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Abstract—In this paper, we present a method for designing 
orthogonal, Legendre type filters. Realization of these filters is 
very simple and they are very fast, robust and precise. They 
can be used for generating the sequence of Legendre 
orthogonal functions. We have also developed a new method 
for positioning an antenna system, based on these filters, where 
the filter is applied in detection of electromagnetic field 
gradient. Control algorithm is based on improved method of 
gradients. Proposed control algorithm has been verified on 
practically realized, experimental antenna system and 
compared with some others tracking control algorithms. 
Performed experiments have verified efficiency, speed and 
accuracy of the proposed control method.

Index Terms—Antenna System, Gradient Method, 
Orthogonal Function, Orthogonal Filter.

I. INTRODUCTION

Since the origins of antenna systems, used for receiving 
the signal from moving transmitters, control methods for 
antenna positioning have been developed. Transmitters can 
be various: ground (moving vehicles), air (airplanes, 
rockets), or satellites. Basic goal of these control systems is 
to turn the antenna in direction of transmitter, i.e., in 
direction of the strongest electromagnetic field. In order to 
realize this goal, different methods can be used: extremal, 
optimal, or adaptive control [1]-[3]. The most complex 
control of antenna systems [4] appears in the case of high-
speed moving transmitters with nonlinear trajectory. In the 
recent time, many authors suggested intelligent control 
methods.

No matter what control method is chosen, we need to 
resolve two basic problems: detection of the electromagnetic 
field gradient and target tracking based on certain algorithm
[5]. In practice, method of synchronous detection based on 
the sequence of trigonometric functions is often used for 
gradient determining. During gradient detection using 
trigonometric orthogonal functions (most commonly used 
for mobile antenna positioning) some disturbances may 
occur. In fact, it is known that antenna receivers work on the 
principle of resonance, caused by the signals detected in 
receiver circuits. Orthogonal trigonometric signals generated 
for gradient detection can cause unwanted and destructive 
resonances in receiver circuits, leading to malfunctioning in 
control systems for antenna positioning.

In this paper, we present a new method for gradient 
detection based on Legendre type orthogonal filters. 
Detection is continuous and very fast, due to filter 

realization in analog technique. Realization of target 
tracking algorithm is based on improved gradient method. 
Because of realization method, high operating speed and 
robustness of developed system, it is very suitable for 
embedded control systems in rockets, air navigation, and 
extremal control of rapid technological processes.

This paper is organized as follows. In Section 2 we 
shortly describe method for obtaining classical orthogonal 
rational functions by using a new transformation. Section 3
presents orthogonal, Legendre type filters, based on 
orthogonal rational functions. In Section 4 we propose a 
new control algorithm for positioning antenna system with 
practical realization and experimental verification given in 
Section 5.

II. ORTHOGONAL RATIONAL FUNCTIONS

The history of orthogonal polynomials is very old [6], [7]. 
Legendre polynomials and their orthogonal properties were 
established during eighteenth century. The applications of 
the classical orthogonal polynomials in technical fields as 
electrical network synthesis, electronics, telecommunication, 
signal processing theory, control system theory, and process 
identification are well known [8], [9]. Laplace transforms of 
the classical polynomials or their modifications are rational 
functions, which can be easily factorized. This property is 
very convenient in designing simple procedures for 
constructing signal generators, orthogonal filters or adaptive 
controllers.

First, consider a general approach to designing orthogonal 
functions and orthogonal filters. We consider the rational 

function      
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    . Let area (domain) 

Dp inside the complex plain s, bounded by contour Cp, 

contain all the poles of rational function  nW s . Similarly, 

area  Dz, bounded by contour Cz, contains all the zeros of 
rational function. The general analysis and results in the 
field of orthogonal rational functions are given in [10], [11]. 
Notice that all orthogonal rational functions have zeroes and 
poles in strictly defined correlations. Zeroes of the rational 
functions can be obtained by defined transformation of the 

poles using the determined relation  , 0F s s  , i.e.,  

 s f s . The rational functions sequences are orthogonal 

if the condition of symmetry of the above relation is fulfilled 
[10], [11]. Hence, for the rational functions, now we have:

Orthogonal Functions Applied in Antenna 
Positioning

Saša NIKOLIĆ, Dragan ANTIĆ, Bratislav DANKOVIĆ, Marko MILOJKOVIĆ, 
Zoran JOVANOVIĆ, Staniša PERIĆ

University of Niš, Faculty of Electronic Engineering, Department of Automatic Control
Aleksandra Medvedeva 14, 18000 Niš, Republic of Serbia

sasa.s.nikolic@elfak.ni.ac.rs, dragan.antic@elfak.ni.ac.rs, bratislav.dankovic@elfak.ni.ac.rs
marko.milojkovic@elfak.ni.ac.rs, zoran.jovanovic@elfak.ni.ac.rs, stanisa.peric@elfak.ni.ac.rs

1582-7445 © 2010 AECE

Digital Object Identifier 10.4316/AECE.2010.04006

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:52:59 (UTC) by 3.227.251.194. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 10, Number 4, 2010

36

 
  

 

1

1

1

n

i
i

n n

i
i

s f s

W s

s s















(1)

where si represent poles and  if s  corresponding zeroes of 

the function  nW s . By using transformation  f s , poles 

from domain Dp are being transformed into the zeroes 
located inside the domain Dz (Figure 1). Thereby, the 
necessary condition is: p zD D   . By using transform 

 s f s  and property of symmetry, according to (1):
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Note that  nW s  has poles equal to zeros of  nW s  and 

vice versa.

Figure 1. Mapping poles into zeroes using transformation f(s).

Now, let’s prove that the sequence of rational functions is 
orthogonal inside the complex plane s. Consider inner 
product:
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By applying the Cauchy theorem, we can obtain the 
following relation:

    0,     

0,     
p

n m
nC

for m n
W s W s ds

N for m n


   

� (4)

hence for m n , product of  nW s  and  mW s  contains no 

zeroes inside domain Dp. In the case m n , all poles in 
domain Dp (inside the contour Cp) are being eliminated in 
(4), so according to Cauchy theorem: 

    0
p

n m
C

W s W s ds � . For m n  all the poles are 

eliminated except one:     0
p

n m n
C

W s W s ds N � ,

where     2 Res
n

n n m
s s

N i W s W s ds


 .

Function  ,F s s  transforms the area inside the complex 

plane s, wherein the poles are located, into the different area, 
which contains the poles. Two basic cases of this
transformation are: 0s s  , i.e., s s  , and 1ss  , i.e., 

1
s

s
 . Transformations that are more general are also 

possible, whereby the only condition is for the function 

 ,F s s  to be symmetrical. For instance, transformation 

s s k  , gives all classical orthogonal functions: 
Legendre, Chebyshev, and Laguerre.

III. ORTHOGONAL FILTERS

Theory of classical orthogonal filters derived from 
classical orthogonal polynomials (Legendre, Chebyshev, 
Laguerre…) is well described in many publications [11]-
[14]. For designing these filters [12], [15]-[17] shifted 
Legendre polynomials can be used, which are orthogonal 
over interval (0, 1). On the other side, technical systems, 
which are designed using orthogonal polynomials, operate 
in the real time, so we need the corresponding 
approximation over interval (0, ∞). For example, by 

substituting tx e  into polynomials orthogonal over (0, 1), 
we obtain the exponential polynomials orthogonal over 
interval (0, ∞). Then, after applying the Laplace transform to 
the exponential orthogonal polynomials, orthogonal rational 
functions can be obtained.

In our case, consider the orthogonal, shifted, Legendre 
polynomials orthogonal over interval (0, 1), in their explicit 
form [16]-[18]:
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So, the first few members of the Legendre type orthogonal 
polynomials sequence are the following:
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After applying the substitution tx e  into (5) and 
Laplace transform, the following rational function can be 
obtained:

   t
n nP e W s   L (6)

where:
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Note that by applying transformation s s   to (2) we 
obtain relation (7), suitable for designing orthogonal 
Legendre type filters, given in Figure 2.

Labels in the figure have the following meaning: ( )h t

represent the step input signal and functions  i t  are
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Figure 2. Legendre type orthogonal filter.

Figure 3. Practical realization of Legendre type orthogonal filter.

Figure 4. Legendre orthogonal filter, printed circuit board.

inverse Laplace transforms of the functions  i s . 

Functions sequence  i t  represents the series of Legendre 

exponential functions orthogonal over interval (0, ∞) with 

the weight   tw t e .

So, the functions:
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are orthogonal over (0, ∞), i.e.,
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with the first few members of the series:

 
 
 
 

0

1

2
2

3 2
3

1,

2 1,

6 6 1,

20 30 12 1,

t

t t

t t t

t

t e

t e e

t e e e











 

  



 

  

    

Obtained filter scheme given in Figure 2 is very simple and 
suitable for practical realization. We have designed, in our 
Laboratory for modeling, simulation, and systems control, 
printed circuit board for developed filter. Orthogonal 
Legendre type filter has the practical realization shown in 
Figure 3. This particular filter, developed for further 
experiments, consists of four sections with printed circuit 
board given in Figure 4. Signals recorded on realized 
orthogonal filter are presented in Figure 5.
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Figure 5. Signals recorded on realized orthogonal filter.

IV. CONTROL ALGORITHM – GRADIENT
DETECTION BASED ON ORTHOGONAL FILTERS

Proposed control algorithm for antenna system 
positioning consists of two parts: gradient detection and 
movement organization toward extremum [2], [3], [19].

Block diagram of gradient detection system with 

orthogonal signals      1 2, , , nt t t    is shown in 

Figure 6. These signals are exponential [17] and in this 
paper, they have been used for gradient detection. In order 
to effectively use the detection algorithm, it is necessary that 
these signals are continuously generated with a certain 
period of repetition (T). This period represents the time 

needed for signals  i t  to reach stationary state i.e. a 

constant value (see Figure 5). Inputs signals are labeled with 
0 0 0
1 2, , , ny y y . Orthogonal components  i iA t  obtained 

from filter in Figure 4 are being added to the inputs signals:
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Output signal from antenna system is a complex nonlinear 
function (in this case convex) of paraboloid type. This signal 
is led into gradient detector. Detector consists of n branches 
(the number of branches is equal to the number of input 
coordinates). Each branch consists of multipliers for field 

magnitude signal  1 2, , , nF y y y  and corresponding 

orthogonal signals  i t . Obtained product then goes to the 

mean square element, which calculates the following 
relation:

         1 2
0

, ,...,
T

n i iF y y y t w t F t w t dt   (12)

where   tw t e represent the weight function.

After developing (12) into series and by substituting: 

 i i iA t y   , we obtain:

 

 

 
0

1 2

1 2 1 2
0

1 2

1 2 1 2
0

1 2

0 0 0
1 1 2 2

0 0 0
1 2

1

2

, ,

, , ,

, , ,

, , ,

1

2!

1

!

j j

j j

k
j j

n

n n

n

n j
j j y y

j j
j j j j y y

k

j j jk
j j j j j jk y y

F y y y

F y y y y y y

F
F y y y y

y

F
y y

y y

F
y y y

n y y y

 







       


   




   

 


   

  
















 


(13)

It should be noticed that for the function F gradient, the 
following relation is valid:

 1 2
1

, , ,
n

n i
i i

F
gradF y y y i

y







 (14)

where ii


 represent unitary vector.

Equation (13) enables determining of gradient 
components / iF y   based on orthogonal filters, which will 

be necessary for the realization of the gradient control 
algorithm.

After multiplying (13) with  n t  and applying the 

property of orthogonality for functions  i t , we have:
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where:

     
0

T

n n n nk A t t w t dt   (16)

and [6]:

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:52:59 (UTC) by 3.227.251.194. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 10, Number 4, 2010

  39

Figure 6. Gradient detection system.
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Now we denote function F gradient with G: 
( G gradF ), and normalized value of G with:

0
2

n
i i

j

i i

F
i

y

G
F

y




 
 
  







G
G (18)

In this paper, target tracking in based on gradient method 
[2], [3], [19] and the following relation:

      01 - jj j h j  G  (19)

where h(j) represents the weight function. h(j) can be either 
constant or variable. Constant step is used when we want
faster movements but with the disadvantage of oscillations 
appearing over extremes, near the movement ends. For the 
cases when we need more precise and accurate control of 
the antenna, we can use variable step, which decreases with 
reaching the extremes. In our case, there are two 
components of gradient:
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1 -
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a a a j

e e e j

j j h j G

j j h j G

 

 

 

 
(20)

where θa and θe represent azimuth and elevation angle, 
respectively.

V. EXPERIMENTAL RESULTS

Antenna system, as a controlled object, operates with two 
coordinates: azimuth angle θa and elevation angle θe. Values 
of these two coordinates completely determine antenna 
direction toward source of radiation. Magnitude of the 

radiation source field  ,a eF    depends on angles θa and 

θe. In the case of two coordinates, orthogonal Legendre filter 
has the configuration given in Figure 3 with two sections.

In this case, functions  1 t  and  2 t  in Figure 2 are 

mutually orthogonal with weight function te . According to 

(14), gradient is:   1 2,a e
a e

F F
gradF i i 

 
 

 
 

 
. Block 

diagram of the antenna system is shown in Figure 7 and the 
experimental system, developed in our laboratory is given in 
Figure 8.

