Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,497,274 unique visits
994,093 downloads
Since November 1, 2009



Robots online now
Googlebot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  2/2014 - 14

Addressing Mode Extension to the ARM/Thumb Architecture

KIM, D.-H. See more information about KIM, D.-H. on SCOPUS See more information about KIM, D.-H. on IEEExplore See more information about KIM, D.-H. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (668 KB) | Citation | Downloads: 895 | Views: 3,089

Author keywords
computer architecture, computer performance, high performance computing, instruction set design, microprocessors

References keywords
embedded(6), thumb(4), registers(4), performance(4), code(4), architecture(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-05-31
Volume 14, Issue 2, Year 2014, On page(s): 85 - 88
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.02014
Web of Science Accession Number: 000340868100014
SCOPUS ID: 84901834441

Abstract
Quick view
Full text preview
In this paper, two new addressing modes are introduced to the 16-bit Thumb instruction set architecture to improve performance of the ARM/Thumb processors. Contrary to previous approaches, the proposed approach focuses on the addressing mode of the instruction set architecture. It adopts scaled register offset addressing mode and post-indexed addressing mode from the 32-bit ARM architecture, which is the superset of the 16-bit Thumb architecture. To provide the encoding space for the new addressing modes, the register fields in the LDM and STM instructions are reduced, which are not frequently executed. Experiments show the proposed extension achieves an average of 7.0% performance improvement for the seven benchmark programs when compared to the 16-bit Thumb instruction set architecture.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Segars, K. Clarke, and L. Goudge, "Embedded control problems, Thumb, and the ARM7TDMI," IEEE Micro, vol. 15, no. 5, pp. 22-30, 1995.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 73]


[2] K. Kissell, MIPS16: High-Density MIPS for the Embedded Market, Silicon Graphics MIPS Group, Technical report, 1997.

[3] S. Furber, ARM system-on-chip architecture, Addison-Wesley, pp. 188-206, 2000.

[4] R. Phelan, Improving ARM Code Density and Performance, ARM Ltd., Technical report, June 2003.

[5] ARM Ltd., ARM Annual Report & Accounts 2013, 2014.

[6] A. Krishnaswamy and R. Gupta, "Efficient Use of Invisible Registers in Thumb Code," Proc. MICRO, 2005, pp. 30-42.

[7] A. Krishnaswamy, R. Gupta, "Dynamic coalescing for 16-bit instructions," ACM Transaction on Embedded Computing System, vol. 4, no. 1, pp. 3-37, 2005.
[CrossRef] [SCOPUS Times Cited 15]


[8] J. H. Lee, S. M. Moon, and H. K. Choi, "Comparison of Bank Change Mechanisms for Banked Reduced Encoding Architectures," Proc. CSE Vol. 2, 2009, pp. 334-341.

[9] J. H. Lee, and J. Park, and S. M. Moon, "Securing More Registers with Reduced Instruction Encoding Architectures," Proc. RTCSA, 2007, pp. 417-425.

[10] Y. -J. Kwon, X. Ma, and H. J. Lee, "PARE: instruction set architecture for efficient code size reduction," IEE Electronics Letters, vol. 35, no. 24, pp. 2098-2099, 1999.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 15]


[11] L. Dong, Z. Ji, G. Gui, and M. Hu, "Multithreading extension for Thumb ISA and decoder support," Proc. EHAC, 2006, pp. 78-81.

[12] X. Xu, C. Clarke, and S. Jones, "High performance code compression architecture for the embedded ARM/THUMB processor," Proc. CF, 2004, pp. 451-456.

[13] H.-H. Chiang, H.-J. Cheng, and Y.-S. Hwang, "Doubling the Number of Registers on ARM Processors," Proc. INTERACT, 2012, pp. 1-8.

[14] H.-J. Cheng, Y.-S. Hwang, R.-G. Chang, and C.-W. Chen, "Trading Conditional Execution for More Registers on ARM Processors," Proc. EUC, 2010, pp. 53-59.

[15] A. M. Fiskiran and R. B. Lee, "Performance Impact of Addressing Modes on Encryption Algorithms," Proc. ICCD, 2001, pp. 542-545.

[16] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han, "FaCSim: A Fast and Cycle-Accurate Architecture Simulator for Embedded Systems," Proc. LCTES, 2007, pp. 89-100.

[17] ARM Ltd., ARM9TDMITM Technical Reference Manual, 2000.

[18] C. Lee, M. Potkonjak, and H. Mangione-Smith, "MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communications Systems," Proc. MICRO, 1997, pp. 330-335.

[19] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, "Mibench: A free, commercially representative embedded benchmark suite," Proc. IISWC, 2001, pp. 3-14.

[20] J. L. Henning, "SPEC CPU 2000: Measuring CPU performance in the new millennium," IEEE Computer, vol. 33, no. 7, pp. 28-35, 2000.
[CrossRef] [Web of Science Times Cited 350] [SCOPUS Times Cited 617]




References Weight

Web of Science® Citations for all references: 404 TCR
SCOPUS® Citations for all references: 720 TCR

Web of Science® Average Citations per reference: 19 ACR
SCOPUS® Average Citations per reference: 34 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-24 08:16 in 25 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy