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Abstract—Nonlinear characteristics of wind turbines and 
electric generators necessitate complicated and nonlinear 
control of grid connected Wind Energy Conversion Systems 
(WECS). This paper proposes a modified self-tuning PID 
control strategy, using reinforcement learning for WECS 
control. The controller employs Actor-Critic learning in order 
to tune PID parameters adaptively. These Actor-Critic 
learning is a special kind of reinforcement learning that uses a 
single wavelet neural network to approximate the policy 
function of the Actor and the value function of the Critic 
simultaneously. These controllers are used to control a typical 
WECS in noiseless and noisy condition and results are 
compared with an adaptive Radial Basis Function (RBF) PID 
control based on reinforcement learning and conventional PID 
control. Practical emulated results prove the capability and the 
robustness of the suggested controller versus the other PID 
controllers to control of the WECS. The ability of presented 
controller is tested by experimental setup.

  
Index Terms—Control, Reinforcement, Neural Network, 

Wavelet, Wind Energy

I. INTRODUCTION

A nonlinear control strategy is required to set the system 
in its optimal operation point regarding to nonlinearity and 
complexity in dynamics of Wind Energy Conversion 
Systems (WECS). In spite of many improvements in 
designing Classic and Heuristic nonlinear control for 
WECS, the PID controller is still widely used for real 
applications due to its simplicity in implementation and 
fine-tuning. The main target of designing this controller is to 
determine three parameters of the PID controller, i.e. 
proportional gain Pk , integral gain ik , and derivative gain dk . 

One of the most well known methods for tuning of these 
gains is Ziegler–Nichols method [1]. Other methods are PID 
self-tuning methods based on the relay feedback technique 
[2]. However, such tuning methods are suitable for linear 
systems with time delays and they cannot be used for a 
WECS since it has complex and nonlinear dynamics. 
WECS, as a highly nonlinear system, requires a nonlinear 
control strategy to set the system in its optimal operation 
point. Thus, in previous works, different methods were 
introduced based on classic methods and intelligent methods 
to control of the WECS. Different intelligent approaches 
have successfully been applied to identify and nonlinearly 
control the WECS and other plants. For instance, Many 
authors [3,4,5] surveyed fuzzy logic control, neural network 
control, expert system control and synthesis intelligent 

control methods that is used in the stability, speed control 
system and maximum-power transfer of WECS. Self-tuning 
adaptive control approaches are interesting alternatives to 
control the WECS nonlinear dynamic systems. 
Developments in the self-tuning adaptive controller design 
have proved to be useful for a wide class of practical 
situations [6]. Mayosky and Cancelo [7] used this idea to 
control the WECS. They proposed a neural-network-based 
structure consisting of two combined control actions— an 
RBF (Radial Basis Function) and a supervisory control 
network-based self-tuning adaptive controller. Sedighizadeh 
et al. [8 -10] used the idea of Self-tuning control of 
nonlinear systems using neural network adaptive frame 
wavelets to identify and control the WECS. They suggested 
an adaptive PI and PID controller using Rational function 
with Second-order Poles (RASP1) wavelets for Wind 
turbine control. Sedighizadeh et al. [11] also suggested an 
adaptive controller using Morlet wavelets frames neural 
network for identification and control of WECS. After that, 
Sedighizadeh  et al [12]used the adaptive Radial Basis 
Function (RBF) PID controller based on reinforcement 
learning presented by WANG Xue-song et al. [13] to control 
the WECS. Also Sedighizadeh et al suggested an adaptive 
PID control based on lyapunov to control the WECS in [14].  

In this paper, firstly, the adaptive PID controller based on 
reinforcement learning presented in [12] is modified, in 
which the RBF neural network is exchanged by wavelet 
neural network. Next, the robustness of the proposed 
adaptive PID controllers is evaluated by adding of noise to 
parameters of the WECS model. After that, the results are 
compared with two other controllers. The first one is the 
controller that is proposed in [12] and the other one is 
conventional PID controller. Finally, the capability of 
proposed controller is evaluated using experimental setup.    

The mechanism used by reinforcement learning is not 
similar to supervised learning methods, such as neural 
network. Indeed, it is an unsupervised on-line learning, 
which utilizes a trial and error mechanism existing in 
animals and humans. Initially, a reinforcement-learning 
agent utilizes the environment in an active manner and 
afterward, it assesses the utilization results to enhance the 
controller [13, 15]. One of the most significant 
reinforcement learning methods is Actor-Critic learning 
presented by Barto et al., which simultaneously proposes a 
working method to obtain the optimal action and the 
expected value [16]. 
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According to this analysis, in this paper, a new wavelet 
adaptive PID controller, based on reinforcement learning is 
presented to control the WECS. The Actor-Critic learning 
method tunes the PID gains adaptively and in an on-line 
manner. The paper results expose the efficiency and 
robustness of the new method against other adaptive
controllers introduced in this paper to control the WECS.

