S0045-
7906(01)00058-1 

[18] X. Mao, “Exponential stability of stochastic delay interval systems 
with Markovian switching,” IEEE Trans. Automatic Control, vol. 47, 
pp. 1604-1612, 2002. doi:10.1109/TAC.2002.803529 

[19] J. Lam, H. Gao and C. Wang, “Stability analysis for continuous 
systems with two additive time-varying delay components,” Systems 
& Control Letters, vol. 56, no. 1, pp. 16-24, 2007. 
doi:10.1016/j.sysconle.2006.07.005 

[20] S. Xu, , J. Lam, and X. Mao, “ Delay-dependent H∞ control and 
filtering for uncertain Markovian jump systems with time-varying 
delays,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 9, 
pp. 2070-2077, 2007. doi:10.1109/TCSI.2007.904640 

[21] Z. Fei , H. Gao , P. Shi, “New results on stabilization of Markovian 
jump systems with time delay,” Automatica, vol.45, no. 10, pp. 2300-
2306, 2009. doi:10.1016/j.automatica.2009.06.020 

[22] H. Zhao, Q. Chen and S. Xu, “H∞ guaranteed cost control for 
uncertain Markovian jump systems with mode-dependent distributed 
delays and input delays,” J. Franklin Inst., vol. 346, pp. 945-957, 
2009. doi:10.1016/j.jfranklin.2009.05.007 

[23] J. Qiu, J. Chen, P. Shi and H. Yang, “New stochastic robust stability 
criteria for time-varying delay neutral system with Markovian jump 
parameters,” Int. J. Control, Automation and Systems, vol. 8, no. 2, 
pp. 418-424, 2010. doi:10.1007/s12555-010-0229-1 

 
 

 72 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:30:38 (UTC) by 100.26.1.130. Redistribution subject to AECE license or copyright.]


