
Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

The Uniform Engineering of Distributed
Control Systems Using the OPC Specification

Vasile Gheorghiţă GĂITAN1, Valentin POPA1, Cristina TURCU1,
Nicoleta Cristina GAITAN2, Ioan UNGUREAN2

1 Stefan cel Mare University of Suceava, 13, University Street, RO-720229 Suceava
 2 SC ProIng SRL Suceava, 38, G. Enescu Street, RO-720253

1gaitan@eed.usv.ro

Abstract—OPC specifications have considerably contributed

to the uniformization and standardization procedures for the
software applications gathering process data and exchanging it
in a unitary manner. However, this specification does not
provide instructions or guidelines on how to achieve the
interconnection with field devices. The present article proposes
a standardization solution in field networks, which will enable
users to gain access to a server with a communication
component and several network drivers. Consequently, all
engineering aspects related to implementation will be given a
uniform interpretation. We will get a uniform engineering of
distributed control systems.

Index Terms—OPC, distributed systems, local industrial
networks, communication component

I. INTRODUCTION
Most research in the field of distributed automation

systems has been concentrated upon: 1) the uniformization
of design standards with implementation standards; 2) the
establishment of standardization procedures for the software
applications gathering process data and exchanging it in a
unitary manner. In this article, we will only focus upon the
process of uniformization and approach the following
aspects: gaining access to local industrial networks, and the
description of field devices.

The level of today’s technological advances has
determined us to consider industrial systems with complex
communication structures [6] as the one suggested in figure
1. OPC Specification just allows the interconnection of these
different types of networks.

Initially, the original OPC specification [1], [4] was
meant to solve the problem of integrating client applications
with personal computers (PCs) and devices. The automation
industry was eager to standardize connectivity and adopted
the OPC specification for a wider range of applications than
initially intended.

Most producers in the field of automation technologies
based on PC, HMI (Human Machine Interface), SCADA
(Supervisory Control and Data Acquisition) applications and
DCSs (Distributed Control System) or softPLCs accompany
an OPC client and/or and interface for an OPC server [2].

After much feedback received from industrial users, the
OPC specification has improved considerably in the last ten
years and the OPC UA has become the state-of-the-art
technology in SCADA applications. The OPC Unified
Architecture (UA) is an independent platform standard,
which allows the communication among different systems

and devices.
Following our expertise gained in the design,

implementation and exploitation of OPC servers in several
research contracts, we have gathered the observations
below:

1. When a user purchases an OPC server and wants it
connected to a new industrial network, he faces several
situations:

• To get a new server whose interface complies with
the desired network;

• To get a driver for the desired network to be
attached to the server;

• To design its own server and driver complying with
the new network;

2. When a user purchases a new device and wants to include
it in the application, he is confronted with several situations:

• The network is DDL-compliant and the device is
accompanied by a description file (or the user is
expected to write this file following the guidelines
in the instruction book), which ultimately ensures
the plug-and-play feature;

• The network is not DDL-compliant, but it
recognizes the plug-and-play device;

• The network is not DDL-compliant and it does not
recognize the device; consequently, the user either
orders the corresponding driver, or implements the
whole application by himself. Both solutions are
costly enough to be discouraging.

3. Whenever a client application requires a new revision to
be improved, the user either orders the driver or decides to
implement the whole application by himself. Again, both
solutions are costly enough to be discouraging.

The situations mentioned above occur because the OPC
specification fails to define in any possible way the interface
with the local industrial network (LIN) or with any other
application for data acquisition; moreover, the client
application does not come with an SDK to allow the
introduction of further facilities.

II. THE PROPOSED ARCHITECTURE OF THE OPC APPLICATION
The general structure proposed for the OPC application is

presented in figure 2. It may be easily extended for OPC
UA. As figure 2 shows, the application contains five basic
components:

 71
Digital Object Identifier 10.4316/AECE.2008.02013

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

Figure 1. A complex communication system in industry.

1. Three servers: the data server, the history server, and the
alarm and event server
2. The two-leveled communication component:
• The acquisition component which defines the object

dictionary (a collection of objects and member data
typical of every device and defined by an attached EDS
file) and comprises a utility program called the network
manager

• The communication module, which contains drivers
typical of every communication protocol, required by
the field devices, and, in some cases, a network set up
compliant with a well-defined protocol.

3. The database
4. The client of the SCADA application
5. The middleware is meant to ensure the distribution of
information within the widely distributed network and
provide support for the implementation of the client-server
architecture.

Before a thorough discussion of how access may be
gained in local industrial networks, several implementation
details are worth mentioning. Thus, the data server, which
functions as system data collector, carries two interfaces:
1. An interface for the devices in the field or for other
devices employed in semi-manual data acquisitions;
2. Another interface with a middleware, which ensures the
distribution of data within certain networks such as the
INTERNET (following the TCP-IP protocols, which also
permit serial connections via SLIP and PPP protocols). This

interface allows i SCADA station clients (i=1÷j) to be
connected to the application.

The other server types (i.e. data, history, and alarm and
event) can get both local and remote clients via the
middleware. The history server and the alarm and event
server can be the clients of some local data server or of any
data server on OPC-SCADA stations.

The acquisition component generates the object
dictionary. The objects therein are made available to the
data servers, which, in their turn, make them available to
system clients (provided they are given access rights).

The acquisition component creates the object dictionary
following the instructions received from the communication
module and from a description file of the devices in the
field. This description file is called the device electronic
data sheet, which is an EDS file (Electronic data Sheet)
equivalent to a DDL.

The drivers associated to the communication module
employ the protocol required by every local industrial
network (such as M-bus, Modbus RTU/ASCII, TCP-IP, or
CANOpen).

The network manager administrates the object dictionary
and “visualizes” the network in order to perform tests, apply
configurations and take maintenance decisions.

At times, certain operations can be directly performed by
a network set up provided by the producer of a network
adapter or of a network device.

 72

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

III. A NEW SOLUTION FOR UNIFORM ENGINEERING ACCESS
TO LOCAL INDUSTRIAL NETWORKS

As figure 3 illustrates, the communication component
comprises two levels. The acquisition component is
designed to collect the whole amount of data carried by the
drivers at the level of the communication module and then
make it available to the server data.

Using protocol-specific drivers, the communication
module carries out the communication protocols in order to
obtain data from the devices in the field. Here is a list of
reasons that account for our structural decisions:
• To offer a single interface for the data server, one

comprising a set of well-defined functions (methods) (a
user may have one data server and one acquisition
component);

• To permit the creation of an object dictionary ready to
integrate any other devices, irrespective of their
producer or communication protocol;

• To allow the description, administration, configuration
and maintenance of all listed devices and of their
corresponding protocols; the description file is user-
friendly, and the specialized software component is
designed to manage networks and devices;

• The device driver is the only element specific to any
given local industrial network; using a wrapper, it will
be attached to the standard function interface offered by
the communication module. Network configuration is
not entirely dependent upon the original software of the
driver: a special simulation driver is also provided.

Figure 2. The architecture of the OPC-SCADA application.

The communication component must comply with the
following requirements:

• It is supposed to run entirely on the host system if the
adapter to the local industrial network is passive (e.g.
RS232 to RS485 passive converter). Real-time facilities
may be obtained only for WINDOWS CE.

• It is distributed on the host system and on the Intelligent
Master when the type of the adapter is also Master
Intelligent, ensuring real-time facilities.

• The object dictionary represents the key of
communication component.

• The object dictionary allows full access to an industrial
network station; each station has its own object
dictionary.

• The object dictionary is defined by an EDS (Electronic
Data Sheet) or DD (Device Description) file, specific to
each station.

• The object dictionary contains at least PDOs (Process
Data Object) that allow read/write operations from/at
analog and numeric inputs/outputs and the detection of
other active values (to be subsequently defined) of
various stations, as well as SDOs (Service Data Object)
that allow the reading of states or the reading/writing of
station parameters.

• the EDS files will be used to create the object
dictionaries, and the communication component will
update these on Intelligent Master;

• it will ensure the definition of a cycle of data
acquisition/reading from/into the process. The cycle
will be divided in equal time quanta. These quanta will
be employed in the cyclic communication employing
PDOs, as well as in the acyclic communication using
PDOs or SDOs. At least one time quantum will be
reserved for the acyclic communication. Each station
may receive one or several quanta for the acyclic
communication.

• The communication component will provide a utility
program designed to ensure full access to object
dictionaries and to create the object dictionary for
virtual channels. This utility program can switch the
dictionary into the simulation mode. Thus, the values
will not be read from the stations, which will display
programmable constant (or evolving) values.

• The communication component will provide an utility
program designed to define, manage and test the
acquisition cycle.

• The communication component will provide a set of
methods to allow user applications gain access to the
object dictionaries.

• The communication component will update the PDOs
defined in the acquisition cycle; any PDO, which is not
part of the acquisition cycle, will be read/written in an
acyclic manner.

• The communication component governs the acquisition
cycle

• The communication component allows for the
automated or manual definition of industrial network
characteristics (e.g. station scans, introduction/
elimination of news stations, etc.)

• The communication component will provide a utility
program designed to monitor station response time
included in the catalogue.

 73

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

IV. ACQUISITION COMPONENT
The acquisition component uses EDS files and active

field-network information received from the communication
module to create the object dictionary. To put it differently,
this dictionary is a collection of data gathered from the
process; depending on their need and implementation
solutions, the data server or other servers will connect to this
dictionary.

The acquisition component will memorize the acquisition
module values in a cache. In fact, it memorizes the values
displayed by each device in order to make them available to
the data server.

Besides memorizing process values, the acquisition

component is supposed to perform the following functions:
• Provides a network manager.
• Provides a set of methods to get information on the

items (i.e. the properties of monitored devices) offered
by the acquisition component.

• Present a set of methods for item writing and reading.
• Present a set of methods for moving within the tree data

structure (networks, devices, device properties). These
methods are meant to:

• Modify the current position within the tree data

structure.
• Ask for the items and item groups on the

current position.
• Ask for a unique item name to be subsequently

added to a client-created group in order to
obtain values for the item in question.

Figure 3. The architecture of the two-leveled communication component.

V. COMMUNICATION MODULE
The communication module ensures the communication

with the acquisition devices in keeping with their protocol.
If there is no Master network with (real-time) acquisition
facilities, the module implements even the automatic system
generating the acquisition cycle, which will be further
referred to as the acquisition engine.

For simple adapters such as RS232/ RS485 or RS232/ M-
bus, RS232/ CAN, USB/CAN., the engine is implemented
on the host computer. There is no real-time data acquisition
for operating systems such as tip Windows 2000, XP, or
Vista. Real-time acquisition is valid only for Windows CE,
Microsoft. The acquisition drivers may be classified as
follows:
• simulation drivers. They are meant to simulate the

gathering of process data and they may be used in testing
servers, clients and the networks manager.

• driver with a PC-based acquisition engine. The
acquisition may be performed locally on the PC using an
acquisition card connected, for instance, to an internal PCI
bus, or to one or several field devices connected to a local
industrial network via a simple adapter (with or without
local intelligence, the latter characteristic being valid only
for the implementation of the network protocol). The PC
connection may be performed using standard interfaces
such as COMi, LPTi, USBi, Firewire, or Ethernet.

• driver with no acquisition engine. The engine is placed on
the intelligent adapter (with internal or external PC
connections). As these types of adapters may carry local
data histories, data base updates must be handled with
extreme care.

VI. DEFINED INTERFACES
OPC specifications have considerably contributed to the

uniformization and standardization procedures for the
software applications gathering process data and exchanging
it in a unitary manner. However, this specification does not
provide instructions or guidelines on how to achieve the
interconnection with field devices.

The acquisition component functions are briefly presented
in table 1. These functions are designed to create the
interface with the data server. The functions proposed for
standardization for the communication module are presented
in table 2. These functions are designed to create a standard
interface between the acquisition component and the
communication module; this interface allows for the
standard connection of drivers specific to the network
protocol.

TABLE 1. FUNCTIONS PROPOSED FOR STANDARDIZATION

FOR THE ACQUISITION COMPONENT
No Function (method) - Description
1 LoadNetworkConfiguration

Loads the saved configuration at the last OPC
server shutdown (into the edf.ini file)

2 ShowNetManagerDlg
Launches the network manager implemented in
this library (displays the window for the network
manager)

3 Sds
This function is used for user identification
(seeting up the security level)

 74

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

4 QueryAvailableProperties
This function is employed to obtain the ID list and
the property description of items.

5 GetItemProperties
This function reads the values for the property list
received as parameter.

6 LookupItemIDs
This function is used to obtain the connection
string list for the item properties.

7 ChangeBrowsePosition
This functions allows to move inside the tree
structure with the items on the server

8 BrowseOPCItemIDs
This function is used to obtain a name list of the
items in accordance with a received filter.

9 GetItemID
This functions returns the connection line for an
item

10 BrowseAccessPaths
This function initiates the browse operation
starting with an item whose path is set as
parameter (the browse operation does to start from
the root)

11 SyncRead
The function is used for the synchronous reading
of data (the reading may be performed from the
cache or directly from the device)

12 SyncWrite
The function is used for the synchronous writing
in the network devices

13 GetItemAttributes
This function is used for reading of item attributes

14 GetState
This furnctions returns data on server status

15 GetItemResult
This function is employed to read access rights
and identify the type of the item sent as parameter

16 ItemExists
This functions verifies whether an item is present
or not in the server address list

17 FreeDllMemory
Frees the resources for the library while executing
the application that uses the library

18 ShowConnManagerDlg
The function launches the connection manager
implemented by the library called
„gpcc_ODV.dll”.

TABLE 2. THE FUNCTIONS PROPOSED FOR STANDARDIZATION

FOR THE COMMUNICATION MODULE
No Function (methods) Description
1 AddCommunication

Adds a network saved at application shutdown.
2 DefCommunication

Defines and adds a new network
3 ModifCommunication

Modifies the communication settings for a
network

4 GetCommString
Gets the configuration string for a network

5 StartCommunication
Starts the communication for a network

6 StopCommunication

Interrupts the communication for a network
7 SetPointerEvFct

Sends a pointer to the furntion in use in order to
receive the events from the libraries involved in
communication

8 ScanNetwork
Scans a netowork

9 GetAchisitionPARAM
Reads the acquisition parameters for a network

10 SetAchisitionPARAM
Sets up the acquisition parameters for a network

11 StartTest
Initiates the testing of a network

12 StopTest
Stops the testing of a network

13 StopScan
Stops the scanning process

14 DelCommunication
Deletes a network

15 AddDevice
Adds a device to the network whose handler is
received as parameter

16 GetCommunicationDescription
Reads the network description

17 AcquisitionParamsToString
Takes over the string of acquisition parameters

18 StringToAcquisitionParams
Sets up the acquisition parameters

19 FreeDllMemory
Frees the dll memory

20 AddAsincronObject
Adds asynchronous objects to the bottom list of
asynchronous objects

21 DeleteAllDevicesNetwork
Deletes the devices of a network

22 ScanNetworkEthernet
Verifies the Ethernet connexions

23 ShowConnectionsManager
Displays the connection manager

24 GetTypeComunication
Returns the communication type

25 StartConnectionsManager
Creates the thread for the connection manager and
initiates the connection check

26 StartCheckConnections
Starts the connection check (starts the
connections manager)

27 StopCheckConnections
Closes the connections

VII. EXPERIMENTS AND RESULTS

The current version of the SCADA system was developed
after the observations that we have made for a period of
eight years. In this section we provide a comparison in terms
of performance between the new version of OPC-SCADA
application and the earlier version. The architecture of the
old OPC-SCADA application is presented in fig. 4. The
main role of the communication component from the old
OPC-SCADA application is to ensure the connection
between the RS-485/232 master and the various OLE device
components. The concurrent access to the COM interface
exposed is handled using the Apartment threading mode.

 75

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

 Figure 4. The architecture of the old OPC-SCADA application.

The major differences between these two versions are:
• For the first version, each type of device has a profile

(an ActiveX instance) associated with it, while in the
new version there is the acquisition component (as a
dll library) which contain the objects dictionary and
each device has an associated input in objects
dictionary.

• In order to introduce a new device, we create an
instance of an ActiveX control, while in the new
version we create a new entry in object dictionary.

• In the OPC client, each component that reads data
form OPC DA server will create its own group. In
the new version it will create an OPC object that
creates a group in the OPC server and other objects
will retrieve data from the OPC server via OPC
object (in this case it will create a single group for all
objects from the client).

• Each component of the OPC client is an ActiveX
control instance, while in the new version each
component is an instance of a class from a dll
library.

• In terms of software development, in the old version
for each type of device we developed an ActiveX
control, while in the new version we write a
description text file (software development
knowledge not required).

• The first version implements the OPC specification
v1.05. The new version implements the OPC
specification v2.05.

To demonstrate the increase of performance in the new
version, we made the following experiment: for both
versions, a project in the client (which displays a numeric
value with a seven segments display) was created.

We monitored the performance evolution (CPU load
and memory used) by doubling the display number
systematically from one to 1024.

TABLE 3. THE OLD CLIENT. RESOURCE .

CONSUMPTION OF RESOURCES, CPU AND MEMORY,
FOR 1 TO 1024 GRAPHICAL CONTROLS

Application controls CPU load % Memory MB
1 0 12.804
2 1 12.864
4 1 12.892
8 1 12.952

