Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,501,267 unique visits
994,953 downloads
Since November 1, 2009



Robots online now
Sogou


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  2/2016 - 1
View TOC | « Previous Article | Next Article »

 HIGHLY CITED PAPER 

Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

PETREUS, D. See more information about PETREUS, D. on SCOPUS See more information about PETREUS, D. on IEEExplore See more information about PETREUS, D. on Web of Science, DARABAN, S. See more information about  DARABAN, S. on SCOPUS See more information about  DARABAN, S. on SCOPUS See more information about DARABAN, S. on Web of Science, CIRSTEA, M. See more information about CIRSTEA, M. on SCOPUS See more information about CIRSTEA, M. on SCOPUS See more information about CIRSTEA, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,705 KB) | Citation | Downloads: 1,655 | Views: 4,034

Author keywords
DC-DC power converters, photovoltaic systems, analog circuits, wind energy, hybrid power systems

References keywords
power(24), energy(11), system(7), wind(6), maximum(6), grid(6), point(5), photovoltaic(5), control(5), tracking(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 3 - 10
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02001
Web of Science Accession Number: 000376996100001
SCOPUS ID: 84974829731

Abstract
Quick view
Full text preview
This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind) and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC) for power factor correction (PFC) circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm) is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.


References | Cited By  «-- Click to see who has cited this paper

[1] P. Shamsi and B. Fahimi, "Stability assessment of a DC distribution network in a hybrid micro-grid application," IEEE Trans. on Smart Grid, vol. 5(5), pp. 2527-2534, 2014.
[CrossRef] [Web of Science Times Cited 47]


[2] W. Li, J. Xiao, Y. Zhao, and X. He, "PWM plus phase angle shift (PPAS) control scheme for combined multiport DC/DC converters," IEEE Trans. Power Electron, vol. 27, no. 3, March 2012.
[CrossRef] [Web of Science Times Cited 97]


[3] C. Zhao , S. D. Round, and J. W. Kolar, "An isolated three-port bidirectional DC-DC converter with decoupled power flow management," IEEE Trans. Power Electron., vol 23, no. 5, pp. 2443-2453, 2008.
[CrossRef] [Web of Science Times Cited 528]


[4] Y. M. Chen, Y. C. Liu, S. C. Hung and C. S. Cheng, "Multi-input inverter for grid-connected hybrid PV/wind power system," IEEE Trans. Power Electron. vol.22, no. 3. pp. 1070-1077, May 2007.
[CrossRef] [Web of Science Times Cited 203]


[5] J. Hui, A. Bakhshai, and P. K. Jain, "A hybrid wind-solar energy system: a new rectifier stage topology," APEC, 2010, pp. 155-161.

[6] S. Daraban, D. Petreus, and C. Orian, "Control topology for high efficiency small scale wind energy conversion systems," in OPTIM, May 2014, pp. 1070-1077.
[CrossRef]


[7] S. G. Malla, and C. N. Bhende, "Voltage control of stand-alone wind and solar energy system," Electrical Power and Energy Systems vol. 56, pp. 361-373, 2014.
[CrossRef] [Web of Science Times Cited 68]


[8] Z. Wang, Z. Zou, and Y. Zheng, "Design and control of a photovoltaic energy and SMES hybrid system with current source grid inverter," IEEE Trans. Appl. Supercond. vol. 23, no. 3, pp. 1051-1055, 2013.
[CrossRef] [Web of Science Times Cited 23]


[9] S. Daraban, D. Petreus, and C. Morel, "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy,vol.74, pp. 374-388, 2014.
[CrossRef] [Web of Science Times Cited 210]


[10] B. Somaiah and V. Agarwal, "Recursive Estimation-Based Maximum Power Extraction Technique for a Fuel Cell Power Source Used in Vehicular Applications," IEEE Trans. on Power Electron., vol 28, no. 10, pp. 4636-4643, Oct.2013.
[CrossRef] [Web of Science Times Cited 20]


[11] J. Chen, J. Chen and C. Gong, "Constant-Bandwidth Maximum Power Point Tracking Strategy for Variable-Speed Wind Turbines and Its Design Details," IEEE Trans. Power Electron., vol. 60, no. 11, pp. 5050- 5058, Nov. 2013.
[CrossRef] [Web of Science Times Cited 46]


[12] Steca Elektronik GmbH - "Steca PV grid Connected".

[13] S. M. MacAlpine, R. W. Erickson, and M.J. Brandemuehl, "Characterization of power optimizer potential to increase energy capture in photovoltaic system operating under nonuniform conditions,"IEEE Trans. Power Electrons.,vol.28, no.6, pp.2936-2945, June 2013.
[CrossRef] [Web of Science Times Cited 133]


[14] K. C. Tseng, C. C. Huang, and W.Y. Shih, "A high step-up converter with a voltage multiplier module for a photovoltaic system," IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3047-3057, June 2013.
[CrossRef] [Web of Science Times Cited 213]


[15] M. Balato, and M. Vitelli, "Optimization of distributed maximum power point tracking PV application: the scan of the power vs. voltage input characteristic of the inverter," Electrical Power and Energy Systems, vol. 60, pp. 334-346, April 2014.
[CrossRef] [Web of Science Times Cited 18]


[16] P. S. Shenoy, K. A. Kim, B. B. Johnson, and P.T. Krein, "Differential power processing for increased energy production and reliability of photovoltaic system," IEEE Trans. Power Electrons., vol. 28, no.6, pp. 2968-2979, June 2013.
[CrossRef] [Web of Science Times Cited 334]


[17] H. Hu, S. Harb, N. H. Kutkut, Z. J. Shen, and I. Batarseh, "A single-stage microinverter without using electrolytic capacitors," IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2677-2687, June 2013.
[CrossRef] [Web of Science Times Cited 172]


[18] D. Petreus, T. Patarau, S. Daraban, C. Morel, and B. Morley, "A novel maximum power point tracker based on analog and digital control loops," Solar Energy, vol. 85, no. 3, pp. 588-600, March 2011.
[CrossRef] [Web of Science Times Cited 29]


[19] K. Anderson, J. Du, A. Narayan and A. El Gamal, "GridSpice: A distributed simulation platform for the Smart Grid," Trans. Ind. Informat., vol. 10, no. 4, pp. 2354-2363, June 2014.
[CrossRef] [Web of Science Times Cited 53]


[20] P. Gavriluta, S. Spataru, I. Mosincat, C. Citro, I. Candela, P. Rodriguez, "Complete methodology on generating realistic wind speed profiles based on measurements," Renewable Energy & Power Quality Journal, vol. 10, pp. 828-833, 2012.



References Weight

Web of Science® Citations for all references: 2,194 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 104 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-24 16:49 in 97 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy