Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,529,191 unique visits
1,005,619 downloads
Since November 1, 2009



Robots online now
Googlebot
Baiduspider


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2022 - 8

Performance Comparison of Different OpenCL Implementations of LBM Simulation on Commodity Computer Hardware

TEKIC, J. See more information about TEKIC, J. on SCOPUS See more information about TEKIC, J. on IEEExplore See more information about TEKIC, J. on Web of Science, TEKIC, P. See more information about  TEKIC, P. on SCOPUS See more information about  TEKIC, P. on SCOPUS See more information about TEKIC, P. on Web of Science, RACKOVIC, M. See more information about RACKOVIC, M. on SCOPUS See more information about RACKOVIC, M. on SCOPUS See more information about RACKOVIC, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,653 KB) | Citation | Downloads: 573 | Views: 1,084

Author keywords
Lattice Boltzmann methods, multicore processing, scientific computing, parallel programming, parallel algorithms

References keywords
boltzmann(25), lattice(24), method(13), flow(9), multi(8), flows(7), opencl(6), implementation(6), fluid(6), cavity(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2022-02-28
Volume 22, Issue 1, Year 2022, On page(s): 69 - 76
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2022.01008
Web of Science Accession Number: 000762769600007
SCOPUS ID: 85126816356

Abstract
Quick view
Full text preview
Parallel programming is increasingly used to improve the performance of solving numerical methods used for scientific purposes. Numerical methods in the field of fluid dynamics require the calculation of a large number of operations per second. One of the methods that is easily parallelized and often used is the Lattice Boltzmann method (LBM). Today, it is possible to perform simulations of numerical methods not only on high performance computers (HPC) but also on commodity computers. In this paper is presented how to accelerate LBM implementation on commodity computers using characteristics of OpenCL specification. Simulation is executed simultaneously on multiple heterogeneous devices. Four different approaches for several commodity computer configurations are presented. Obtained results are compared for different types of commodity computers and advantages and disadvantages are discussed. In this paper it presented which LBM OpenCL code implementation, among four different presented, shows best simulation performance and should be used when solving similar CFD problems.


References | Cited By  «-- Click to see who has cited this paper

[1] P. L. Alvarez, S. Yamagiwa, "Invitation to OpenCL (Published Conference Proceedings style)," in Proc. Conference: Second International Conference on Networking and Computing, ICNC 2011, Osaka, Japan, November 30 - December 2, 2011, pp. 8-16.
[CrossRef]


[2] W. S. R. M. Weiping Shi, "Finite-difference-based Lattice Boltzmann method for inviscid compressible flows," Numerical Heat Transfer, Part B: Fundamentals, vol. 40, pp. 1-21, no. 1, 2001.
[CrossRef] [Web of Science Times Cited 64]


[3] R. Mei, W. Shyy, D. Yu, L.-S. Luo, "Lattice Boltzmann method for 3-D flows with curved boundary," Journal of Computational Physics, vol. 161, pp. 680-699, no. 2, 2000.
[CrossRef] [Web of Science Times Cited 269]


[4] Z. Guo, T. S. Zhao, "A Lattice Boltzmann model for convective heat transfer in porous media," Numerical Heat Transfer, Part B: Fundamentals, vol. 47, pp. 157-177, no. 2, 2005.
[CrossRef] [Web of Science Times Cited 245]


[5] P. M. Tekic, J. B. Radenovic, N. Lj. Lukic., S. S. Popovic, "Lattice Boltzmann simulation of two-sided lid-driven flow in a staggered cavity," Int. J. Comput. Fluid Dyn., vol. 24, pp. 383-390, no. 9, 2010.
[CrossRef] [Web of Science Times Cited 11]


[6] N. Lukic,, P. Tekic, J. Radjenovic, I. Sijacki, "Lattice Boltzmann simulation of two-sided lid-driven flow in deep cavities," Acta Periodica Technologica, pp. 157-168, 2015.
[CrossRef]


[7] S. Tomov, M. McGuigan, R. Bennett, G. Smith, J. Spiletic, "Benchmarking and implementation of probability-based simulations on programmable graphics cards," Computers & Graphics, vol. 29, pp. 71-80, no. 1, 2005.
[CrossRef] [Web of Science Times Cited 31]


[8] W. Li, X. Wei, A. Kaufman, "Implementing lattice Boltzmann computation on graphics hardware," The Visual Computer, vol. 19, pp. 444-456, no. 7, 2003.
[CrossRef] [Web of Science Times Cited 112]


[9] D. Vidal, R. Roy, F. Bertrand, "A parallel workload balanced and memory efficient Lattice-Boltzmann algorithm with single unit BGK relaxation time for laminar Newtonian flows," Computers & Fluids, vol. 39, pp. 1411-1423, no. 8, 2010.
[CrossRef] [Web of Science Times Cited 112]


[10] K. Mattila, J. Hyvaluoma, J. Timonen, T. Rossi, "Comparison of implementations of the Lattice-Boltzmann method," Computers & Mathematics with Applications, vol. 55, pp. 1514-1524, no. 7, 2008.
[CrossRef] [Web of Science Times Cited 45]


[11] G. K. Batchelor, "On steady laminar flow with closed streamlines at large Reynolds number," Journal of Fluid Mechanics, vol 1, pp. 177-190 , 1956.
[CrossRef]


[12] F. Pan, A, Acrivos, "Steady flows in rectangular cavitie," Journal of Fluid Mechanics," vol. 28, pp. 643-655, 1967
[CrossRef]


[13] A. S. Benjamin, V. E. Denny, "On the convergence of numerical solutions for 2-D flows in a cavity at large Re," Journal of Computational Physics, vol. 33, pp. 340-358, 1979.
[CrossRef] [Web of Science Times Cited 84]


[14] P. N. Shankar, M. D. Deshpande, "Fluid Mechanics in the Driven Cavity," Annual Review of Fluid Mechanics, vol. 32, no.1 , pp. 93-136, 2000.
[CrossRef] [Web of Science Times Cited 615]


[15] C.-H. Bruneau, M. Saad, "The 2D lid-driven cavity problem revisited. Computers & Fluids," vol. 35, no. 3, pp. 326-348, 2006.
[CrossRef] [Web of Science Times Cited 330]


[16] J. Tolke, "Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by NVIDIA," Computing and Visualization in Science, vol. 13, no. 29, 2010.
[CrossRef] [Web of Science Times Cited 136]


[17] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, "Multi-GPU implementation of the Lattice Boltzmann method," Computers & Mathematics with Applications, vol. 65, pp. 252-261, no. 2, 2013.
[CrossRef] [Web of Science Times Cited 84]


[18] H.-W. Chang, P.-Y. Hong, L.-S. Lin, C.-A. Lin, "Simulations of three-dimensional cavity flows with multi relaxation time Lattice Boltzmann method and graphic processing units," Procedia Engineering, vol. 61, pp. 94-99, no. 2013.
[CrossRef]


[19] H.-W. Chang, P.-Y. Hong, L.-S. Lin, C.-A. Lin, "Simulations of flow instability in three dimensional deep cavities with multi relaxation time Lattice Boltzmann method on graphic processing units," Computers & Fluids, vol. 88, pp. 866-871, no. 2013.
[CrossRef] [Web of Science Times Cited 20]


[20] C. Huang, B. Shi, N. He, Z. Chai, "Implementation of Multi-GPU based Lattice Boltzmann method for flow through porous media," Advances in Applied Mathematics and Mechanics, vol. 7, pp. 1-12, no. 1, 2015.
[CrossRef] [Web of Science Times Cited 36]


[21] P.-Y. Hong, L.-M. Huang, L.-S. Lin, C.-A. Lin, "Scalable multi-relaxation-time Lattice Boltzmann simulations on multi-GPU cluster," Computers & Fluids, vol. 110, pp. 1-8, no. 2015.
[CrossRef] [Web of Science Times Cited 34]


[22] W. Xian, A. Takayuki, "Multi-GPU performance of incompressible flow computation by Lattice Boltzmann method on GPU cluster," Parallel Computing, vol. 37, pp. 521-535, no. 9, 2011.
[CrossRef] [Web of Science Times Cited 120]


[23] B. Massimo, F. Massimiliano, M. Simone, S. Sauro, K. Efthimios, "A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries," Concurrency and Computation: Practice and Experience, vol. 22, pp. 1-14, no. 1, 2010.
[CrossRef]


[24] P. M. Tekic, J. B. Radjenovic, M. Rackovic, "Implementation of the Lattice Boltzmann Method on heterogeneous hardware and platforms using OpenCL, " Advances in Electrical and Computer Engineering, vol. 12, no. 1, pp. 51-56, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 5]


[25] E. Calore, S.F. Schifano, R. Tripiccione, "A Portable OpenCL Lattice Boltzmann code for multi- and many-core processor architectures," Procedia Computer Science, vol. 29, pp. 40-49, 2014.
[CrossRef] [Web of Science Times Cited 12]


[26] S. McIntosh-Smith, D. Curran, "Evaluation of a performance portable Lattice Boltzmann code using OpenCL," in Proc. Conference: International Workshop on OpenCL 2013 & 2014. Association for Computing Machinery, New York, NY, USA, 2014.
[CrossRef]


[27] J. B. Tekic, P. M. Tekic, M. Rackovic, "Lattice Boltzmann method implementation on multiple devices using OpenCL," Advances in Electrical and Computer Engineering, vol. 3, pp. 3-8, 2018.
[CrossRef] [Full Text] [Web of Science Times Cited 2]


[28] D. V. Patil, K. N. Lakshmisha, B. Rogg, "Lattice Boltzmann simulation of lid-driven flow in deep cavities," Computers & Fluids, vol. 35, pp. 1116-1125, no. 10, 2006.
[CrossRef] [Web of Science Times Cited 68]


[29] S. Hou, Q. Zou,S. Chen, G. Doolen, A. C. Cogley, "Simulation of cavity flow by the Lattice Boltzmann method," Journal of Computational Physics, vol. 118, pp. 329-347, no. 2, 1995.
[CrossRef] [Web of Science Times Cited 532]


[30] P. L. Bhatnagar, E. P. Gross, M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical Review, vol. 94, pp. 511-525, no. 3, 1954.
[CrossRef]


[31] X, He, L. Luo, "Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation," Physical Review, vol. 56, pp. 6811-6817, no. 6, 1997.
[CrossRef] [Web of Science Times Cited 1305]


[32] U. Ghia, K. N. Ghia, C. T. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," Journal of Computational Physics, vol. 48, pp. 387-411, 1982.
[CrossRef] [Web of Science Times Cited 3008]




References Weight

Web of Science® Citations for all references: 7,280 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 221 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-17 02:50 in 180 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy