Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,498,151 unique visits
994,323 downloads
Since November 1, 2009



Robots online now
Googlebot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus


SAMPLE ARTICLES

Frequency Domain Horizontal Cross Correlation Analysis of RSA, AKALP KUZU, E., TANGEL, A., ORS YALCIN, S. B.
Issue 2/2022

AbstractPlus

Triple-feature-based Particle Filter Algorithm Used in Vehicle Tracking Applications, ABDULLA, A. A., GRAOVAC, S., PAPIC, V., KOVACEVIC., B.
Issue 2/2021

AbstractPlus

Performance Analysis of Electro-Impulse De-icing Device for Overhead Ground Wire, ZHOU, X., ZHU, Y., SUN, S., CAI, X.
Issue 4/2022

AbstractPlus

A New Visual Cryptography Method Based on the Profile Hidden Markov Model, OZCAN, H., KAYA GULAGIZ, F., ALTUNCU, M. A., ILKIN, S., SAHIN, S.
Issue 1/2021

AbstractPlus

Quantum Steganography Using Two Hidden Thresholds, TUDORACHE, A.-G., MANTA, V., CARAIMAN, S.
Issue 4/2021

AbstractPlus

Novel Power Smoothing Technique for a Hybrid AC-DC Microgrid Operating with Multiple Alternative Energy Sources, NEMPU, P. B., SABHAHIT, J. N., GAONKAR, D. N., RAO, V. S.
Issue 2/2021

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  2/2019 - 6

 HIGHLY CITED PAPER 

Analysis of Downlink Uplink Decoupled Dense Heterogeneous Cellular Network based on User Association using Multi-Slope Path Loss Model

ALI, S. See more information about ALI, S. on SCOPUS See more information about ALI, S. on IEEExplore See more information about ALI, S. on Web of Science, ASLAM, M. I. See more information about  ASLAM, M. I. on SCOPUS See more information about  ASLAM, M. I. on SCOPUS See more information about ASLAM, M. I. on Web of Science, AHMED, I. See more information about AHMED, I. on SCOPUS See more information about AHMED, I. on SCOPUS See more information about AHMED, I. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,252 KB) | Citation | Downloads: 855 | Views: 2,205

Author keywords
cellular networks, probability distribution, propagation losses, stochastic processes, uplink

References keywords
uplink(13), link(12), networks(11), communication(10), cellular(10), path(7), loss(7), communications(7), analysis(7), propagation(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 45 - 52
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02006
Web of Science Accession Number: 000475806300006
SCOPUS ID: 85066334149

Abstract
Quick view
Full text preview
Keeping in consideration the expected need of node densification of heterogeneous cellular networks in near future, it is imperative that more accurate path loss models be used when analyzing heterogeneous cellular networks performance in terms of user equipment association probability, coverage probability and spectral efficiency. In this paper, we have derived the generalized user equipment association probabilities expressions of a two-tier Dense Heterogeneous Cellular Network incorporating Downlink Uplink Decoupled technique using multi-slope path loss model, which incorporates the effect of physical environment on the path loss based on separation between transmitter and receiver. For analyzing network performance, we have considered dual-slope and tri-slope path loss models as special cases. The derived analytical expressions have been validated through network simulations and found in good agreement. The results have also been compared with conventional single-slope path loss model and it has been found that the decoupled uplink downlink association probability is higher when incorporating multi-slope path loss model as compared to single-slope path loss model.


References | Cited By  «-- Click to see who has cited this paper

[1] F. Jejdling, "Ericsson Mobility Report," Document ID: EAB-18:004510 Uen, June 2018.

[2] Cisco, "Cisco Visual Networking Index: Forecast and Trends,2017-2022," Document ID:1543280537836565, November 26, 2018

[3] J. Orlosky, K. Kiyokawa, H. Takemura, "Virtual and Augmented Reality on the 5G Highway," Journal of Information Processing, vol. 25, pp. 133-141, 2017.
[CrossRef] [SCOPUS Times Cited 76]


[4] K. Smiljkovikj, P. Popovski, L. Gavrilovska, "Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks," IEEE Wireless Communication Letters, vol. 4, no. 2, pp. 173-176, 2015.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 102]


[5] S. Singh, X. Zhang, J. G. Andrews, "Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets," IEEE Transactions on Wireless Communication, vol. 14, no. 10, pp. 5360-5373, 2015.
[CrossRef] [Web of Science Times Cited 194] [SCOPUS Times Cited 220]


[6] M. N. Sial, J. Ahmed, "Analysis of K-tier 5G heterogeneous cellular network with dual-connectivity and uplink-downlink decoupled access," Journal on Telecommunication Systems, vol. 67, no. 4, pp. 669-685, 2018.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 18]


[7] M. N. Sial, J. Ahmed, "A Realistic Uplink-Downlink Coupled and Decoupled User Association Technique for K-tier 5G HetNets," Arabian Journal for Science and Engineering, vol. 43, no. 6, pp 1-20, 2018.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 16]


[8] M. Sial and J. Ahmed, A novel and realistic hybrid downlink-uplink coupled / decoupled access scheme for 5G HetNets. Turkish Journal on Electrical and Computer Engineering, vol. 25, no. 6, pp. 4457 - 4473, 2017.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 9]


[9] F. Boccardi, J. Andrews, H. Elshaer, M. Dohler, S. Parkvall, P. Popovski, S. Singh, "Why to decouple the uplink and downlink in cellular networks and how to do it," IEEE Communication Magazine, vol. 54, no. 3, pp. 110-117, 2016.
[CrossRef] [Web of Science Times Cited 141] [SCOPUS Times Cited 157]


[10] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, J. C. Zhang, "What Will 5G Be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, 2014.
[CrossRef] [Web of Science Times Cited 5697] [SCOPUS Times Cited 6734]


[11] I. Chih-Lin, S. Han, Z. Xu, S. Wang, Q. Sun, Y. Chen, "New paradigm of 5G wireless internet," IEEE Journal on Selected Areas of Communication, vol. 34, no. 3, pp. 474-482, 2016.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 113]


[12] M. Bacha, Y. Wu, B. Clerckx, "Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations," IEEE Transactions on Wireless Communication, vol. 16, no. 5, pp. 2760-2775, 2017.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 40]


[13] L. Zhang, W. Nie, G. Feng, F.-C. Zheng, S. Qin, "Uplink performance improvement by decoupling uplink/downlink access in HetNets," IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 6862-6876, 2017.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 37]


[14] H. Elshaer, M. N. Kulkarni, F. Boccardi, J. G. Andrews, M. Dohler, "Downlink and uplink cell association with traditional macrocells and millimeter wave small cells," IEEE Transactions on Wireless Communication, vol. 15, no. 9, pp. 6244-6258, 2016.
[CrossRef] [Web of Science Times Cited 162] [SCOPUS Times Cited 169]


[15] M. Di Renzo, P.Guan, "Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations," IEEE Transactions on Communication vol. 64, no. 6, pp. 2453-2476, 2016.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 67]


[16] J. Park, S.-L. Kim, J. Zander, "Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks," IEEE Transactions on Wireless Communication, vol. 15, no. 6, pp. 4362-4379, 2016.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 83]


[17] X. Sui, Z. Zhao, R. Li, H. Zhang, "Energy efficiency analysis of heterogeneous cellular networks with downlink and uplink decoupling," IEEE Global Communications Conference, pp. 1-7, 2015.
[CrossRef] [Web of Science Record]


[18] H. H. Xia, "A simplified analytical model for predicting path loss in urban and suburban environments," IEEE Transactions on Vehicular Technology, vol. 46, no. 4, pp. 1040-1046, 1997.
[CrossRef] [Web of Science Times Cited 83] [SCOPUS Times Cited 105]


[19] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, R. Bianchi, "An empirically based path loss model for wireless channels in suburban environments," IEEE Journal on Selected Areas in Communications, vol. 17, no. 7, pp. 1205-1211, 1999.
[CrossRef] [Web of Science Times Cited 677] [SCOPUS Times Cited 884]


[20] T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas and Propagation Magazine, vol. 45, no. 3, pp. 51-82, 2003.
[CrossRef] [Web of Science Times Cited 514] [SCOPUS Times Cited 731]


[21] T. S. Rappaport, L. B. Milstein, "Effects of radio propagation path loss on DS-CDMA cellular frequency reuse efficiency for the reverse channel," IEEE Transactions on Vehicular Technology, vol. 41, no. 3, pp. 231-242, 1992.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 82]


[22] H. Xia, H. L. Bertoni, L. R. Maciel, A. Lindsay-Stewart, R. Rowe, "Radio propagation characteristics for line-of-sight microcellular and personal communications," IEEE Transactions on Antennas and Propagation, vol. 41, no. 10, pp. 1439-1447, 1993.
[CrossRef] [Web of Science Times Cited 157] [SCOPUS Times Cited 213]


[23] V. Erceg, S. Ghassemzadeh, M. Taylor, D. Li, D. L. Schilling, "Urban/suburban out-of-sight propagation modeling," IEEE Communications Magazine, vol. 30, no. 6, pp. 56-61, 1992.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 92]


[24] M. J. Feuerstein, K. L. Blackard, T. S. Rappaport, S. Y. Seidel, H. H. Xia, "Path loss, delay spread, and outage models as functions of antenna height for microcellular system design," IEEE Transactions on Vehicular Technology, vol. 43, no. 3, pp. 487-498, 1994.
[CrossRef] [Web of Science Times Cited 185] [SCOPUS Times Cited 231]


[25] A. K. Gupta, X. Zhang, J. G. Andrews, "SINR and Throughput Scaling in Ultradense Urban Cellular Networks," IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 605-608, 2015.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 63]


[26] X. Zhang, J. G.Andrews, "Downlink Cellular Network Analysis With Multi-Slope Path Loss Models," IEEE Transactions on Communication, vol. 63, no. 5, pp. 1881-1894, 2015.
[CrossRef] [Web of Science Times Cited 232] [SCOPUS Times Cited 246]


[27] V. M. Nguyen, M. Kountouris, "Coverage and capacity scaling laws in downlink ultra-dense cellular networks," IEEE International Conference on Communications, pp. 1-7, 2016.
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 11]


[28] A. A. Ammouri, J. G. Andrews, F. Baccelli, "A Unified Asymptotic Analysis of Area Spectral Efficiency in Ultradense Cellular Networks," IEEE Transactions on Information Theory, pp. 1-1, 2018.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 39]


[29] B. Yang, G. Mao, M. Ding, X. Ge, X. Tao, "Dense Small Cell Networks: From Noise-Limited to Dense Interference-Limited," IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4262-4277, 2018.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 51]


[30] H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, "Resource optimization in multi-tier HetNets exploiting multi-slope path loss model," IEEE Access vol. 5, pp. 8714-8726, 2017.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 21]


[31] H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, L. Musavian, "User association in 5G heterogeneous networks exploiting multi-slope path loss model," Recent Trends in Telecommunications Research, pp. 1-5, 2017.
[CrossRef] [SCOPUS Times Cited 11]




References Weight

Web of Science® Citations for all references: 8,722 TCR
SCOPUS® Citations for all references: 10,621 TCR

Web of Science® Average Citations per reference: 273 ACR
SCOPUS® Average Citations per reference: 332 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-28 14:14 in 179 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy