
Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 87

Abstract—This paper presents a new approach with cellular
multigrid genetic algorithms for the "I"-shaped and "U"-
shaped assembly line balancing problems, including parallel
workstations and compatibility constraints. First, a cellular
hybrid genetic algorithm that uses a single grid is described.
Appropriate operators for mutation, hypermutation, and
crossover and two devoration techniques are proposed for
creating and maintaining groups based on similarity. This
monogrid algorithm is extended for handling many
populations placed on different grids. In the multigrid version,
the population of each grid is organized in clusters using the
positional information of the chromosomes. A similarity
preserving communication protocol between the clusters
placed on different grids is introduced. The experimental
evaluation shows that the multigrid cellular genetic algorithm
with communicating grids is better than the hybrid genetic
algorithm used for building it, whereas it dominates the
monogrid version in all cases. Absolute performance is
evaluated using classical benchmarks. The role of certain
components of the cellular algorithm is explained and the effect
of some parameters is evaluated.

Index Terms—cellular genetic algorithms, communicating
grids, I/U-shaped assembly lines, parallel workstations, and
task compatibility constraints.

I. INTRODUCTION

Genetic algorithms (GA) have demonstrated many
advantages both for the algorithm designer and the
beneficiary of the final results. They can be easily adapted to
the required task and can be combined with other
optimization techniques leading to hybrid methods. They
easily imitate the human operating ways and incorporate
them into specific operators. GA can be combined with
machine learning concepts for obtaining a more intelligent
behavior and they can be organized in different ways for a
better exploiting of the intrinsic parallelism and for
achieving better solution quality.

The recent literature [8] shows how broad and diverse the
set of applications of these methods is and how promising
the directions of treating complicate real problems are. In
particular, evolutionary computation provides efficient and
robust strategies to search for good solutions that fit to
various constraints and objectives appearing in assembly
line balancing problems ([4], [10]).

This paper presents a new type of cellular GA (CGA) that
evolves many populations placed on different bidimensional
grids. Specific procedures for mutation, crossover and
survival are proposed for one toroidal grid. Placing rules for
the offsprings and moving rules for the predators induce an
intrinsic aggregation of the individuals with similar
structure. The subpopulation within each grid is structured

into clusters based on proximity. The clusters in different
grids whose dominant individuals have similar features
communicate between them. A similarity preserving
communication protocol is proposed. This cellular multigrid
genetic algorithm is used for solving assembly line
balancing with prescribed cycle time. It addresses both the
"I" and "U"-shaped lines serial and parallel workstations and
compatibility constraints. The optimization goal is twofold:
minimizing the number of workstations and smoothing their
work times

Section II presents the simple assembly line balancing
problems and its variants with compatibility constraints,
parallel workstations and considers both I- and "U"- shaped
lines. The components of the multigrid cellular genetic
algorithm are described in Section III. Section IV presents
the results of experimental investigation of the performance
of the proposed algorithm. Last section summarizes the
work.

II. ASSEMBLY LINE BALANCING PROBLEM

Assembly line balancing (ALB) is a combinatorial
optimization problem appearing in the design of
synchronous assembly systems. Basically, it concerns the
grouping of a set of tasks into workstations so that they have
about the same processing time and the precedence
constraints are satisfied. A comprehensive monograph of
this paradigm can be found in [9].

Let be the acyclic graph),(AVG  , where },...,2,1{ nV 
designates the set of tasks. The set of arcs VVA 
represents the precedence constraints. For each Vi , 0it

is the execution time of task i . Let C be the prescribed
cycle time. Let us denote by },...,{ 1 mWWW  a partition of

V into workstations. W is a solution to the simple
assembly line balancing (SALB) problem if

CtWT
jWi ij  

)(, mj ,...,1 (1)

and

if Ayx ),(, rWx , sWy then sr  (2)

Let S be the set of those partitions W of V satisfying

(1)-(2). A member SW * is an optimal solution if

)()(* WcardWcard  , SW )(.

This problem is NP-hard. Since it is difficult to find
optimal solutions of large size instances by exact methods,
various heuristic approaches have been developed. The GAs
[10] are considered as a very effective search technique in
solving SALB and several of its variants ([4], [9]).

Cellular Genetic Algorithm with
Communicating Grids for Assembly Line

Balancing Problems
Octav BRUDARU1,2, Diana POPOVICI1, Cintia COPĂCEANU 2

1Institute of Computer Science, Romanian Academy, Iaşi Subsidiary, Romania
 2Gh. Asachi Technical University Iaşi, Romania

brudaru@tuiasi.ro

1582-7445 © 2010 AECE

Digital Object Identifier 10.4316/AECE.2010.02015

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

88

SALB concerns serial workstations, but when some
execution times exceed the cycle time, the line contains
parallel workstations made by connecting many identical
workstations in parallel ensuring a period of C time units
even if the execution times of some tasks may exceed C .
This variant of balancing problem is called PALB.

Another variant of SALB deals with the so-called
compatibility constraints (CALB) introduced in [3]. In this
case, a cover },...,{ 1 pKKK of V is given and in addition to

conditions (1-2), it is required that for },...,1{)(mj ,

},...,1{)(phj  so that
jhj KW  . This type of constraints

allow five modifications to the original problem to be
treated in a rigorous and unitary manner: requirement of
each station to contain a limited number of types of
equipment, requirement of tasks to be assigned to particular
types of stations, the execution of some tasks in only a left
(right)-of-line station, the association of tasks according
with tasks skill level and the separation of some tasks.

The previously defined variants of ALB concern the "I"-
shaped line. When the line is folded so that the front of the
line and its end are juxtaposed, then an "U"-shaped line is
obtained and in this case some workstations contains tasks
that are executed for different batches of products, whilst
other workstation contains tasks applied for the same batch

[1]. This problem is called for short, USALB. The main
difference between the "I"-shaped lines and the "U"-shaped
line models is concerned with the identification of tasks to
be assigned to a station. In the former case, each task is
assigned to a station only after its predecessors have been
assigned, whereas in the latter one, available tasks are those
where either predecessor or successor tasks are assigned
([1]). This layout allows a better utilization of the human
operators and equipment along the assembly structure. Both
parallel workstations and compatibility constraints can be
considered for "U" –lines, too. The corresponding variants
are named UPALB and UCALB, respectively. The concept
of U-line is illustrated for the assembly process whose
processing times are given in Table I. For the sake of
simplicity, the precedence constraints are omitted and a
feasible assembly flow, namely (1,2,6,7,11,4,3,5,8,9,10,12),
is given in Fig. 1(a) for the I-shaped line.

TABLE I. THE PROCESSING TIMES OF THE TASKS

Task 1 2 3 4 5 6 7 8 9 10 11 12 C
Time 4 3 5 1 3 3 2 2 1 2 1 2 6

In Fig. 1(b), the same assembly flow is folded to form a
U-shaped line.

1 2 6 7 1011 1254 3 98

W4W3W2W1 W5 W6
(a)

1 2 6 7

10

11

12

5

4 3

9
8

W4W3

W2
W1 W5

(b)
Figure 1. I-shaped line (a) and U-shaped line (b).

The proposed CGA described in the next section is able to
solve all these variants of ALB problem.

I. MULTIGRID CELLULAR GENETIC ALGORITHM

In this section, the basic components of multigrid CGA
(MCGA) for ALB are described. For the sake of clarity, the
monogrid CGA is described first. Then the effect of
introducing multiple communicating grids is analyzed.

A. Basic principles of CGA

A good tradeoff between exploration and exploitation is
one of the key issues in the practice of GAs and the use of
subpopulations based on the similarity is often a good
decision ([2]). Multiple subpopulations and an adequate
communication patern can lead to a good compromise
between these search goals. This is the reason for which,
depending on the problem, the cellular model could be
better than other types of GAs. In a CGA the individuals are
placed on a bidimensional lattice. The management resulting
from this type of anchoring does not favor the multiplication

of the best solutions and this avoids the premature
convergence ([5], [6]).

The CGA proposed in this paper for a class of assembly
line balancing problems combines the advantages of the grid
mapping with those of segregative approach. It introduces
new elements regarding the mapping of the individuals
produced by genetic operators, it describes a new tactic for
survival selection and it clusters the individuals using their
positional information in view of communication. A feature
function induced by the time profile of a solution is
introduced together a similarity preserving communication
protocol that improve the exploration-exploitation tradeoff.

B. Monogrid CGA

This monogrid version of CGA is an order-based GA
together a proper management of the grid that support preys
and predators. It can solve all variants of ALB presented in
the previous section.
1) Chromosomes, their mapping on grid and evaluation

A solution (chromosome) to the problem is represented as

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 89

a topological sorting of ,V),...,(1 nxxx  , that practically

is the assembly flow. Consider the bidimensional grid as a

square matrix)(ij of NN  locations, where 2N is

larger than the size of the population P of the cellular
algorithm. Usually,)(*3 PcardN  . If Px , then

)(xpos is the pair of coordinates),(ji where x is placed

on  and ij represents the chromosome x or its address.

The case 5N is illustrated in Fig. 2.

predator

Figure 2. Two-dimensional grid with 7 preys (●) and 3 predators (∆).

For avoiding the checking of limits, the components in
)(xpos are modulo N computed. Further,)),,((hji is

the set of points in  placed on a square centered in),(ji

whose side length is h2 . The initial population is randomly
generated by a slightly modified version of the classical
topological sorting algorithm and for instance it is randomly
mapped on the grid.

The fitness value)(xf associated to a chromosome x is

defined by

  
2/1

1

2
21

1
)()(













 



m

j
jtot WTC

m
wTmCwxf ,

where  


m

j jtot WTT
1

)(. The first term in)(xf

represents the total idle time of workstations, whilst the
second indicates the smoothness of the workstations. The
weights 1w and 2w , verify 121  ww and 1w varies from

0.9 to 0.2 when the iteration number goes from 1 to the
maximum number of evolution stages. Thus, at the
beginning, the evolution is focused on the minimizing of the
number m of workstation, whereas in its second part the
goal is to reduce the imbalance between workstations.

The)(xf -value is computed by a simple algorithm that

assigns tasks to workstations exactly in the order of tasks
given by x . For "I"-lines, the tasks are considered from left
to right, whereas for U-lines the assigning goes from the
both ends of x towards an interior task in x ([1]).

The grid  is populated with predators that eliminate
poor performance preys. The number of predators is denoted
by R , where)(*75.0 PcardR  .

The evolution is organized in stages. During each stage,
the current population supports mutation, hypermutation,
crossover and devoration.

C. Genetic operators

Besides mutation and crossover, a hypermutation operator
is used. This third operator grafts a greedy method on the
GA.
1) Mutation operator

If),...,(1 nxxx  is a chromosome, then let)(x be the

mutation result. One selects a random task jx in x and jx

is moved in a random position between the rightmost
predecessor and the leftmost successor of jx , so that the

distance from the original position j is smaller as the

evolution advances. For increasing its effect, this operator is

applied recursively and)(xr means the applying of  , r

times on it. The r –values linearly decrease from 10/n to 1
when the number of evolution stages goes from 1 to the
maximum number of stages. The distance between)(xpos

and))((xpos r is proportional to r . In this way, if r is

small then x suffers small changes,)(xr is similar

enough to x and)(xr lies close to x . One tries to put

)(xy r on a free position in)),((hxpos , where h

linearly decresses from 1 to 2/N , for r varying from 1 to
10/n . If such a free position does not exist, then a new

attempt is made by increasing h with 1, and so on. Mutation
enforces a similarity-based aggregation of chromosomes.
2) Hypermutation operator

The hypermutation incorporates a greedy method based
on the first fit decreasing time task rule. For "I" -lines, this
rule selects the candidates among the tasks with no/already
assigned predecessors. If "U"-lines are considered, this rule
suffers a minor modification in order to construct the
technological flow simultaneously from both ends toward an
interior position of the chromosome, If r and s are the
cutting points in the chromosome x , then a new
chromosome)(xh is obtained by replacing the genes (tasks)

between r and s of x with the assembly flow that is the
solution produced by the greedy method applied to the
problem instance only containing the tasks between r and
s and for which the precedence constraints are given by the
corresponding subgraph of G . The positions of)(xh on the

grid is given by the difference rs  . Namely, if
)(),(xposji  , then starting from),(ji , one searches a

place for)(xh in)),,((kji , where k is a positive integer

satisfying the following conditions:

(i) there is a free position in)),,((kji ,

(ii))1(4)( kkrsq ,

(iii) k is minimum,
where q is a parameter tuning the dispersion of the

offsprings (NqN 4/) around the original prey. This is

illustrated in Fig. 3. Larger population size requires larger
values of q .

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

90

(i, j)((i,j),1)

((i,j),2)

((i,j),3)

Figure 3. Successive larger boundaries to place the hypermutation result.

3) Crossover
The crossover uses the best 40% of the individuals as

mating pool. The operator randomly generates ns cutting
points on both parents in the same positions and alternately
transfers the genes from the parents to each child so that the
topological sorting of the offspring is preserved. The
number ns decreases from maxns to minns as the number

of evolution stages varies from 1 to its maximum value,
where)max//(1 maxmin ii tCnnsns  . This variation of

ns is adopted for protecting the constructive blocks whose
length becomes higher during the evolution. If x and y are

the parents and xc and yc are the resulted children, then

one tries to put xc and yc to those points of  that are

closest to the convex combinations)(4/3)(4/1 yposxpos 

and)(4/3)(4/1 xposypos  , respectively. This is

illustrated in Fig. 4. If these points are not free, than a new
attempt is made, enlarging the vicinities.

1/4pos(y)+3/4pos(x)

x

y

cy

cx

1/4pos(x)+3/4pos(y)

Figure 4. Placing the results of crossover on the grid.

Mutation, hypermutation and crossover are applied with
probabilities m , H and c , respectively.

D. Survival selection

Survival selection (devoration) is made by the predators,
which are randomly placed on the grid and move during the
evolution in order to capture the poorest prey reached on
their route. Each evolution stage ends with the devoration.
The effect of different rules for driving their movement has
been evaluated. The two best found rules are presented. Let

),(ji be the position of the current predator.

Rule d1. Let),(gg yx be the gravity center of the set of

all preys. If the predator does not find a prey in)1),,((ji it

moves to the nearest position in the direction from),(ji to

),(gg yx , as it is shown in Fig. 5.

(x ,y)G Gx

Figure 5. Predators moving to the center of gravity of the population.

Rule d2. The set of all preys is organized in c groups,
applying, for example, the c -means algorithm to the set of

positions }/)({ Pxxpos  . Let cxx ,...,1 be the centroides of

the resulted clusters that are not necessarily on  . If the
current predator does not find a prey in its smallest vicinity
it moves to the closest centroid until it finds one. This is
shown in Fig. 6. In this way, the efficiency of hunting
increases and the overload of the grid capacity is avoided,
whilst the predators are distributed to the preys in a balanced
way. If 80)(Pcard then rule (d1) works better than (d2)

otherwise (d2) dominates (d1).
The devoration acts until the number of preys reaches the

prescribed population size. The survival selection made by
devoration does not guarantee that the best solution
survives. Whenever a best solution is devoured, its copy
enters a thesaurus.

Figure 6. Predators moving to the nearest group of preys.

E. MANY COMMUNICATING GRIDS

The multigrid cellular algorithm uses M copies of the
monogrid algorithm that act on the grids M ,...,1 and

communicate between them. The communication is
activated at every r evolution stages. The population of
preys in each grid i is organized in a number of iK

clusters, using the position vectors of the chromosomes, like
in rule (d2). Whenever communication starts, iK is selected

so that the sum of squares of distances between the position
vectors of the preys and the centroids is minimized and the
size of a cluster is between 20 and 30. Actually, devoration
rule (d2) uses the clustering solution computed for
communication. Due to the action of mutation,

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 91

hypermutation and crossover operators, an intrinsic
geographic clustering is produced and the solutions within
each agglomeration of preys have a certain degree of
similarity. This agglomeration is detected and exploited by
the unsupervised clustering made for communication.
Denote by ijC the cluster j in the grid i , iKj ,...,1 ,

Mi ,...,1 . Take a chromosome x among the best 10%

solutions in ijC and let mWW ,...,1 be the workstations built

on x . Construct the so-called feature vector)(x having a

fixed number l of components,

)0,...,0,
)(

,...,
)(

,
)(

1
1

()(
1

1








 

m

h

mh

C

WT

C

WT

C

WT

m
x ,

where the first 1m components can be computed during
the calculation of fitness of x , whilst the remaining

)1( ml are set to zero, 11  nlm .

For each cluster ijC , let ij be the average of the feature

vectors computed for the best 10% individuals in ijC .

Consider the similarity threshold 0 . The value of  is
experimentally established in order to obtain a significant
communication between grids. Clusters ijC and rsC

(ri ) communicate if  |||| rsij and the copies of

the best 10% of individuals move from ijC to rsC and vice

versa. For the considered test instances, some appropriate
values of the threshold  are in the range 0.15 : 0.35. A
prey coming into ijC is positioned using the mutation

placement rule in which the roles of x and)(xr are

played by a randomly selected prey in ijC and the incoming

prey, respectively. This communication scheme preserves
the similarity of solutions within each cluster.

The activity of a grid stops when its best fitness stagnates
for a prescribed number of successive stages. The activity of
the multigrid cellular genetic algorithm stops when all grids
stopped.

As compared to some existing cellular GAs, three
improvements are proposed in this paper: (i) the grafting of
a very efficient greedy method on the GA (as specific
contribution to ALB algorithmics), (ii) management of
placement/moving of the preys / predators on the grids so
that solutions having similar structure organize themselves
in compact regions and (iii) the introducing of multiple grids
that interchanges solutions using a communication protocol
that preserves the similarity in the feature space.

II. PERFORMANCE OF THE MULTIGRID VERSION

Further, the results of some experimental investigation of
the performance of the MCGA are presented. The
experiments addressed three assembly instances Lutz (32
tasks), Arcus (111 tasks) and Scholl (297 tasks). Starting
from these instances initially proposed for SALB ([11],
[14]), some difficult instances were produced for PALB and
CALB, which can be found in [13] and [15], respectively.

The C -values, both for "I" and "U"-shaped lines are shown
in Table II. The four grids variant of MCGA was used.

TABLE II. C-VALUES FOR TEST ALB INSTANCES

I/U SALB, CALB PALB
Lutz 1414, 1572, 1768, 2020,

2357, 2828
565,588,598,632,646, 678

Arcus 5757, 6016, 6540, 7162, 7916,
8847, 10027,11378, 17067

2878,2989,3067,3189,
3268,3375,
3390,3356,3498,3945

Scholl 1394, 1548, 2049, 2680 1394, 1422, 1452, 1483

A. Absolute error estimation

Further, *m denotes the number of workstations returned
by the MCGA, whilst 0m is a computed lower bound of the

minimum number of workstations associated to the
respective instance. For each problem instance, a number of
30 runs were achieved. For I-shaped lines, the obtained
distribution of the difference 0* mm  is given in Table III.

TABLE III. ERROR DISTRIBUTION FOR "I"-SHAPED LINES

SALB
m*-m0 0 1Lutz
rel. freq. 0.98 0.02
m*-m0 0 ≥1Arcus
rel. freq. 0.86 0.14
m*-m0 0 1 2Scholl
rel. freq. 0.15 0.50 0.35

PALB
m*-m0 0 1 2Lutz
rel. freq. 0.31 0.49 0.2
m*-m0 0 1 2Arcus
rel. freq. 0.16 0.41 0.43
m*-m0 0 1 ≥2Scholl
rel. freq. 0.08 0.78 0.14

CALB
m*-m0 0 1 ≥2Lutz
rel. freq. 0 0.95 0.05
m*-m0 0 1 2Arcus
rel. freq. 0.16 0.55 0.25
m*-m0 0 1 2Scholl
rel. freq. 0.21 0.74 0.05

Table IV shows the performance for "U"-shaped lines for
the test data in [12] and [16].

TABLE IV. ERROR DISTRIBUTION FOR "U"-SHAPED LINES

USALB
m*-m0 0 1Lutz
rel. freq. 0 1
m*-m0 0 1Arcus
rel. freq. 0.13 0.87
m*-m0 0 1Scholl
rel. freq. 0 1

UPALB
m*-m0 0 1 2Lutz
rel. freq. 0.17 0.43 0.40
m*-m0 0 1 2Arcus
rel. freq. 0.25 0.59 0.16
m*-m0 0 1Scholl
rel. freq. 0 1

UCALB
m*-m0 0 1Lutz
rel. freq. 0 1
m*-m0 0 1 2Arcus
rel. freq. 0.27 0.45 0.28
m*-m0 0 1 2Scholl
rel. freq. 0.21 0.54 0.25

Table V offers a synopsis of the performance of MCGA
for USALB and Scoll-297 for 4 different C -values. Notice
the high values of the balancing index)*/(CmTI tot in the

last row.

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

92

TABLE V. MAIN PERFORMANCE MEASURES (USALB, SCHOLL-297)
C 1394 1548 2049 2680
m0 50 45 34 26

min. 30.19 36.94 65.53 122.11smoothing
term av. 32.13 37.44 68.84 159.54

av. 0.98 0.98 0.98 0.96balancing
index max. 0.98 0.99 0.98 0.97

B. Comparison between MCGA and its non-grid version

Denote by BGA the basic (non-grid) GA obtained from
the monogrid CGA by removing the management induced
by the mapping of chromosomes on grid and using the
deterministic elitist survival selection instead of devoration.
The averages of the absolute error's distributions obtained in
the experimental evaluation of MCGA and BGA are
denoted by MCGA and BGA, respectively. These values are
given in Table VI for ""I" and "U" –lines, the three types of
problems and test data mentioned above. The quality index
Qind is the ratio between BGAand MCGA and it measures
how much better MCGA than BGA is. The greatest quality
gain is 8 and it is obtained for SALB and Lutz (32 tasks)
whilst for USALB and Arcus (111) both methods recorded
the same performance.

TABLE VI. COMPARISON BETWEEN MCGA AND BGA
"I"-shaped: SALB PALB CALB

MCGA 0.02 1.89 1.05
Lutz BGA 0.16 4.796 1.15

Qind 8 2.5376 1.0952
MCGA 0.14 2.27 2.01

Arcus BGA 0.21 2.85 2.46
Qind 1.5 1.2555 1.2239
MCGA 1.5 1.273 1.84

Scholl BGA 1.64 1.3 1.8
Qind 1.0933 1.0212 0.9783

av. of Qind 3.5311 1.6048 1.0991
"U"-shaped: USALB UPALB UCALB

MCGA 1 2.23 1
Lutz BGA 1.21 3.34 1.02

Qind 1.21 1.498 1.02
MCGA 0.87 0.91 2.01

Arcus BGA 0.87 1.16 5.04
Qind 1 1.2747 2.5075
MCGA 1 1 1.96

Scholl BGA 1.17 1.13 3.84
Qind 1.17 1.13 1.9592

av. of Qind 1.1267 1.3008 1.8289

The averaged values of Qind over the three sets of test data
are given for each problem in the last row of each "I" or U" -
shaped case. The maximum quality gain 3.5311 is offered for
SALB. Clearly, MCGA still dominates BGA. The gain is
especially due to the many communicating processes that
succesfully prevents premature stagnation. For Arcus (111
tasks), on Intel Atom 1.6 GHz, 1GB RAM, 280 evolution
stages of BGA take about 25 s, whereas four grids require
400 s, for about 320 stages, the communication cost being
included in this last time.

C. Other quality indicators

The variation of fitness related indicators obtained for two
grids 21, is shown in Fig. 7-9, for Arcus (111 tasks)

instance with 6837C , for which 220 m and 23* m .

 Γ1

20
21
22
23
24
25
26

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

 iteration

 Γ2

20
21
22
23
24
25
26

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

 iteration

Figure 7. Number of workstations of the best-found solutions in 1 and 2 .

Γ1

300

800

1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7iteration

Γ2

300

800

1300

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7iteration

Figure 8. Smoothing index of the best-found solutions in 1 and 2 .

At the beginning, the target is the minimization of the
number of workstations (Fig. 7). Evolution continues with
the minimizing of the smoothing term in fitness function
(Fig.8).

The rapid variations of the balancing index (Fig. 9) when
the number of workstations is constant is due to the setting
of the current C value to the greatest load time of the
workstations in the best found solution.

Γ1

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97

itera tio n

Γ2

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

iteration

Figure 9. Balancing index of the best-found solutions in 1 and 2 .

D. Communication between grids

The main features of the multigrid cellular approach are
the multiple populations hosted by the grids and the type of
communication between similar clusters in different grids.

The maximum of the total traffic appears after the first
third of the evolution stages as a result of the creating and
developing the clusters based on similarity. At the end of
exploration the communication flow is modest due to the
exploitation of current clusters when the variability within
the clusters in each grid is diminished.

A large number of communicating clusters can be
maintained by increasing the similarity threshold  , but this
delays the convergence detection with no improvement of
the solution quality. The communication increases the local
variability and this leads to a pseudo-periodic variation of
average fitness in each grid.

The influence of the period of communication r on the
solution quality and on computational effort was
experimentally observed. The obtaining of a general rule for
a priori determining r as a function of the parameters
appearing in MCGA seems to be difficult.

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 93

A film showing the evolution and communication process
of MCGA with 4-grids for solving the Arcus (111 tasks)
instance [15] can be found at [17].

E. Some improvements

A better placement of the initial population can be done
by computing the feature vector for each individual. A
clustering of these images using a two-dimensional
Kohonen network is applied and a simple heuristic maps the
preys within each cluster to individual cells in compact
regions of the grid. This improves the fitness of the best-
found solutions with 6-7%.

The quality of the found solutions is better if the number
of grids increases. If the number of grids is too large, the
gain in quality becomes modest as compared to the
computational effort. An empiric recipe is to increase the
number of grids by 2 whenever the number of tasks
augments with 100.

III. CONCLUSION

A new cellular genetic algorithm with communicating
grids was proposed for efficiently solving a class of
assembly line balancing problems. The algorithm contains
efficient components and an appropriate management
strategy that achieves a pseudo-segregative evolution of
each grid. Experimental evaluation testifies its good
performance. It offers both a fine- and large-grained
parallelism and it can be easily extended to other
optimization problems.

REFERENCES

[1] Ajenblit, D. A., Wainwright, R. L.: Applying genetic algorithms to
the U-shaped assembly line balancing problem. In: Proceedings of the

1998 IEEE International Conference on Evolutionary Computation,
Anchorage, Alaska, pp. 96-101, 1998.

[2] Alba, E., Troya, J. M.: An analysis synchronous and asynchronous
parallel distributed genetic algorithms with structured and panmictic
islands. In: IPPS/SPDP Workshops, pp. 248-256, 1999.

[3] Brudaru, O., Assembly line balancing with compatibility constraints,
Econ. Comput. Econ. Cybern. Stud. Res. 27, No.1-4, 59-65 (1993).

[4] Gen, M., Cheng, R., Lin, L., Assembly Line Balancing Models,
Network Models and Optimization, Springer London, 477-550 , 2008.

[5] Haynes, Th., Sen, S.: Evolving behavioral strategies in predators and
pray. In IJCAI-95 Workshop on Adaptation and Learning in
Multiagent Systems, pp. 32-37, 1995.

[6] Li, X., Suterhand, S., A.: Cellular Genetic Algorithm Simulating
Predator – Prey Interactions. Technical Report, School of Comp. Sci.
and Information Technology, RMIT University Melbourne, 2006.

[7] Michalewicz, Z., Genetic Algorithms + Data structures = Evolution
Programs, Springer Verlag, Berlin 1994.

[8] Paszkowicz W. Genetic Algorithms, a Nature-Inspired Tool: Survey
of Applications in Materials Science and Related Fields, Materials
and Manufacturing Processes, vol. 24, 2, Feb. 2009, p. 174 - 197

[9] Scholl, A., Balancing and sequencing of assembly lines. 2nd edition,
Physica-Verlag, Heidelberg.

[10] Tasan S., Tunali, S., A review of the current applications of genetic
algorithms in assembly line balancing, Journal of Intelligent
Manufacturing, Springer Netherlands, vol. 19, Number 1 / February,
49-69, 2008.

[11] Octav BRUDARU , http://www.assembly-
 line-balancing.de/files/uploads/ SALBP data sets.zip, accessed June
2007.
[12] Octav BRUDARU, http://www.assembly-line-
 balancing.de/files/uploads/UALBP-1 data sets.zip, accessed June
2007.
[13] Octav BRUDARU, http://www.misp.tuiasi.ro/obrudaru/
 line_balancing/PALB.rar, posted Oct. 2009.
[14] Octav BRUDARU, http://www.misp.tuiasi.ro/obrudaru/
 line_balancing/ SALB.rar, posted Oct. 2009.
[15] Octav BRUDARU, http://www.misp.tuiasi.ro/obrudaru/
 line_balancing/CALBs.rar, posted Oct. 2009.
[16] Octav BRUDARU, http://www.misp.tuiasi.ro/obrudaru/
 line_balancing/UALB.rar, posted Oct. 2009.
[17] Octav BRUDARU, http://www.misp.tuiasi.ro/obrudaru/
 line_balancing/Cell-AG- Arcus 111-4-grids.avi, posted Oct. 2009.

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:25:08 (UTC) by 172.71.254.175. Redistribution subject to AECE license or copyright.]