Details of the Wind Energy Conversion System employed 
in this simulation are presented in the next section. The 
adaptive network algorithmic implementation and the 
controller design steps are described in third Section. Then, 
in section (4), simulation and practical results are presented 
and finally, there are conclusions in fifth section. 

II. WIND ENERGY CONVERSION SYSTEMS

In this paper, the most common type of wind turbines, i.e. 
the horizontal-axis type is considered.

The output mechanical power available from a wind 
turbine is [7]:

AVCP p
3)(5.0  (1)

Where, ρ is the air density ]/[ 3mkg  , A is the area swept 

by the blades ][ 2m , and V is the wind speed ]/[ sm . Power 

coefficient, pC  is given as a nonlinear function of the 

parameter wVR /  , where R  is the radius of the 

turbine ][m  and   is the rotational speed sec]/[rad of 

turbine. PC is approximated as 32  cbaCP  , where 

b,a and c are constructive parameters for a specified 
turbine. 

It should be pointed that the maximum value 
for PC or maxPC , is constant for a specified turbine [7]. This 

value, when replaced in (1), gives the maximum output 
power for a specific wind speed. This corresponds to an 
optimal relationship ( opt ) between   and V . The torque 

developed by the wind turbine is:

22)(5.0 RV
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Figure 1 shows the Torque/Speed curves of a typical wind 
turbine, with V as a parameter. Note that the maximum 

generated power points ( maxPC ) do not coincide with 

maximum developed torque points. Optimal performance is 
achieved when the turbine operates at the maxPC  condition. 

This will be the control objective in this paper.

Figure 1. Torque versus Speed curves (solid) of a typical wind turbine. The 
curve of maxPC  is also plotted (dotted).

In this study, the Double Fed Induction Generator (DFIG) 
is considered. In this generator, slip power is injected to the 
AC line using a combination of rectifier and inverter, known 
as a static Kramer drive. Changes on the firing angle ( ) of 
the inverter can control the operation point of the generator 
in order to develop a resistant torque. This resistant torque 
places the turbine in its optimum (maximum generation) 
point. The torque developed by the generator-Kramer drive 
combination is [7]:

))cos(,( fTg  (3)

The dominant dynamics of the whole turbine and 
generator combination system are those related to the total 
moment of inertia. Thus, ignoring torsion in the shaft, 
generator’s electric dynamics, and other higher order effects, 
the approximate dynamic model of the system is:

[ ( , ) ( , )]l gJ T V T      (4)

where J is the total moment of inertia. Regarding (2) and 
(3), the model of the system is a highly nonlinear model. 
Moreover, the certain generator parameters are strongly 
dependent on factors such as temperature and aging. Hence, 
a nonlinear adaptive control strategy seems very attractive 
and its objective is to place the turbine in its maximum 
generation point ( maxCp ), i.e. loptopt T, , despite wind gusts 

and changes in the generator parameters. The general form 

of (4) is ),(  h , where h  is a nonlinear function 
accounting for the turbine and generator characteristics. The 
system is usually designed so that the maximum turbine 
torque corresponds to 50% to 70% of the peak generator 
torque. Thus, in this region a simple linearization of the 
generator expression can be made. Then, the resulting 
expression after linearization of the generator characteristics 
for the whole system is [7]:

)cos()(  bf  (5)

Here, f is a nonlinear function of turbine speed and b is a 
constant.

III. ADAPTIVE PID CONTROLLER BASED ON 

REINFORCEMENT LEARNING

This controller comprise of two parts: controller 
architecture and Actor-Critic Learning, which is modified 
by exchanging of RBF neural network with Wavelet neural 
network. So these parts are described as follows:

A.  Controller architecture 

Fig. 2 illustrates the architecture of an adaptive wavelet 
PID controller based on Actor-Critic learning [12, 13]. The 
basis of this structure is the idea of incremental PID 
controller described by Eq. (6).
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where )(te , )(te and )(2 te   represent the system output 
error, the first-order difference of error, and the second-
order difference of error, respectively; and 

)](),(),([)( tktktktK DPI is a vector of PID parameters.
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Figure 2. Self-adaptive PID controller based on reinforcement learning.

In Fig.2, the desired and the actual system outputs are 
presented by )(tyd and )(ty , respectively. The difference 

between the desired and the actual output, called system 
error )(te , is imported to the state converter. This converter 

converts the system error to the system state vector )(tx , 

which is used by the Actor-Critic learning part. Actor-Critic 
learning structure has three inherent parts. These parts are an 
Actor, a Critic, and a Stochastic Action Modifier (SAM). 
The Actor estimates the policy function and maps the 
current system state vector to the recommended PID 
parameters )](),(),([)( tktktktK DPI  . The proposed PID 

parameters, )(tK  , and the estimated signal from the 

Critic, )(tV , are imported to SAM; and the SAM provides 

stochastically the actual PID parameters )(tK  according to 

mentioned inputs. The system state vector and an external 
reinforcement signal from the environment, )(tr , (i.e., 

immediate reward) are received by Critic, which generates a 
TD error )(tTD  (i.e., internal reinforcement signal) and an 

estimated value function )(tV . )(tTD is an essential basis to 

update the parameters of the Actor and the Critic. The signal 
)(tV is used by SAM to modify the output of the Actor.

In the course of designing the external reinforcement 
signal )(tr , the impact of the system error and the change 

rate of the error on control performance should be 
considered simultaneously. Hence, the external 
reinforcement signal )(tr is interpreted as [12, 13]:

)()()( trtrtr ece   (8)

where  and  are weighted coefficients;
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and  is a tolerant error band.

B. Actor-Critic learning based on Wavelet network

The wavelet network employed by the proposed 
controller is a kind of multi-layer feedforward neural 
network similar to RBF network. Indeed, the structure of 
this wavelet network is like the RBF network, but the Morlet 
wavelet function is used in hidden layer instead of Gaussian 
function. The concept of wavelet network introduces a 

super-wavelet—a wavelet which is a combination of 
daughter wavelets. Daughter wavelets are simply a dilated 
and translated version of the original wavelet or mother 
wavelet. The super-wavelet allows the shape of the wavelet 
to adapt to a particular problem—a concept that goes 
beyond adapting the parameters of a fixed shape wavelet. 
This network has shown good results in controlling 
nonlinear systems [14]. The wavelet network is a local 
network in which the output function is well localized in 
both time and frequency domains. It absorbs advantages 
such as the multi-resolution of wavelets and the learning of 
neural network and it can guarantee the good convergence to 
control nonlinear complex systems [17].

Regarding to the fact that Actor and Critic have the same 
inputs, the state vector is derived from the environment and 
just there is a small difference in their outputs. Hence, only 
one wavelet neural network, as shown in Fig. 3, is used to 
model the policy function learning of the Actor and the 
value function learning of the Critic simultaneously. Thus, 
the Actor and Critic use common inputs and hidden layers 
of the wavelet network. This structure causes the reduction 
in the demand for storage space and avoids repeated 
computation for the outputs of the hidden units; and as a 
result, it enhances the learning efficiency [12,13].

This network has three layers: Layer1, layer2, and layer3, 
so called input layer, hidden layer and output layer, 
respectively. The number of nodes (units) in input layer is 
equal to the number of inputs. The input vector or system 
state vector is defined as:

)](),(),([]3,2,1[)( 2 teteteixtx i  (10)

where i is an input variable index . Thus, the number of 
nodes in the input layer is three.
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Figure 3. Actor-Critic learning based on wavelet network [13].

The input vector is directly delivered to the hidden layer. 
In the hidden layer, the Morlet wavelet function is utilized 
as activation function of the hidden unit of network. The 
output of the j th hidden unit is:

hjt
n

i

ijijj ,...,1)()(
1

 




(11)

where,

)5.0exp(cos)( 2
0 ijijijij  
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ij a

btx 


)(


(12)

)(x , which is localized in both time and frequency 
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domains, is called a Morlet wavelet; and the parameters 

ija and ijb  are named dilation and translation parameters, 

respectively. o is the wavelet frequency, h  is the number 

of hidden units, and n is number of inputs. The output layer 
has two parts: an Actor part and a Critic part. The m th

output of the Actor part, )(tK m , and the value function of 

the Critic part, )(tV ,are computed as:





h

j
jmjm mttwtK

1

3,2,1),()()(

(13)





h

j
jj ttvtV

1

)()()( (14)

where mjw represents the weight between the j th hidden 

unit and the m th Actor unit, and jv indicates the weight 

between the j th hidden unit and the single Critic unit. In 

this structure, the number of output nodes is four. 
According to [12, 13], the output of the Actor part is not 

used by PID controller directly. Therefore, a Gaussian noise 
term k is added to the suggested PID parameters, )(tK  , 

which are exported by the Actor. The actual PID 
parameters, )(tK , are denoted as Eq. (13). In this equation, 

the magnitude of the Gaussian noise is not constant and it 
depends on the estimated value function )(tV . This 

dependency is described as Eq. (15) and (16).

))(,0()()( tTKtK Vk  (15)

where

))(2exp(1

1
)(

tV
tV 
 (16)

Ii is clear, the important property of Actor-Critic learning is 
that the policy function is learned by the Actor, and the 
value function is learned by the Critic using the TD method 
simultaneously [16]. The temporal difference of the value 
function among consecutive states in the state transition 
forms the TD error )(tTD as follows:

)()1()()( tVtVtrtTD   (17)

Where )(tr  is the external reinforcement reward signal; 

and  , which its value is between zero and one, indicates the 
dependency rate of TD error to the future rewards. The TD 
error dictates decency of the actual action. Hence, the 
performance index function of system learning should be 
expressed as follows.

)(
2

1
)( 2 ttE TD (18)

With using the TD error performance index, the gradient 
descent method, and a chain rule, the weights of Actor and 
Critic are updated according to the following equations:
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)()()()1( tttvtv jTDCjj  
(20)

where A and C are learning rates of Actor and Critic, 

respectively.
Since the Actor and the Critic employ the same inputs and 

the same hidden layers of wavelet network, the translations 
and the dilations of hidden units are updated once according 
to the following equations:
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In equation (21) to (23), b and a are learning rates of 

translation and dilation respectively. 
Regarding to the notes described in this section, the 

overall block diagram of proposed controller can be derived 
as Fig. 4, which illustrates the whole design steps of 
presented adaptive PID controller.

IV. SIMULATION RESULTS

Fig. 4 depicts the block diagram of the adaptive PID 
Controller based on Reinforcement Learning for WECS 
control while the dynamic of the WECS is described by Eq. 
(5). The data of simulated WECS is listed as table 1 in the 
appendix. For this case study, the desired signal )(tyd is 

optimal rotor speed opt ; the actual output )(ty is rotor 

speed ; and the control signal )(tu is firing angle of 

inverter ( ). The optimum shaft rotational speed, opt , is 

obtained for each wind speed V  and is used as a reference 

for the closed loop. Note that the wind speed also acts as a 
perturbation on the turbine’s model. The proposed adaptive 
PID controller and the other controllers are used to track the 
optimal rotor speed signal. Sampling period is sTs 0015.0
during the simulation process. PID parameters of the 
conventional PID controller are set off-line as 15.0Pk ,

55.0Ik and 005.0Dk using the Ziegler-Nichols tuning 

rule. The corresponding parameters for the proposed 
adaptive PID controller are set as: 67.0 , 47.0 , 

014.0 , 92.0 , 017.0A , 014.0C ,

0320.a  ,  0180.b  and 6h  . To create of a base 

line for comparison, the parameters of adaptive PID 
controller based on RBF network presented in [12] is 
adjusted similar to proposed controller. Detailed simulation 
results are illustrated in the following figures. Comparing 
the results in Figures 5 , it can be noticed that the WECS 
output (i.e., the rotor speed) tracks the desired output more 
precisely when using the proposed controller and RBF based 
controller than using the conventional PID controller. Fig 6
shows the firing angle of inverter (input) responses for the 
presented and conventional controllers. Regarding to figure
6, it is clear that when the new controller is employed, 
computational efforts are less than the case when the 
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conventional controller is utilized; and this new controller is 
more convenient for hardware and software 
implementations. The system error is shown in Fig. 7. This 
figure reconfirms the capability of the new controller versus 
the conventional PID controller in controlling the WECS. 

whether the
control process is 

finished or not

Initializing  parameters of Actor-Critic learning controller 

Detecting the actual system output y(t) and calculating the 
system error e(t)

Receiving an immediate reward r(t) from Eq.9

Calculating the Actor output K’(t)and the Critic value function 
V(t) from Eq.11 and Eq.12 at time t respectively

Calculating the actual PID parameters K(t) from Eq.13 and 
calculating the control output of PID controller u(t) from Eq.8

Applying u(t) to the controlled plant and observing the
 system output y(t+1) and the immediate reward r(t+1) 

at the next sampling time  

Calculating the Actor output K’(t+1)and the Critic value 
function V(t+1) from Eq.13 and Eq.14 at time respectively

Calculating the TD error from Eq.17

Updating the weights of the Actor and the Critic from Eq.19 and 
Eq.20 respectively

Updating the dilations and the translations of wavelet kernel 
functions according to Eq.21 and Eq.23 respectively

Stop

Yes

Not t+1

Figure 4. Overall Controller block diagram.

In order to analyze the robustness of the new controller, 
we suppose that the rotor resistance, rR , is contaminated by 

a Gaussian white noise with the mean value equal to zero 
and the variance equal to 0.01. Figures 8 to 10 show the 
results related to the noisy condition. In this condition, while 
the proposed controller follows the reference output fairly, 
but the conventional PID cannot capture it. In following 
figures, it is seen the proposed controller and RBF based 
controller have similar results to track of desired signal.     

The simulation results indicate that the proposed adaptive 
PID controller exhibits perfect control performance and 
adapts to the parameters changes of the WECS. Therefore, it 
has the characteristics of being strongly robust and 
adaptable.
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Figure 8. Rotor speed response (with noise in parameter). (1- Reference 
signal 2- proposed controller 3- RBF based controller 4- conventional PID)
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Figure 9. Firing angle of inverter response. Up: proposed and RBF based 
PID, down: conventional PID (with noise in parameter).
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Figure 10. System error, Up: proposed and RBF based PID controller, 
Down: conventional PID (with noise in parameter).

V. EXPERIMENTAL SETUP

As maintained earlier the performance of the simulated 
results of proposed control, is proved by the aim of an 
experimental setup. The schematic of the system is depicted 
in figure 11.

A DC brushed motor is considered to emulate the wind 
turbine that acts as the prime mover for the double fed 
induction generator. The DC driver is used as power 
amplifier for DC motor. To implement the emulation, the 
detailed model of WECS that has been defined in this paper 

is implemented in the host PC using C++. Then for each 
wind speed with considering of previous firing angle of 
static Kramer drive, the rotational speed of DC motor is 
determined in each sampling time. The driving DC motor 
forces the double fed induction generator rotational speed to 
this value. With this emulation technique, the generator 
rotates at the same speed as that of a generator driven by a 
real wind turbine.  After that, the optimum rotational speed 
to achieve maximum output power is calculated using host 
PC for each wind speed and it is sent to FPGA-based 
external hardware as a reference for controller. The 
proposed controller is emulated in this FPGA-based 
hardware, which generates desired firing angle static 
Kramer Drive until rotational speed of WECS is moved 
toward optimal speed. The experimental prototype is rated at 
about 3.5 kW.   The experimental rig is shown in fig 11. 

m

3 AC


P
Q

Figure 11. The experimental Setup.

The control box is FPGA (Xilinx Spartan 
XC2S100PQ208) based and designed to negotiate with 
windows XP based software by USB2 port via FT245. The 
FPGA based controller and overall setup is shown in fig 12.  
Fig 13 shows the performance of the proposed controller 
when the wind profile of fig. 5 is used in the wind turbine 
emulator.

(a) FPGA based Controller

(b) Overall setup

Figure 12. experimental emulator setup.
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Figure 13. Experimental results using a wind turbine emulator 1- reference 
signal 2- response of proposed controller.

VI. CONCLUSIONS

 In his paper, the simulation results denote that the 
proposed adaptive PID controller can be a suitable candidate 
for controlling the WECS. It is robust for system 
disturbances and it shows better results in comparison with a 
conventional PID controller. 

The wavelet function utilization in the hidden layer of the 
neural network, can guarantee the good convergence of the 
neural net system. Also sharing the input and the hidden 
layers of wavelet network by the Actor and Critic can 
reduce the demand for storage space and can avoid repeated 
calculations. Regarding to the described subjects, the 
proposed PID controller can be a convenient alternative to 
be used in industrial applications.
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APPENDIX

TABLE. 1 THE DATA OF SIMULATED WECS [7]

Turbine

Parameters Value Units
 1.204 22 m/Ns
R 0.95 m
J 0.312 rad/Nm2

a -0.10453
b 0.07693
c -0.01046

Generator
Parameters Value Units

fR 0.1 

sR 0.2 

rR 0.2 

lsL 0.9e-3 h

lrL 0.4e-3 h

1n 1

2n 1
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