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Abstract—This paper presents a new approach with cellular 
multigrid genetic algorithms for the "I"-shaped and "U"-
shaped assembly line balancing problems, including parallel 
workstations and compatibility constraints. First, a cellular 
hybrid genetic algorithm that uses a single grid is described. 
Appropriate operators for mutation, hypermutation, and 
crossover and two devoration techniques are proposed for 
creating and maintaining groups based on similarity. This 
monogrid algorithm is extended for handling many 
populations placed on different grids. In the multigrid version, 
the population of each grid is organized in clusters using the 
positional information of the chromosomes. A similarity 
preserving communication protocol between the clusters 
placed on different grids is introduced. The experimental 
evaluation shows that the multigrid cellular genetic algorithm 
with communicating grids is better than the hybrid genetic 
algorithm used for building it, whereas it dominates the 
monogrid version in all cases. Absolute performance is 
evaluated using classical benchmarks. The role of certain 
components of the cellular algorithm is explained and the effect 
of some parameters is evaluated.

Index Terms—cellular genetic algorithms, communicating 
grids, I/U-shaped assembly lines, parallel workstations, and 
task compatibility constraints.

I. INTRODUCTION

Genetic algorithms (GA) have demonstrated many 
advantages both for the algorithm designer and the 
beneficiary of the final results. They can be easily adapted to 
the required task and can be combined with other 
optimization techniques leading to hybrid methods. They 
easily imitate the human operating ways and incorporate 
them into specific operators. GA can be combined with 
machine learning concepts for obtaining a more intelligent 
behavior and they can be organized in different ways for a 
better exploiting of the intrinsic parallelism and for 
achieving better solution quality. 

The recent literature [8] shows how broad and diverse the 
set of applications of these methods is and how promising 
the directions of treating complicate real problems are. In 
particular, evolutionary computation provides efficient and 
robust strategies to search for good solutions that fit to 
various constraints and objectives appearing in assembly 
line balancing problems ([4], [10]).

This paper presents a new type of cellular GA (CGA) that 
evolves many populations placed on different bidimensional 
grids. Specific procedures for mutation, crossover and 
survival are proposed for one toroidal grid. Placing rules for 
the offsprings and moving rules for the predators induce an 
intrinsic aggregation of the individuals with similar 
structure. The subpopulation within each grid is structured 

into clusters based on proximity. The clusters in different 
grids whose dominant individuals have similar features 
communicate between them. A similarity preserving 
communication protocol is proposed. This cellular multigrid 
genetic algorithm is used for solving assembly line 
balancing with prescribed cycle time. It addresses both the 
"I" and "U"-shaped lines serial and parallel workstations and 
compatibility constraints.  The optimization goal is twofold: 
minimizing the number of workstations and smoothing their 
work times 

Section II presents the simple assembly line balancing 
problems and its variants with compatibility constraints, 
parallel workstations and considers both I- and "U"- shaped 
lines. The components of the multigrid cellular genetic 
algorithm are described in Section III. Section IV presents 
the results of experimental investigation of the performance 
of the proposed algorithm. Last section summarizes the 
work. 

II. ASSEMBLY LINE BALANCING PROBLEM

Assembly line balancing (ALB) is a combinatorial 
optimization problem appearing in the design of 
synchronous assembly systems. Basically, it concerns the 
grouping of a set of tasks into workstations so that they have 
about the same processing time and the precedence 
constraints are satisfied. A comprehensive monograph of 
this paradigm can be found in [9].

Let be the acyclic graph ),( AVG  , where },...,2,1{ nV 
designates the set of tasks. The set of arcs VVA 
represents the precedence constraints. For each Vi , 0it

is the execution time of task i . Let C  be the prescribed 
cycle time. Let us denote by },...,{ 1 mWWW   a partition of 

V into workstations.  W  is a solution to the simple 
assembly line balancing (SALB) problem if

CtWT
jWi ij  

)( , mj ,...,1 (1)

and

if Ayx ),( , rWx , sWy  then sr  (2)

Let S  be the set of those partitions W  of V  satisfying 

(1)-(2). A member SW *  is an optimal solution if 

)()( * WcardWcard  , SW )( . 

This problem is NP-hard. Since it is difficult to find 
optimal solutions of large size instances by exact methods, 
various heuristic approaches have been developed. The GAs 
[10] are considered as a very effective search technique in 
solving SALB and several of its variants ([4], [9]).
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SALB concerns serial workstations, but when some 
execution times exceed the cycle time, the line contains 
parallel workstations made by connecting many identical 
workstations in parallel ensuring a period of C  time units 
even if the execution times of some tasks may exceed C . 
This variant of balancing problem is called PALB.

Another variant of SALB deals with the so-called 
compatibility constraints (CALB) introduced in [3]. In this 
case, a cover },...,{ 1 pKKK  of V is given and in addition to 

conditions (1-2), it is required that for },...,1{)( mj , 

},...,1{)( phj   so that
jhj KW  . This type of constraints 

allow five modifications to the original problem to be 
treated in a rigorous and unitary manner: requirement of 
each station to contain a limited number of types of 
equipment, requirement of tasks to be assigned to particular 
types of stations, the execution of some tasks in only a left 
(right)-of-line station, the association of tasks according 
with tasks skill level and the separation of some tasks. 

The previously defined variants of ALB concern the "I"-
shaped line. When the line is folded so that the front of the 
line and its end are juxtaposed, then an  "U"-shaped line is 
obtained and in this case some workstations contains tasks 
that are executed for different batches of products, whilst 
other workstation contains tasks applied for the same batch 

[1].  This problem is called for short, USALB. The main 
difference between the "I"-shaped lines and the "U"-shaped 
line models is concerned with the identification of tasks to 
be assigned to a station. In the former case, each task is 
assigned to a station only after its predecessors have been 
assigned, whereas in the latter one, available tasks are those 
where either predecessor or successor tasks are assigned 
([1]). This layout allows a better utilization of the human 
operators and equipment along the assembly structure. Both 
parallel workstations and compatibility constraints can be 
considered for "U" –lines, too. The corresponding variants 
are named UPALB and UCALB, respectively. The concept 
of U-line is illustrated for the assembly process whose 
processing times are given in Table I. For the sake of 
simplicity, the precedence constraints are omitted and a 
feasible assembly flow, namely (1,2,6,7,11,4,3,5,8,9,10,12), 
is given in Fig. 1(a) for the I-shaped line.

TABLE I. THE PROCESSING TIMES OF THE TASKS

Task 1 2 3 4 5 6 7 8 9 10 11 12 C
Time 4 3 5 1 3 3 2 2 1 2 1 2 6

In Fig. 1(b), the same assembly flow is folded to form a 
U-shaped line.
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Figure 1. I-shaped line  (a) and U-shaped line (b).

The proposed CGA described in the next section is able to 
solve all these variants of ALB problem.

I. MULTIGRID CELLULAR GENETIC ALGORITHM 

In this section, the basic components of multigrid CGA 
(MCGA) for ALB are described. For the sake of clarity, the 
monogrid CGA is described first. Then the effect of 
introducing multiple communicating grids is analyzed.

A. Basic principles of CGA

A good tradeoff between exploration and exploitation is 
one of the key issues in the practice of GAs and the use of 
subpopulations based on the similarity is often a good 
decision ([2]). Multiple subpopulations and an adequate 
communication patern can lead to a good compromise 
between these search goals. This is the reason for which, 
depending on the problem, the cellular model could be 
better than other types of GAs. In a CGA the individuals are 
placed on a bidimensional lattice. The management resulting 
from this type of anchoring does not favor the multiplication 

of the best solutions and this avoids the premature 
convergence ([5], [6]). 