Angles θa and θe are adjusted via two step motors M1 and 
M2 (motors are 86BYG-NEMA34 and ROB-09238 with the 
following characteristics: step angle – 1.2 deg; steps per 
revolution – 300; angular accuracy – ±3%; phases – 2; 
operating temperature – -20 to 40 °C; rated voltage – 12V; 
rated current – 0.33A; holding torque – 2.3 kg*cm). It 
should be noticed that with these motors [20], the number of 
steps is proportional to the control voltages. Components of 
electromagnetic field gradient are detected using 
synchronous detector (see Figure 6). Each motor is 
controlled by appropriate output from gradient detector 

( 1
a

F
k





, 2
e

F
k





). In order to control real object, these 

signals are amplified (K in Figure 7) and then led to the 
reductors for adjustment of angles θa and θe. Motors M1 and 
M2 are controlled separately, but complete system turns 
toward maximum field change i.e., in direction of 
electromagnetic field gradient. Described control algorithm 
operates until maximum field magnitude is reached and 
antenna is turned toward radiation source. Proposed method 
enables optimal tracking of moving sources and can be also 
used with mounted antennas on vehicles.

Figure 9 shows antenna movement trajectory in  ,a e 
plane (in degrees) toward field maximum (Fmax) from 
arbitrary starting antenna position (x0) and illustrates the 
main aspects of the proposed control. Figure 9 also shows 
two equidistant lines with equal field magnitudes and some 
labeled points for a better explanation of the control method 
described earlier.

In order to verify our control method, we have performed
three experiments with different controllers and done 
comparative analysis. The goal was for antenna to track the 
field maximum as accurate as possible. In these
experiments, we have used a simple light source (100W 
lamp) and photo sensor, but the method is the same for any 
other field source. Experimental test source trajectory in 

 ,a e   plane is given in Figure 10 for duration of 20 

seconds. We can more easily follow the results if we 
decompose movement trajectory into separate components 
for azimuth and elevation in time domain as shown in 
Figures 11 and 12. During experiments, antenna system was 
positioned on the table, so the elevation angle is limited 
from 0 to 90 degrees and azimuth angle takes values for full 
circle.
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Figure 7. Block diagram of antenna system.

Figure 8. Antenna system, laboratory setup.

Figure 9. Antenna movement trajectory.
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 a




e

Figure 10. Trajectory of the field maximum (Fmax).


 

a

Figure 11. Azimuth component in time domain.


 

e

Figure 12. Elevation component in time domain.

In our experiments, we have employed three different 
controllers: PID controller, fuzzy controller and orthogonal 
controller described in this paper. Controllers were designed 
and adjusted experimentally without knowing the transfer 
function of the controlled object (the antenna). PID 
controller was adjusted using Ziegler-Nichols method and 
fuzzy controller was PD like with error and error difference 
as inputs and motors step commands as outputs.
Experimental results for antenna tracking in all three cases 
are given in Figures 13 and 14. We can see from the figures 
that our control method has the best tracking results. Fuzzy 
controller is much slower and PID controller causes 
overshoots during the rapid changes of target position. We 
can calculate performance indexes as mean squared errors 
using the relation:

Figure 13. Azimuth tracking results for different controllers employed.

Figure 14. Elevation tracking results for different controllers employed.

   2 2

0 0

1 1 1

2

T T

ta aa te aeJ y y dt y y dt
T T

 
     

 
  (21)

where T represents experiment duration (T=20s), yta and yte

azimuth and elevation components of target (field 
maximum) positions, yaa and yae azimuth and elevation 
components of antenna position for different controllers
applied. Calculated performances for orthogonal, PID and 
fuzzy controllers are Jort=8.491, Jpid=17.432, and 
Jfuz=37.833.

VI. CONCLUSION

In this paper, we have proposed a new method for antenna 
system control, suitable for moving target tracking, based on 
orthogonal filters. Advantage of this approach is in 
application of new class of orthogonal filters based on 
Legendre functions for easy determining electromagnetic 
field magnitude gradient. Realization of these filters is very 
simple and they are very fast, robust and precise. They are 
also very convenient for application of gradient methods in 
optimization and adaptation problems because of their 
feature to speed up existing (classical) control algorithms. 
Based on proposed methodology, we have practically 
realized all the necessary components and the antenna 
system as a whole. Laboratory experiments and comparative 
study have validated our method for antenna system control
in terms of efficiency, speed, and tracking accuracy.
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