
Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

Continuous Student Knowledge Tracing Using
SVD and Concept Maps

Oana Maria TEODORESCU, Paul Ștefan POPESCU,
Lucian Mihai MOCANU, Marian Cristian MIHĂESCU

Faculty of Automation, Computers and Electronics, University of Craiova, 200440, Romania
oteodorescu@software.ucv.ro

Abstract—One of the critical aspects of building intelligent

tutoring systems regards proper monitoring of student's
activity and academic performance. This paper presents a
continuous student knowledge tracing method implemented for
Tesys e-Learning platform at the Faculty of Automation,
Computers and Electronics in the University of Craiova. The
student's knowledge level is continuously monitored and, after
each recommended test by the SVD-based mechanism, a new
set of knowledge weights are computed. We aim to achieve a
comprehensive monitoring environment which can provide an
accurate insight upon the student's knowledge level at any
moment. In our approach, we added weights for both students
and tests to improve the student's evolution monitoring and
provide more accurate feedback. The setup for validation
consisted of ten tests with eight questions per test and we used
both current and past year tests data. Results revealed that
assigning weights to questions, tests and students and using
them in the recommendation process offers a better view of the
student's evolution along with more accurate
recommendations. Progress in this direction will provide more
insight into available teaching materials and SVD-based
recommender system such that the e-learning platform that
integrates the presented mechanism will provide a better
learning experience.

Index Terms—data preprocessing, distance learning,
knowledge representation, human computer interaction,
recommender systems.

I. INTRODUCTION

This paper continues the works from [1] which presents a
custom validation procedure of the previously developed
system [2-3]. The initial works started in [4] present a
solution for building personalized quiz sessions which has
later been developed into an SVD-based recommender
system. The current approach described in this paper offers
a better overview of how the recommender system performs
as new features are now implemented, along with a more
accurate knowledge tracking procedure. Having a
recommender system integrated into the e-learning platform
represents an essential aspect because it influences the
student's engagement into the learning process. If the
questions are not adequate to the level of knowledge of the
student, taking tests will become dull, and the grades may
not reveal their actual knowledge.

The context of the study is Tesys e-Learning platform [2],
which is an online educational platform custom developed
for the University of Craiova for several distance-education
degree programs. Tesys offers a variety of functionalities
such as learning resource management, user communication
or taking tests and exams. For each course, students can
access a set of chapters, homework, and external references,

but they can also take many tests (or exams) from questions
previously defined by the professor. When a student starts a
test, they will receive several questions to answer in a fixed
time defined by the professor and the questions can be either
chosen randomly or using the recommender system
presented in this paper. Questions can be of several types:
multiple choice answer, truth-value answer or matching
items from two columns.

For our approach, we use SVD (Singular Value
Decomposition) [5] as a base algorithm for our
recommender system because it offers two important
features: it is a fast algorithm, and it recalculates the
decomposition matrices before each recommendation, so
question knowledge is continuously updated as tests are
taken. For providing a logical path in the way the questions
are selected for the tests, we use a concept map which can
be defined by the professor for each chapter of a course.
Furthermore, the professor can map questions to the
corresponding concepts from the concept map and the
recommender system will ensure concepts from tests are
covered in the order they were defined. In a concept map,
the nodes define the concepts in a chapter and the arrows
define the set of prerequisite concepts, which need to be
learnt before the new concept.

The knowledge tracking infrastructure presented in this
paper is applied to the Data Structures and Algorithms
course taught in the 3-rd semester at the Faculty of
Automation, Computers and Electronics in the University of
Craiova.

The limitation of previous works was that they lacked an
appropriate tracking methodology for assessing student's
knowledge level at any point in time. This limitation
represents a severe knowledge gap for detailed assessment
and further debugging of the proposed recommender
system. We hypothesize that a proper knowledge tracking
method will bring valuable insight into the SVD based
recommender system and allow further improvements.

To test and validate the recommendation algorithm, we
considered test data from students in the previous year of
study for this subject as prior knowledge for the test
recommendation in the current year. For both years of study,
the same 11 concepts distributed into 98 questions were
considered, with the goal of a student no longer receiving
duplicate questions. The test consisted of 8 questions and,
for each question, one minute was allocated; therefore, the
total time for a test was eight minutes.

Our proposed approach describes a workflow for concepts
where students need to answer more than 75% of questions
correctly to receive questions from a new (next) concept.

 75
1582-7445 © 2021 AECE

Digital Object Identifier 10.4316/AECE.2021.01008

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

We also define weights for questions, concepts, and levels
for being able to rank them based on their difficulty. To
analyze the results and get relevant conclusions, a timeline
was developed for each student. Based on the graph of
concepts previously assigned to the course/chapter(s),
professors can quickly get feedback regarding their subject
and analyze how students perform.

We analyzed the test results and compared them to the
previous year to evaluate the evolution of the students.
Tracking each student's activity is done using a graph of
concepts that change their color as they take tests and
answer questions from these concepts correctly.

The paper is organized as follows. In Section 2, we
perform a literature review with regards to similar
approaches. Section 3 describes the proposed approach with
a detailed presentation of how the continuous knowledge
tracking is performed. Section 4 presents the experimental
results on datasets from two academic years. Finally, section
5 contains the conclusions of this work, summarizes the
main contributions and discusses potential improvements
and applications.

II. RELATED WORKS

Adaptive learning and testing represent a pivotal issue in
e-Learning recommender systems, and it has been addressed
lately in [6] by integrating IRT [7] or Rasch [8] models with
various machine learning techniques (i.e., classification and
regression trees, random forest) for assessing the knowledge
level of a new user.

One particular issue with IRT regards interpretability [9]
of parameters (i.e., discrimination, guessing, ability) in the
attempts to build adaptive testing systems that integrate
machine learning algorithms.

In general, analyzing historical educational records by
means of matrix-factorization with temporal course-wise
influence (MFTCI) has been addressed in [10] by
representing students and courses in a latent knowledge
space.

Addressing the problem of ranking items (i.e., questions)
in terms of their difficulties has been done in [11] by using
KNN with Pearson correlation and a matrix factorization
method using SVD to compute latent factors of items and
users.

The most well-known method for determining 'learner's
knowledge is the usage of q-matrix [12] which is was used
in [13] to show that "it is possible to automate the diagnosis
of student knowledge states, based solely on student item-
response patterns and the relationship between questions and
their concepts".

Usage of SVD for implementing recommender systems is
a popular approach because it is a fast and straightforward
algorithm [14]. Depending on the purpose of the algorithm,
users tend to use it as a stand-alone algorithm [15] or in
conjunction with others. In [15], authors propose a novel
algorithm to choose useful neighbors of users or items for
generating the input data, and they claim that their algorithm
is useful to all SVD-based recommendation methods. The
results are quite relevant, as they used four datasets and their
approach outperformed basic SVD methods by more than
ten per cent.

In [16], the authors present an ensemble algorithm for

getting the top-N items from the SVD results because
standard SVD suffers from a computational limitation when
delivering the top-N items online. This approach delivers
faster and more accurate top-N items than the basic SVD.
Still, in the area of top-N recommendations is [17], which is
a versatile and efficient latent factor framework for top-N
recommendations that include the well-known PureSVD
algorithm as a particular case. This paper is strongly related
to our approach, as we also choose the top-N
recommendations, but in their case, authors use ratings as
input, and their result is a prediction, while in ours the input
is represented by the student's grades and the task is to
recommend questions for the next test.

Another interesting approach for improving the
performance of recommender systems is to update the data
and, more specifically, to forget obsolete data [18]. The
authors introduce several forgetting strategies as methods
for selecting this obsolete information, which may be
relevant. They need to be taken into consideration even for
data in education because students evolve from year to year,
and they change their learning techniques and interests.

More educational-related techniques are presented in [19]
where authors present a peer assessment method which
provides feedback, more consistent grading and aims to
students' load in MOOCs (Massive Open Online Courses)
[20]. Related to SVD, there is a matrix factorization
technique which aims to improve the peer assessment and
their overall approach improves the feedback to the student
along with a generalization of student's overall knowledge
and reducing the students' work burden.

There are also problems regarding scalability and sparsity
in the datasets used for recommender systems which are
presented in [21]. The authors present a comprehensive
overview of the applicability of some advanced techniques,
particularly clustering, bi-clustering, matrix factorization,
graph-theoretic, and fuzzy techniques in recommender
systems. However, the applicability of matrix factorization
(in recommender systems for our use case) are such large
research areas that truly comprehensive surveys are almost
impossible, as the authors state.

Other approaches [22] present a different context of using
the SVD algorithm, such as face recognition. This approach
reveals the flexibility of the SVD algorithm and how it can
be used in many research areas. In this case, the authors
build an individual SVD basis set for each image and then
learn a standard set of SVs by taking account of the
information in the basis sets according to a discriminant
criterion across the training images.

Regarding the knowledge tracking proposed methods, one
of the most famous ones is BKT (Bayesian Knowledge
Tracking) initially proposed in [23] and further used in
many approaches such as [24], [25] and many other. The
problem reduces to modelling learner's knowledge as a
fundamental building block of an intelligent tutoring system.
The key ingredients used in various approaches are skills,
parameters, the actual learning context and the business
logic that is based on a particular algorithm. From this
perspective, BKT is based on Bayes Nets implemented in
Bayes Net Toolkit-Student Modeling (BNT-SM) [26].
Issues related to these approaches regard the fact that
multiple sets of profoundly different parameters may predict

 76

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

the data equally well, which gives rise to low identifiability,
local minima, degenerate parameters, and computational
cost during fitting.

Another key ingredient used in modelling students in
intelligent tutoring systems regards the usage of concept
maps [27]. Measuring various aspects of behaviors has been
performed by classical usage of machine learning approach
with predictor and predicted variables within a regression
context. Usage of the concept maps made possible replacing
predictors such as the number of log-in times, or the number
of forum posts reads with predictors like the total number of
learning objects (i.e., tests), the total number of concepts,
total score gained and total time spent online. A correlation
has been usually performed by regression analysis and p-
value hacking with point-wise conclusions [28].

Lately, knowledge tracking has also been performed by
personalized multi-agent systems [29] by analysis of student
internal and external interactions as questions and responses.
Stack Overflow uses this approach for computing Semantic
Correlation and WordNet as a knowledge base to infer
semantic relatedness, which opens the way towards Natural
Language Processing as a critical ingredient along with
machine learning algorithms in the attempt towards efficient
knowledge tracking.

In order to build an adaptive learning system, authors in
[6] combine Item Response Theory [9] with Machine
Learning in order to produce item response prediction for
new learners. They also compare their proposed system to
alternative approaches by conducting experiments on two
different educational datasets. Their chosen algorithm is
Random forest which combined with Item Response Theory
provides the best prediction results and one conclusion is
that this combination of can alleviate the effect of the cold
start problem [30] in adaptive learning environments [31].

III. PROPOSED APPROACH

A. Data Workflow

We have developed a custom data workflow that is based
on an underlying concept map (directed acyclic graph)
designed by the professors for the Graph Data Structures
chapter within the Data Structures and Algorithms course.

The workflow is presented graphically as a flowchart in
Figure 1 and considers a subset of questions from the entire
pool of test questions for the recommendation process by:
 constructing levels in the graph representation of the

concept map. Each level consists of one or more
concepts.

 assessing the target student's completeness of each
level by analyzing previous answers to questions in
each concept in a level.

Questions are assigned to one concept in the concept map,
forming a disjoint q-matrix. Therefore, concepts are always
included in a single level in the graphical representation of
the concept map. This ensures that questions are selected in
a logical order and are only ranked at the student’s current
level(s) using a recommender system based on SVD. The
input matrix for the SVD recommender consists of the
average grade of previous answers for all students which
have been enrolled in the course and taken tests with
questions from the corresponding chapter.

By performing SVD (latent factor model), features and
their correlation are extracted from the student-question
matrix and used for predicting the next questions for the test
of a student.

In the flowchart (Figure 1), the left-side rounded figure
(with a triangle at its left side) denotes the starting point,
while the right-side one (with a square at its left side)
denotes the ending point. Parallelograms denote input/output
data processes, while rectangles denote algorithmic
processes.

Figure 1. Detailed data workflow for recommending questions in a test

The workflow starts with the target student requesting a

test by selecting one or more chapters. The current
workflow is designed to work at chapter level, such that
each chapter from the course needs its own concept map.
This approach gives the opportunity of a finer granularity of
concepts, such that we may end up with several manageable
concept maps for a course instead of having one large
concept map for the whole course.

1. The concept map for the selected chapter is
retrieved and stored as a graph and in-degree is
computed for each concept node. The in-degree will be
later used for ordering and splitting concepts into levels.

2. A topological sort for the concept nodes is

 77

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

performed, starting from the 0 in-degree nodes to the 0
out-degree ones. Concepts are grouped in levels ensuring
no concept depending on a previous one is on the same
level as its predecessor and its predecessor is placed in a
lower level. Visually, this is equivalent to starting with the
root nodes and performing a Breath-first search on the graph
to find the levels as stated before.

3. For each concept, we compute the weight. This will
result in each concept having a weight between 0 and 1,
with 0 being automatically assigned to uncovered concepts.
A value closer to 0 means the student answered most
questions incorrectly, while a value closer to 1 means the
student answered most questions correctly.

4. For each level, we compute the level weight as the
average concept weight of concepts in that level. This will
also result in each level having a weight between 0 and 1. A
value closer to 0 suggests most questions from concepts in
that level have been answered incorrectly and a value closer
to 1 suggests most questions from concepts in that level
have been answered correctly.

5. For each level of concepts at step 2, we assess, based
on the level weight, if the level is Done (weight more than
75%) and if it unlocks the next level (weight more than
50%). We stop when the current level does not unlock
any other level. This is done for determining the set of
concepts from which the recommender may select questions
at the next step.

6. Based on a Done/Next mechanism, we determine the
set of concepts from levels that are not yet Done by the
student. The Next mechanism allows the student to receive
questions from the next level after it reaches 50% weight of
the current level. The Done mechanism ensures that the
student is levelled-up (i.e., receives questions only from the
next level) when at least 75% of the concepts in a level are
mastered (i.e., answered correctly). Furthermore, once the
level is Done, the student will no longer receive questions
from concepts belonging to the Done level.

7. We construct the set of correctly answered
questions by the target student. This ensures that, when
selecting questions in a level, questions which were
correctly answered are no longer repeated. This way, the
student only receives incorrectly answered questions after
the full set of questions for a level was explored, allowing
them to reassess their knowledge and, eventually, level up.

8. We construct the set of unexplored questions by any
student in the system. This ensures that newly added
questions by the professor are considered.

9. We construct the input matrix M = (m(i,j)), of M x N
dimension, for the SVD recommender for all students
and questions from the set of concepts at step 6. M
represents the number of students and N, the number of
explored questions. Values m(i,j) are in range [0, 1] and
represent the accuracy of student i when answering question
j (a measure computed by normalizing the average grade of
all answers given by student i for question j by the
maximum grade for that question). This is used by the SVD
algorithm to produce the final recommendation vector
which, along with data at steps 7 and 8, is processed as
follows in the next (last) step.

10. We apply our custom SVD recommender on
matrix M = (m(i,j)) at step 9 and use the sets at steps 7

and 8 to select the required number of questions for a
test with a rule priority. The rule priority is:

I. Take explored questions (present in the input matrix),
but unanswered by the target student, in the order selected
by the SVD algorithm.

II. Take unexplored questions for exploring new content.
III. Repeat questions previously answered incorrectly by

the target student.
The workflow reaches its final when the student receives

the recommended questions.

B. Defined Weights

Question Weight. A question's weight is defined as the
average grade of that question when answered by students in
the system and is a number between 0 and 1 (see Equation
1).

q

S

i i

Q S

Q
W

q 1 (1)

where, Qi = average question grade for ith student and Sq =
number of students that answered the question.

A value closer to 0 is an indication of a very difficult
question (answered correctly by a few students), while a
value closer to 1 is an indication of a very easy question.

Concept Weight. A concept's weight is defined as the
average weight of all questions in that concept and is a
number between 0 and 1 (see Equation 2).

c

q

i i
C q

WQ
W

c 1 (2)

where, WQi= weight for ith question and qc = number of
questions in the concept.

This weight shows if the questions from a concept are
generally harder, when the weight is closed to 0, or easier,
when the weight is closed to 1. A middle value (0.5)
indicates a more balanced concept, with either hard and easy
questions or questions of a similar (medium) difficulty.

Level Weight. A level's weight is defined as the average
weight of all concepts in that level and is a number between
0 and 1 (see Equation 3).

L

C

i i
L C

WC
W

L 1 (3)

where, WCi = weight for ith concept and CL = number of
concepts in the level.

The level weight can emphasize critical levels, levels of a
higher difficulty encountered by students in the learning
process of a course. A lower value (closed to 0) shows a
difficult level to pass, while a higher value (closer to 1)
shows an easier one.

A few more weights defined per test for comparing
consecutive tests are described below and will also be
shown in the experimental results section.

Average Weight per Test. A test's average weight is
defined as the average weight of all questions in that test and
is a number between 0 and 1 (see Equation 4).

T

q

i i
T q

WQ
W

T 1 (4)

where, WQi = weight for ith question in the test and qT =

 78

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

number of questions in the test.
The average weight per test is a measure of the difficulty

of the test. Lower values (denoting lower question weights)
indicate a harder test while higher values (denoting higher
question weights) indicate an easier one.

Answer Correctness per Test. A test's answer correctness
is defined as the percentage of correctly answered questions
in that test by the student and is a number between 0 and
100 (see Equation 5).

 100%
T

qT
acT q

ca
W (5)

where, caqT = number of correctly answered questions in the
test and qT = number of questions in the test.

The answer correctness weight per test shows the
percentage of correctly answered questions from a test. A
higher percentage denotes more correctly answered
questions and a lower percentage, less correctly answered
questions (more questions were incorrectly answered).

Student Weight per Test. A student's weight is defined as
the sum of signed weights (positive for correct answers,
negative for incorrect) for all questions answered in that test
by the student divided by the number of questions in the test
and, since it results in a number between -1 and 1, it is
normalized to a number between 0 and 1 by adding 1 and
dividing by 2 (see Equation 6).

Tq

ii=1

T
T

SWQ
+1

q
SW =

2

 (6)

where, SWQi = signed question weight for ith question in the
test and qT = number of questions in the test.

The student weight per test is a measure of how well the
student performed in a test. Higher values (closed to 1)
mean that the student performed well, while lower values
(closer to 0) show that the student struggled in a test.

Student Relative Knowledge Weight. A student's relative
knowledge weight is defined as the weight sum of correctly
answered questions in taken tests divided by the weight sum
of all answered questions in taken tests. It is a number
between 0 and 1 (see Equation 7).

qT

qT

a

ii=1
r t

ii=1

WAQ
SKW =

WQ

 (7)

where, aqT = number of correctly answered questions in all
taken tests, tqT = number of questions in all taken tests,
WAQi = weight for ith correctly answered question in a
taken test and WQi = weight for ith question in a taken test.

Student Absolute Knowledge Weight. A student's
absolute knowledge weight is defined as the weight sum of
correctly answered questions in taken tests divided by the
weight sum of all questions available for tests. It is a number
between 0 and 1 (see Equation 8).

qT

qT

a

ii=1
a t

ii=1

WAQ
SKW =

WQ

 (8)

where, aqT = number of correctly answered questions in all
taken tests, qT = number of questions available for tests,
WAQi = weight for ith correctly answered question in a
taken test and WQi = weight for ith question in the pool of
questions for tests.

IV. EXPERIMENTAL RESULTS

The proposed workflow described in the previous section
has been tested on second year students of the Data
Structures and Algorithms course on the Graphs Data
Structures chapters. Data for two consecutive generations
(2018 and 2019) will be presented in this chapter, of which
the 2018 students used a simplified workflow (without
taking into consideration concept levels), while the 2019
ones benefited from the trained data in terms of question
exploration from the previous generation and used the
proposed workflow.

A. Students

In our experiments, a number of 140 students have taken
748 tests (with an average of approx. 5.3 tests per student) in
2018, while 117 students have taken 1068 tests (with an
average of approx. 9.1 tests per student) in 2019.

B. Questions

In both test scenarios, the same pool of 98 questions
divided into 11 concepts was available for the Tesys
recommender system for selection. These concepts were
linked together in a graph called concept map.

Table I depicts the concepts together with the number of
questions for each concept of the Graphs subject. These can
also be seen in each concept map from the timeline of a
student presented in Figure 3 as nodes (the concepts) and the
second number in the caption of each concept node (number
of questions for the concept), respectively. This timeline
will be presented in a later sub-section.

TABLE I. CONCEPTS AND NUMBER OF QUESTIONS PER CONCEPT

Concept
No. of

questions
Concept

No. of
questions

Representations (R) 15 Bellman-Ford (BF) 8
GSearch (GS) 5 APSP 10

BFS 5
SSSP/APSP Wrapup

(SAW)
7

DFS 11 MST 9
SSSPFundamentals

(SP)
8 Misc 8

Dijkstra (DJ) 12

C. Tests

For students in the year 2018 data set, each test consisted
of 10 questions, while students in the year 2019 data set
received tests of 8 questions. Each question has an equal
weight in a test and student grades are normalized between 0
and 10. Figure 2 displays a bar chart with the test results'
distribution in 10-grade ranges (0-10 divided into equal
intervals) for both years comparatively. The green bars
represent grades for the tests taken by 2018 students, and the
blue bars represent grades for the tests taken by 2019
students.

As can be seen from the figure, the blue tests from 2019
form a more bell-shaped curve, showing a proper
distribution of grades with only a few students below grade
5 (144 tests out of 1068, approx. 13.5%), while the green
tests from 2018 form a more sinusoidal shape, with more
values below grade 5 (146 tests out of 748, approx. 19.5%),
denoting harder questions, from more advanced concepts,
were probably selected from the beginning, in the first tests
taken by the students. Almost a double number of students

 79

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

 80

took grades between 0 and 1 at tests in 2018, comparatively
to tests taken in 2019 (26 in 2018 versus 14 in 2019), since
the recommender system did not use a concept map and

Next/Done mechanism in 2018, so questions from advanced
concepts were given in the initial tests.

Figure 2. Bar chart representing the number of tests taken by students in each test grade range per year

Another aspect to note is the more significant number of

tests with high grades (between 9 and 10) compared to the
other grades for students who took tests in 2018. This aspect
may be due to the cold-start problem, which caused a
random selection of the questions in the initial tests. The
students from 2019 benefited from the SVD recommender
being more aware of question difficulty after the tests from
2018 explored most questions.

D. Student test activity tracking

Additional tables and a concept map evolution have been
implemented to track and assess the student's knowledge
level. These will be shown for a specific student.

Our target student is part of the group from 2019, has
taken 20 tests and has an average grade of 7.63. The
following sub-sections will describe the before-mentioned
student testing activity and knowledge tracking features.

E. Student overall testing activity

The student's overall activity can be tracked using a table
showing question correctness (along with their concept)
given in a test. The correctness is displayed using a green
tick for questions answered correctly, and a red cross for
questions answered incorrectly. A black dash is used to
denote that the question was not selected for that specific
test. Figure 4 shows a part of that table for our target
student, highlighting questions in tests 7, 8 and 9.

In this table, concepts are topologically sorted from left to
right. That is, concepts from the left side of the list are
prerequisites and should be mastered before the ones from
the right for ensuring a proper learning curve. The table
offers a view for monitoring selected questions where,
intuitively, the "batch" of green ticks should move from left
to right as the student progresses. Red crosses should be
gradually replaced by green ticks, therefore questions that
were previously answered incorrectly by the student are
later recommended in next tests until a correct answer is
provided. If the student misses to get over 75\% of a level,
we may check that questions for which the student provided
continuously wrong answers are selected from the same
concepts that were not mastered by the student.

F. Student evolution over time

The student's evolution over time has been captured using
a timeline of concept maps after each test, displaying the fill
factor of each concept using labels (number of questions

answered correctly/number of total questions in the concept)
and color shades ranging from red (0-33%) to orange-yellow
(34-66%) to green (67-100%). Figure 3 displays concept
maps after four tests in the timeline of our target student
(tests 5, 10, 15 and 20). Visually, this provides intuitive
feedback on how the student progressed, which are the
concepts that the student managed to master and which are
the ones that still need attention.

Test weights before/after consecutive tests of a student.
Figure 5 displays questions included in tests 7, 8 and 9 of
the target student (along with their weights and associated
concepts). Question weight for questions given in a test is
highlighted in blue text, with a green tick for questions
answered correctly and a red cross for questions answered
incorrectly. In this table, questions in each concept are
ordered descending by their weight, from easier to harder
questions. This facet presentation allows for the evaluation,
in terms of question difficulty, of the selected questions for
consecutive tests. The intuition is that, if a student answers
correctly to a test, the SVD recommender will select more
difficult questions for the next test. On the other hand, if the
student answers incorrectly to a test, the SVD recommender
will most likely select easier questions for the next test.

Based on data in this table, the two weights from
Equations (4) and (6) can be computed for tests 7-9 of our
target student; the values are highlighted in Table II.

TABLE II. TEST AND STUDENT WEIGHTS FOR EXPERIMENTAL TESTS 7-9

7TW 8TW 9TW 7TSW 8TSW 9TSW

0.6 0.52 0.61 0.72 0.52 0.68

Equation (7) represents the test weight and is a measure
of the difficulty of the test. Lower question weights will
result in a harder test with lower test weight. In our example,
test 8 is the hardest test of the three, followed by tests 7 and
9 of similar difficulty.

Equation (8) represents the student's weight per test and is
a measure of how well the student performed in a test.
Higher weights mean that the student performed well, while
lower weights show that the student struggled in a test.

In our example, the weights show that our target student
performed better in test 7 (with 7/8 questions correctly
answered), followed by test 9 (with 6/8 questions correctly
answered) and test 8 having the lowest weight (a lower
performance, with 4/8 questions correctly answered).

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

Figure 3. Concept map timeline after 4 tests taken by a student

Figure 4. Testing activity for 3 tests (8 questions per test) taken by a student

Figure 5. Questions and their weights after 3 consecutive tests of a student

As a further observation, the middle test 8 also contained
harder questions than the previous test 7 in order to
challenge the student but was met with a lower performance
which ultimately led to the recommendation mechanism
returning the student to a more accessible test difficulty
(similar to test 7 is test 9). This points out that, by also
considering the student's current level of knowledge for a
concept, the custom SVD algorithm can adjust the test
difficulty based on the student's performance. The relative
and absolute knowledge weight of the student, considering
the student took only three tests (tests 7-9), can be computed
using Equations (7) and (8); the obtained values are listed in
Table III. From the student’s relative knowledge weight, we
can assess whether the student’s knowledge is improving or
not, as we see that SKWr8 < SKWr7, so the student is
performing worse in the second test (test 8) relative to the
first one (test 7). This can clearly be seen by the number of
wrong answers given, which increased from 1 to 4.

TABLE III. RELATIVE AND ABSOLUTE WEIGHTS FOR TESTS 7-9

7rSKW 8rSKW 7aSKW 8aSKW

0.86 0.71 0.29 0.46

From the student's absolute knowledge weight, we can

assess how much knowledge the student gained from
answering the questions and how far this is from the total
knowledge gain from answering all questions correctly. Our
student gained 29% knowledge from the first test (test 7)
and 46% from the second one (test 8).

V. CONCLUSIONS AND FUTURE WORKS

 In this paper, we presented a recommender system based
on SVD algorithm used in Tesys e-Learning platform to
provide better testing experience for students at the Faculty
of Automation, Computers and Electronics in the University
of Craiova. Providing relevant questions when students take
tests is an important task as it influences their engagement.

 81

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

This paper is a follow-up of three other papers which
described the system and a short validation approach, and
we focus in this one on the newly developed features.

Based on previous experience, we implemented weights
for both students and tests to provide more relevant
recommendations. In the experimental results, we present an
overview of the system and how it works after the latest
features were implemented by applying it on the tests taken
during a semester at Data Structures subject. To obtain more
relevant results, we also used data from the previous year of
study, as this approach will reduce the bias of the algorithm.

As future work we plan to improve the recommender
system with deep learning. We need to evaluate the benefits
of using Long Short Term Memory networks in adaptive
testing environments because deep learning models tend to
provide better and better results for recommender tasks.

The trade-off for this approach is that, in our case, we
update the model very fast for each test taken by a student
and, on the other side, updating the deep learning model
takes longer periods of time and these models needs to be
reevaluated after each retraining. Based on this assumption,
a deep learning model may be feasible for training based on
previous results, but it will not update in accordance with
the results of the students from current year of study.

REFERENCES
[1] O. Teodorescu, S. P. Popescu, M. Mocanu and M. C. Mihaescu,

“Custom Validation Procedure for Tesys Recommender System,”
International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split, Croatia, pp. 1-6, 2019.
doi:10.23919/SOFTCOM.2019.8903913

[2] C. M. Mihăescu, O. M. Teodorescu, P. Ş. Popescu and M. L. Mocanu,
“Learning analytics solution for building personalized quiz sessions,”
18th International Carpathian Control Conference (ICCC), Sinaia,
2017, pp. 140-145, 2017. doi:10.1109/CarpathianCC.2017.7970386

[3] O. Teodorescu, P. Popescu, C. Mihaescu, “Taking e-assessment
quizzes - A case study with an SVD based recommender system,”
19th International Conference, Proceedings, Part I. Madrid, Spain,
November 21–23, 2018. doi:10.1007/978-3-030-03493-1_86

[4] D. D. Burdescu, M.C. Mihaescu, “TESYS: e-Learning Application
Built on a Web Platform,” ICE-B, 315-318, 2006.
doi:10.5220/0001424803150318

[5] P. P. M. de Rijk, “A one-sided Jacobi algorithm for computing the
singular value decomposition on a vector computer,” SIAM Journal
on Scientific and Statistical Computing, pp. 359-371, 1989.
doi:10.1137/0910023

[6] K. Pliakos, S. H. Joo, Y. Y. Park, F. Cornillie, C. Vens, W. Van den
Noortgate, “Integrating machine learning into item response theory
for addressing the cold start problem in adaptive learning systems,”
Computers & Education, pp. 91-103, 2019.
doi:10.1016/j.compedu.2019.04.009

[7] W. J. van der Linden, R. K. Hambleton, “Handbook of Modern Item
Response Theory,” Springer Science & Business Media, pp. 51-65,
2013. doi:10.1007/978-1-4757-2691-6

[8] T. Z. H. T. Petra and J. A. A. Moh, ”Investigating reliability and
validity of student performance assessment in Higher Education using
Rasch Model,” In Journal of Physics: Conference Series, vol. 1529,
no. 4, IOP Publishing, 2020. doi:10.1088/1742-6596/1529/4/042088

[9] F. Martínez-Plumed, R. B. Prudencio, A. Martínez-Uso, J.
Hernandez-Orallo, “Making sense of item response theory in machine
learning,” In Proceedings of the Twenty-second European Conference
on Artificial Intelligence, pp. 1140-1148, 2016. doi:10.3233/978-1-
61499-672-9-1140

[10] Z. Ren, X. Ning, H. Rangwala, “Grade prediction with temporal
course-wise influence,” Proceedings of the 10th International
Conference on Educational Data Mining, arXiv: 1709.05433, 2017

[11] A. Segal, K. Gal, G. Shani, B. Shapira, “A difficulty ranking approach
to personalization in E-learning,” International Journal of Human-
Computer Studies, pp. 261-272, 2019.
doi:10.1016/j.ijhcs.2019.07.002

[12] T. Barnes, “The Q-matrix method: Mining student response data for
knowledge,” In American Association for Artificial Intelligence 2005

Educational Data Mining Workshop, Pittsburgh, PA: AAAI Press, pp.
1-8, 2005

[13] K. K. Tatsuoka, “Rule space: An approach for dealing with
misconceptions based on item response theory,” Journal of
educational measurement, vol. 20, no. 4, pp. 345–354, 1983.
doi:10.1111/j.1745-3984.1983.tb00212.x

[14] A. K. Menon, E. Charles, “Fast algorithms for approximating the
singular value decomposition,” ACM Transactions on Knowledge
Discovery from Data, 2011, pp. 1-36, doi:10.1145/1921632.1921639

[15] X. Yuan, L. Han, S. Qian, G. Xu, H. Yan, “Singular value
decomposition based recommendation using imputed data,”
Knowledge-Based Systems, Vol. 163, pp. 485-494, 2019.
doi:10.1016/j.knosys.2018.09.011

[16] D. Ben-Shimon, L. Rokach, B. Shapira, “An ensemble method for
top-N recommendations from the SVD,” Expert Systems with
Applications, pp. 84-92, 2016. doi:10.1016/j.eswa.2016.07.028

[17] A. N. Nikolakopoulos, V. Kalanzis, E. Gallopoulos, J. D. Garofalakis
“EigenRec: generalizing PureSVD for effective and efficient top-N
recommendations,” Knowledge and Information Systems, Vol. 58,
pp. 59-81, 2019. doi:10.1007/s10115-018-1197-7

[18] P. Matuszyk, J. Vinagre, M. Spiliopoulou, A. Jorge, J. Gama,
“Forgetting techniques for stream-based matrix factorization in
recommender systems,” Knowledge and Information Systems, pp.
275-304, 2017. doi:10.1007/s10115-017-1091-8

[19] L. Oscar, J. Diez, A. Bahamonde, “A peer assessment method to
provide feedback, consistent grading and reduce students' burden in
massive teaching settings,” Computers & Education, pp. 283-295,
2018. doi:10.1016/j.compedu.2018.07.016

[20] S. Cooper, S. Mehran, “Reflections on stanford's moocs,”
Communications of the ACM, pp. 28-30, 2013.
doi:10.1145/2408776.2408787

[21] M. Singh, “Scalability and sparsity issues in recommender datasets: a
survey,” Knowledge and Information Systems, pp. 1-43, 2020.
doi:10.1007/s10115-018-1254-2

[22] Y. Tai, J. Yang, L. Luo, F. Zhang, J. Qian, “Learning discriminative
singular value decomposition representation for face recognition,”
Pattern Recognition, pp. 1-16, 2016.
doi:10.1016/j.patcog.2015.08.010

[23] A. T. Corbett, J. R. Anderson, “Knowledge tracing: Modeling the
acquisition of procedural knowledge,” User modeling and user-
adapted interaction, pp. 253-278, 1994. doi:10.1007/BF01099821

[24] R. S. J. Baker, A. T. Corbett, V. Aleven, “More accurate student
modeling through contextual estimation of slip and guess probabilities
in bayesian knowledge tracing,” International Conference on
Intelligent Tutoring Systems. Springer, Berlin, Heidelberg, 2008.
doi:10.1007/978-3-540-69132-7_44

[25] W. J. Hawkins, N. T. Heffernan, R. S. J. D. Baker, “Learning
Bayesian knowledge tracing parameters with a knowledge heuristic
and empirical probabilities,” International Conference on Intelligent
Tutoring Systems. Springer, Cham, 2014. doi:10.1007/978-3-319-
07221-0_18

[26] J. Beck, “Difficulties in inferring student knowledge from
observations (and why you should care),” Educational Data Mining:
Supplementary Proceedings of the 13th International Conference of
Artificial Intelligence in Education, 2007.

[27] J. D. Novak, D. B. Gowin, “Learning how to learn,” Cambridge
University Press, 1984. doi:10.1017/CBO9781139173469

[28] A. Grubisic, et al. “Knowledge tracking variables in intelligent
tutoring systems,” Proceedings of the 9th International Conference on
Computer Supported Education-CSEDU, Vol. 1, 2017.
doi:10.5220/0006366905130518

[29] A. Trifa, H. Aroua, L. C. Wided, “Knowledge tracing with an
intelligent agent, in an e-learning platform,” Education and
Information Technologies, 2019. doi:10.1007/s10639-018-9792-5

[30] L. Blerina, K. Kolomvatsos, S. Hadjiefthymiades, “Facing the cold
start problem in recommender systems,” Expert Systems with
Applications, pp. 2065-2073, 2014. doi:10.1016/j.eswa.2013.09.005

[31] P. Jung Yeon, S.-H. Joo, F. Cornillie, H. L. J. van der Maas, W. van
den Noortgate “An explanatory item response theory method for
alleviating the cold-start problem in adaptive learning environments,”
Behavior Research Methods, no. 2, pp. 895-909, 2019.
doi:10.3758/s13428-018-1166-9

 82

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 02:14:52 (UTC) by 34.201.122.150. Redistribution subject to AECE license or copyright.]