The CGA proposed in this paper for a class of assembly 
line balancing problems combines the advantages of the grid 
mapping with those of segregative approach. It  introduces 
new elements regarding the mapping of the individuals 
produced by genetic operators, it describes a new tactic for 
survival selection and it clusters the individuals using their 
positional information in view of communication. A feature 
function induced by the time profile of a solution is 
introduced together a similarity preserving communication 
protocol that improve the exploration-exploitation tradeoff.

B.  Monogrid CGA

This monogrid version of CGA is an order-based GA 
together a proper management of the grid that support preys 
and predators.  It can solve all variants of ALB presented in 
the previous section. 
1) Chromosomes, their mapping on grid and evaluation

A solution (chromosome) to the problem is represented as 
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a topological sorting of ,V ),...,( 1 nxxx  , that practically 

is the assembly flow. Consider the bidimensional grid as a 

square matrix )( ij  of NN   locations, where 2N  is 

larger than the size of the population P of the cellular 
algorithm. Usually, )(*3 PcardN  .  If Px , then 

)(xpos  is the pair of coordinates ),( ji  where x  is placed 

on   and ij  represents the chromosome x  or  its address. 

The case 5N  is illustrated in Fig. 2.

predator

Figure 2. Two-dimensional grid with 7 preys (●) and 3 predators (∆).

For avoiding the checking of limits, the components in 
)(xpos  are modulo N  computed. Further, )),,(( hji  is 

the set of points in   placed on a square centered in ),( ji

whose side length is h2 . The initial population is randomly 
generated by a slightly modified version of the classical 
topological sorting algorithm and for instance it is randomly 
mapped on the grid. 

The fitness value )(xf associated to a chromosome x  is 

defined by

  
2/1

1

2
21

1
)()( 













 



m

j
jtot WTC

m
wTmCwxf ,

where  


m

j jtot WTT
1

)( . The first term in )(xf

represents the total idle time of workstations, whilst the 
second indicates the smoothness of the workstations. The 
weights 1w  and 2w , verify 121  ww and 1w  varies from 

0.9 to 0.2 when the iteration number goes from 1 to the 
maximum number of evolution stages. Thus, at the 
beginning, the evolution is focused on the minimizing of the 
number m of workstation, whereas in its second part the 
goal is to reduce the imbalance between workstations.

The )(xf -value is computed by a simple algorithm that 

assigns tasks to workstations exactly in the order of tasks 
given by x . For "I"-lines, the tasks are considered from left 
to right, whereas for U-lines the assigning goes from the 
both ends of x  towards an interior task in x  ([1]).

The grid   is populated with predators that eliminate 
poor performance preys. The number of predators is denoted 
by R , where )(*75.0 PcardR  . 

The evolution is organized in stages. During each stage, 
the current population supports mutation, hypermutation, 
crossover and devoration.

C. Genetic operators 

Besides mutation and crossover, a hypermutation operator 
is used. This third operator grafts a greedy method on the 
GA. 
1) Mutation operator

If ),...,( 1 nxxx   is a chromosome, then let )(x  be the 

mutation result. One selects a random task jx  in x  and jx

is moved in a random position between the rightmost 
predecessor and the leftmost successor of jx , so that the 

distance from the original position j  is smaller as the 

evolution advances.  For increasing its effect, this operator is 

applied recursively and )(xr  means the applying of  , r

times on it. The r –values linearly decrease from 10/n  to 1 
when the number of evolution stages goes from 1 to the 
maximum number of stages. The distance between )(xpos

and ))(( xpos r  is proportional to r . In this way, if r is

small then x  suffers small changes, )(xr  is similar 

enough to x  and )(xr  lies close to x . One tries to put 

)(xy r  on a free position in )),(( hxpos , where h

linearly decresses from 1 to 2/N , for r  varying from 1 to 
10/n . If such a free position does not exist, then a new 

attempt is made by increasing h  with 1, and so on. Mutation 
enforces a similarity-based aggregation of chromosomes.
2) Hypermutation operator

The hypermutation incorporates a greedy method based 
on the first fit decreasing time task rule. For "I" -lines, this 
rule selects the candidates among the tasks with no/already 
assigned predecessors. If "U"-lines are considered, this rule 
suffers a minor modification in order to construct the 
technological flow simultaneously from both ends toward an 
interior position of the chromosome, If r  and s  are the 
cutting points in the chromosome x , then a new 
chromosome )(xh is obtained by replacing the genes (tasks) 

between r  and s  of x  with the assembly flow  that is  the 
solution  produced by the greedy method applied to the 
problem instance only containing the tasks between r  and 
s  and for which the precedence constraints are given by the 
corresponding subgraph of G . The positions of )(xh on the 

grid is given by the difference rs  . Namely, if 
)(),( xposji  , then starting from ),( ji , one searches a 

place for )(xh  in )),,(( kji , where k  is a positive integer 

satisfying the following conditions:

(i) there is a free position in  )),,(( kji ,

(ii) )1(4)(  kkrsq ,

(iii) k  is minimum,
where q  is a parameter tuning the dispersion of the 

offsprings ( NqN 4/ ) around the original prey. This is 

illustrated in Fig. 3. Larger population size requires larger 
values of q .
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(i, j)((i,j),1)

((i,j),2)

((i,j),3)

Figure 3. Successive larger boundaries to place the hypermutation result.

3) Crossover
The crossover uses the best 40% of the individuals as 

mating pool. The operator randomly generates ns  cutting 
points on both parents in the same positions and alternately 
transfers the genes from the parents to each child so that the 
topological sorting of the offspring is preserved. The 
number ns  decreases from maxns  to minns  as the number 

of evolution stages varies from 1 to its maximum value, 
where )max//(1 maxmin ii tCnnsns  . This variation of 

ns  is adopted for protecting the constructive blocks whose 
length becomes higher during the evolution. If x  and y  are 

the parents and xc  and yc are the resulted children, then 

one tries to put xc  and yc  to those points of   that are 

closest to the convex combinations )(4/3)(4/1 yposxpos 

and )(4/3)(4/1 xposypos  , respectively. This is 

illustrated in Fig. 4. If these points are not free, than a new 
attempt is made, enlarging the vicinities. 

1/4pos(y)+3/4pos(x)

x

y

cy

cx

1/4pos(x)+3/4pos(y)

Figure 4. Placing the results of crossover on the grid.

Mutation, hypermutation and crossover are applied with 
probabilities m , H  and c , respectively.

D. Survival selection

Survival selection (devoration) is made by the predators, 
which are randomly placed on the grid and move during the 
evolution in order to capture the poorest prey reached on 
their route. Each evolution stage ends with the devoration. 
The effect of different rules for driving their movement has 
been evaluated. The two best found rules are presented. Let 

),( ji  be the position of the current predator.

Rule d1. Let ),( gg yx  be the gravity center of the set of 

all preys. If the predator does not find a prey in )1),,(( ji  it 

moves to the nearest position in the direction from ),( ji  to 

),( gg yx , as it is shown in Fig. 5.

(x ,y )G Gx

Figure 5. Predators moving to the center of gravity of the population.

Rule d2. The set of all preys is organized in c  groups, 
applying, for example, the c -means algorithm to the set of 

positions }/)({ Pxxpos  . Let cxx ,...,1  be the centroides of 

the resulted clusters that are not necessarily on  . If the 
current predator does not find a prey in its smallest vicinity 
it moves to the closest centroid until it finds one. This is 
shown in Fig. 6. In this way, the efficiency of hunting 
increases and the overload of the grid capacity is avoided, 
whilst the predators are distributed to the preys in a balanced 
way. If 80)( Pcard then rule (d1) works better than (d2) 

otherwise (d2) dominates (d1).
The devoration acts until the number of preys reaches the 

prescribed population size. The survival selection made by 
devoration does not guarantee that the best solution 
survives. Whenever a best solution is devoured, its copy 
enters a thesaurus. 

Figure 6. Predators moving to the nearest group of preys.

E. MANY COMMUNICATING GRIDS 

The multigrid cellular algorithm uses M  copies of the 
monogrid algorithm that act on the grids M ,...,1  and 

communicate between them. The communication is 
activated at every r  evolution stages. The population of 
preys in each grid i  is organized in a number of iK

clusters, using the position vectors of the chromosomes, like 
in rule (d2). Whenever communication starts, iK  is selected 

so that the sum of squares of distances between the position 
vectors of the preys and the centroids is minimized and the 
size of a cluster is between 20 and 30. Actually, devoration 
rule (d2) uses the clustering solution computed for 
communication. Due to the action of mutation, 
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hypermutation and crossover operators, an intrinsic 
geographic clustering is produced and the solutions within 
each agglomeration of preys have a certain degree of 
similarity. This agglomeration is detected and exploited by 
the unsupervised clustering made for communication.  
Denote by ijC  the cluster j  in the grid i , iKj ,...,1 , 

Mi ,...,1 . Take a chromosome x  among the best 10% 

solutions in ijC  and let mWW ,...,1  be the workstations built 

on x . Construct the so-called feature vector )(x  having a 

fixed number l  of components,

)0,...,0,
)(

,...,
)(

,
)(

1
1

()(
1

1








 

m

h

mh

C

WT

C

WT

C

WT

m
x ,

where the first 1m  components can be computed during 
the calculation of fitness of x , whilst the remaining 

)1(  ml  are set to zero, 11  nlm . 

For each cluster ijC , let ij  be the average of the feature 

vectors computed for the best 10% individuals in ijC . 

Consider the similarity threshold 0 . The value of   is 
experimentally established in order to obtain a significant 
communication between grids. Clusters ijC  and rsC   

( ri  ) communicate if  |||| rsij  and the copies of 

the best 10% of individuals move from ijC  to rsC  and vice 

versa. For the considered test instances, some appropriate 
values of the threshold   are in the range 0.15 : 0.35. A 
prey coming into ijC  is positioned using the mutation 

placement rule in which the roles of x  and )(xr are 

played by a randomly selected prey in ijC  and the incoming 

prey, respectively. This communication scheme preserves 
the similarity of solutions within each cluster. 

The activity of a grid stops when its best fitness stagnates 
for a prescribed number of successive stages. The activity of 
the multigrid cellular genetic algorithm stops when all grids 
stopped.

As compared to some existing cellular GAs, three 
improvements are proposed in this paper: (i) the grafting of 
a very efficient greedy method on the GA (as specific 
contribution to ALB algorithmics), (ii) management of 
placement/moving of the preys / predators on the grids so 
that solutions having similar structure organize themselves 
in compact regions and (iii) the introducing of multiple grids 
that interchanges solutions using a communication protocol 
that preserves the similarity in the feature space. 

II. PERFORMANCE OF THE MULTIGRID VERSION 

Further, the results of some experimental investigation of 
the performance of the MCGA are presented. The 
experiments addressed three assembly instances Lutz (32 
tasks), Arcus (111 tasks) and Scholl (297 tasks). Starting 
from these instances initially proposed for SALB ([11], 
[14]), some difficult instances were produced for PALB and 
CALB, which can be found in [13] and [15], respectively. 

The C -values, both for "I" and "U"-shaped lines are shown 
in Table II. The four grids variant of MCGA was used.

TABLE II. C-VALUES FOR TEST ALB INSTANCES

I/U SALB, CALB PALB
Lutz 1414, 1572, 1768, 2020,

2357, 2828
565,588,598,632,646, 678

Arcus 5757, 6016, 6540, 7162, 7916, 
8847, 10027,11378, 17067

2878,2989,3067,3189, 
3268,3375, 
3390,3356,3498,3945

Scholl 1394, 1548, 2049, 2680 1394, 1422, 1452, 1483

A. Absolute error estimation

Further, *m  denotes the number of workstations returned 
by the MCGA, whilst 0m  is a computed lower bound of the 

minimum number of workstations associated to the 
respective instance. For each problem instance, a number of 
30 runs were achieved. For I-shaped lines, the obtained 
distribution of the difference 0* mm  is given in Table III.

TABLE III. ERROR DISTRIBUTION FOR "I"-SHAPED LINES

SALB
m*-m0 0 1Lutz
rel. freq. 0.98 0.02
m*-m0 0 ≥1Arcus
rel. freq. 0.86 0.14
m*-m0 0 1 2Scholl
rel. freq. 0.15 0.50 0.35

PALB
m*-m0 0 1 2Lutz
rel. freq. 0.31 0.49 0.2
m*-m0 0 1 2Arcus
rel. freq. 0.16 0.41 0.43
m*-m0 0 1 ≥2Scholl
rel. freq. 0.08 0.78 0.14

CALB
m*-m0 0 1 ≥2Lutz
rel. freq. 0 0.95 0.05
m*-m0 0 1 2Arcus
rel. freq. 0.16 0.55 0.25
m*-m0 0 1 2Scholl
rel. freq. 0.21 0.74 0.05

Table IV shows the performance for "U"-shaped lines for 
the test data in [12] and [16]. 

TABLE IV. ERROR DISTRIBUTION FOR "U"-SHAPED LINES

USALB
m*-m0 0 1Lutz
rel. freq. 0 1
m*-m0 0 1Arcus
rel. freq. 0.13 0.87
m*-m0 0 1Scholl
rel. freq. 0 1

UPALB
m*-m0 0 1 2Lutz
rel. freq. 0.17 0.43 0.40
m*-m0 0 1 2Arcus
rel. freq. 0.25 0.59 0.16
m*-m0 0 1Scholl
rel. freq. 0 1

UCALB
m*-m0 0 1Lutz
rel. freq. 0 1
m*-m0 0 1 2Arcus
rel. freq. 0.27 0.45 0.28
m*-m0 0 1 2Scholl
rel. freq. 0.21 0.54 0.25

Table V offers a synopsis of the performance of MCGA 
for USALB and Scoll-297 for 4 different C -values. Notice 
the high values of the balancing index )*/( CmTI tot in the 

last row.
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TABLE V. MAIN PERFORMANCE MEASURES (USALB, SCHOLL-297)
C 1394 1548 2049 2680
m0 50 45 34 26

min. 30.19 36.94 65.53 122.11smoothing
term av. 32.13 37.44 68.84 159.54

av. 0.98 0.98 0.98 0.96balancing
index max. 0.98 0.99 0.98 0.97

B. Comparison between MCGA and its non-grid version

Denote by BGA the basic (non-grid) GA obtained from 
the monogrid CGA by removing the management induced 
by the mapping of chromosomes on grid and using the 
deterministic elitist survival selection instead of devoration.  
The averages of the absolute error's distributions obtained in 
the experimental evaluation of MCGA and BGA are 
denoted by MCGA and BGA, respectively. These values are 
given in Table VI for ""I" and "U" –lines, the three types of 
problems and test data mentioned above. The quality index  
Qind is the ratio between BGAand MCGA and it measures 
how much better MCGA than BGA is. The greatest quality 
gain is 8 and it is obtained for SALB and Lutz (32 tasks) 
whilst for USALB and  Arcus (111) both methods recorded 
the same performance.

TABLE VI. COMPARISON BETWEEN MCGA AND BGA
"I"-shaped: SALB PALB CALB

MCGA 0.02 1.89 1.05
Lutz BGA 0.16 4.796 1.15

Qind 8 2.5376 1.0952
MCGA 0.14 2.27 2.01

Arcus BGA 0.21 2.85 2.46
Qind 1.5 1.2555 1.2239
MCGA 1.5 1.273 1.84

Scholl BGA 1.64 1.3 1.8
Qind 1.0933 1.0212 0.9783

av. of  Qind 3.5311 1.6048 1.0991
"U"-shaped: USALB UPALB UCALB

MCGA 1 2.23 1
Lutz BGA 1.21 3.34 1.02

Qind 1.21 1.498 1.02
MCGA 0.87 0.91 2.01

Arcus BGA 0.87 1.16 5.04
Qind 1 1.2747 2.5075
MCGA 1 1 1.96

Scholl BGA 1.17 1.13 3.84
Qind 1.17 1.13 1.9592

av. of  Qind 1.1267 1.3008 1.8289

The averaged values of  Qind  over the three sets of test data 
are given for each problem in the last row of each "I" or U" -
shaped case. The maximum quality gain 3.5311 is offered for 
SALB. Clearly, MCGA still dominates BGA. The gain is 
especially due to the many communicating processes that 
succesfully prevents premature stagnation. For Arcus (111 
tasks), on Intel Atom 1.6 GHz, 1GB RAM, 280 evolution 
stages of BGA take about 25 s,  whereas four grids require 
400 s, for about 320 stages, the communication cost being 
included in this last time. 

C. Other quality indicators

The variation of fitness related indicators obtained for two 
grids  21,  is shown in Fig. 7-9, for Arcus (111 tasks) 

instance with 6837C , for which 220 m  and 23* m .
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Figure 7. Number of workstations of the best-found solutions in 1 and 2 .
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Figure 8. Smoothing index of the best-found solutions in 1 and 2 .

At the beginning, the target is  the minimization of the 
number of workstations (Fig. 7). Evolution continues with
the minimizing of the smoothing term in fitness function 
(Fig.8).

The rapid variations of the balancing index  (Fig. 9) when 
the number of workstations is constant is due to the setting 
of the current C  value to the greatest load time of the 
workstations in the best found solution.
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Figure 9. Balancing index of the best-found solutions in 1 and 2 .

D. Communication between grids

The main features of the multigrid cellular approach are 
the multiple populations hosted by the grids and the type of 
communication between similar clusters in different grids. 

The maximum of the total traffic appears after the first 
third of the evolution stages as a result of the creating and 
developing the clusters based on similarity. At the end of 
exploration the communication flow is modest due to the 
exploitation of current clusters when the variability within 
the clusters in each grid is diminished.

A large number of communicating clusters can be 
maintained by increasing the similarity threshold  , but this 
delays the convergence detection with no  improvement of 
the solution quality. The communication increases  the local 
variability and this leads to a pseudo-periodic variation of 
average fitness in each grid.

The influence of the period of communication r  on the 
solution quality and on computational effort was 
experimentally observed. The obtaining of a general rule for 
a priori determining r  as a function of the parameters 
appearing in MCGA seems to be difficult.
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A film showing the evolution and communication process 
of MCGA with 4-grids for solving the Arcus (111 tasks) 
instance [15] can be found at [17].

E. Some improvements

A better placement of the initial population can be done 
by computing the feature vector for each individual. A 
clustering of these images using a two-dimensional 
Kohonen network is applied and a simple heuristic maps the 
preys within each cluster to individual cells in compact 
regions of the grid. This improves the fitness of the best-
found solutions with 6-7%.

The quality of the found solutions is better if the number 
of grids increases. If the number of grids is too large, the 
gain in quality becomes modest as compared to the 
computational effort. An empiric recipe is to increase the 
number of grids by 2 whenever the number of tasks 
augments with 100.

III. CONCLUSION

A new cellular genetic algorithm with communicating 
grids was proposed for efficiently solving a class of 
assembly line balancing problems. The algorithm contains 
efficient components and an appropriate management 
strategy that achieves a pseudo-segregative evolution of 
each grid. Experimental evaluation testifies its good 
performance. It offers both a fine- and large-grained 
parallelism and it can be easily extended to other 
optimization problems.
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