16 1 13.044
32 2 13.212
64 3 13.492

128 9 14.212
256 16 15.68
512 34 18.922
1024 50 32.844

Server object 1

Group 11

Item n11

Item 111

Serial
communication

component

Device 1
Profile

Device 2
Provile

Device k
Profile

Group p1

Item np1

Item 1p1

Server object m

Group pm

Item npm

Item 1pm

Group 1m

Item n1m

Item 11m

Master RS
232 - 485

Client 1

Device 1

OPC
OPC
Server

Interface Device 2

OPC

Device k

Client m

 76

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 8, Number 2, 2008

TABLE 4. THE NEW CLIENT. RESOURCE.
CONSUMPTION OF RESOURCES, CPU AND MEMORY,

FOR 1 TO 1024 GRAPHICAL CONTROLS
Application

controls CPU load % Memory MB
1 0 26.488
2 0 26.6
4 0 26.08
8 0 26.08

16 0 25.116
32 1 25.116
64 2 25.58

128 2 26.34
256 5 27.5
512 12 30.048
1024 23 37.752

011112 3

9

16

34

50

000001 2 2
5

12

23

-10

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

The number of graphical control

C
P

U
 l

oa
d

(%
)

Old version New version

Figure 5. The tests were performed on a computer with Intel Pentium 4,
3.00 GHz, 512 MB RAM, Windows XP SP2.

VIII. CONCLUSIONS
The present article has addressed the issue of how to

obtain a slight form of standardization in field networks.
Thus, users might easily consider the use of a server with
a communication component and of several network-
oriented drivers. This solution results in the
uniformization of all engineering aspects related to
various implementation stages. The communication
component was presented in detail.

The original contributions brought to the study of the
OPC specification in distributed control systems refer, in
author’s vision, to the following aspects:
• the devise of the communication component and the

object dictionary;
• the defining of the SCADA client;
• the defining of the distributed database.

The present article focuses only on major aspects
related to the communication component. Our novel
approach refers to:
• The two-leveled communication component.
• The creation of a standard set of methods ensuring

the connection to the data server.
• The defining of a device description language to

allow the addition of devices to plug-and-play
systems.

• The defining of a standard interface to connect
device driver or local industrial network drivers to
the communication module.

• The defining of an acquisition cycle based on time
division, process data objects (PDOs) and service
data objects (SDOs).

The proposed architecture has been put into practice

and tested in various research contracts mentioned in [8],
[9]. We have also implemented drivers for ASCII
networks (using the RS485 standard line), as well as for
MODBUS ASCII, RTU and TCP/IP, CANOpen and M-
bus networks.

These results are obtained through practical
experiments [10] and observations conducted during the 8
years. Always followed the increasing performance [11]
and scalability of the system based on OPC servers.

In the future, we intend to create a mathematical model
for the new implementation. Also, we want to develop a
test scenarios to show superior performance of the new
versions. In the figure 5 it is presented the first test made
with the same client application. We can observe an
improvement by 50% of performances.

REFERENCES
[1] Frank Iwanitz and Jürgen Lange / Hüthig OPC-Fundamentals,

Implementation, and Application, 251 pages, 1 CD, ISBN:
3778529048.

[2] ISA EXPO2005 Chicago IL, OPC and OPC Unified Architecture
[3] Eric Murphy, MatrikonOPC - July 2006, OPC UA - How Deep

Does Interface Standardization Go?
[4] OPC Foundation – OPC Common 1.10 Specification
[5] OPC Foundation – OPC UA Part1 – Concepts 1.00 Specification
[6] Dr.-Ing. Axel Klostermeyer Siemens A&D PT2 P, VAN –

Developing the Future of Industrial Communication Presentation
of the European R&D-Project "Virtual Automation Networks“

[7] Stefan-Helmut Leitner, Wolfgang Mahnke - ABB Corporate
Research Center, OPC UA – Service-oriented Architecture for
Industrial Applications

[8] Vasile Gheorghiţă GĂITAN, Cornel TURCU, Alexandru
GOLOCA, Renati POPA, An RFID and OPC Technology Based
Distributed System for Production Control and Monitoring, RFID
Eurasia 2007, September 5-6, Istanbul, Turkey.

[9] Cristina TURCU, Cornel Turcu, Valentin POPA, Vasile GAITAN,
ICT and RFID in Education: Some Practical Aspects in Campus
Life. 3rd International Conference on interdisciplinarity in
education ICIE’07, March 15-17, 2007, Athens, Greece, ISBN
978-960-89028-4-8, ISSN 1790-661X

[10] Vasile GĂITAN, Using OPC technologies with the Highly
Functional Distributed System Advances in Electrical and
Computer Engineering, Suceava, Romania, ISSN 1582-7445, No
2/2003, volume 3 (10), pp. 35-46

[11] Valentin POPA,Vasile GĂITAN, Transponders in a Wireless
Sensors Network, Advances in Electrical and Computer
Engineering, Suceava, Romania, ISSN 1582-7445, No 1/2003,
volume 3 (10), pp. 62-67

 77

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 13:43:30 (UTC) by 44.212.39.149. Redistribution subject to AECE license or copyright.]

